
DEPARTMENT OF THE AIR FORCE
Software Technology Support Center

Guidelines for Successful
Acquisition and Management of

Software-Intensive Systems:

Weapon Systems
Command and Control Systems

Management Information Systems

Version 3.0

May 2000

GSAM Version 3.0

ii

Preface and Acknowledgements
We are excited to provide version 3.0 of these Guidelines for Successful Acquisition and Management
of Software Intensive Systems . We are pleased that prior editions have been so well received and that
many individuals and programs have worked to implement the principles contained herein. Since this
project began, the software community has experienced rapid changes. During the last few years in
particular, software acquisition reform has introduced several changes and alterations of many long-held
approaches. In the first few chapters we have tried to address these changes and accompanying issues.
Likewise, we have updated information related to systems and software. We have left intact discussions
dealing with software engineering principles since these tried-and-true principles do not change much—
often, its putting them into consistent practice that is forgotten.

The turnover in the Department of Defense (DoD) acquisition and management workforce has suggested
additional reasons for these Guidelines. The entire workforce has not been fully acclimated to the new
approaches embodied in the acquisition reform policies. Also, we have witnessed many situations where
individuals have repeated inappropriate or unsuccessful practices. Our hope is that the lessons learned by
the past generation of acquisition managers and systems developers will put the new kids on the block on a
success-oriented path. Hence, we have included information and emphasized concepts that may seem old-
hat to those of you with experience but are completely new for others.

As we put these Guidelines together from our experiences with software acquisition and software
development assessments and consulting, there are usually a handful of key principles that when not
followed cause projects to suffer. Although these principles seem so basic, and possibly counter to our
environment, we have noticed that their implementation is still not always forthcoming:

§ We must focus on the true customer.
§ We must spend more energy talking about and dealing with this customer and the actual product of

our program and minimize, as much as possible, the time spent talking about the encompassing politics.
§ We must understand the importance of the full lifecycle of our program and the accompanying product

or service.
§ We must baseline our requirements and project scope as early as possible.
§ We should break up our program into smaller phases or multiple projects, if necessary, to gain the

advantage of incremental successes.
§ We must introduce measurements into our programs and appropriately use them for better

predictability of costs, schedule, and quality and management of the program as it progresses. These
measurements being used to also stimulate increased accountability into our cultures.

§ We must not be afraid to talk about the risks associated with our programs and projects, and focusing
on, tracking, and managing the key risks.

§ We must capture relevant data, lessons learned, and other historical information from our programs
with a mantra of organizational learning, regardless of the potential and actual staff and management
turnover.

§ We must work towards and emphasize sponsorship in our improvement efforts, where leaders and
managers understand these principles and “walk the talk.”

These Guidelines represent the most comprehensive single source document on how to realize these
principles and achieve similar goals. They continue to represent a substantive compilation of lessons-
learned and best practices gathered from recognized industry and government software practitioners and

GSAM Version 3.0

iii

procurement experts. The major defense universities use them as course materials, Industry uses them to
prepare for competitive software procurements, and software engineers refer to them to provide
fundamental viewpoints not typically considered.

The Internet has caused us to reflect on how best to provide these Guidelines. Information, policies, and
procedures will likely change faster than we can provide updates. Although still a large compilation of
lessons-learned and best practices, these Guidelines should function as a starting point for the substantial
body of knowledge available freely on the Internet. We refer you to Appendix A to assist with potential
sites to search further for broader understanding of topics important to your needs.

A central theme of each edition of these Guidelines is how to turn an adverse situation into a success—
how to turn a challenge into a victory. The most important ingredients in achieving these goals, the most
crucial resources required to produce a quality product, are the people selected to do the job. The skills,
experience, creative abilities of the team are key determinants of success or failure in the software world.

Representing many years of effort, these Guidelines were written with limited resources, a limited staff,
lots of hard work, and lots of talent. Several people have had a hand in these Guidelines. Early
coordination and oversight came from Joseph J. Stanko, research and writing from Susan Tinch Johnson,
and vision and sponsorship from Lloyd K. Mosemann, II. Support and sponsorship for this version came
from Col (Ret.) Joe Jarzombek and the Computer Resources Support Improvement Program (CRSIP).
We would also like to convey a very special thanks to Tim Perkins, Leon Oldham, and Roald E. Peterson,
Jr., for not only their skills in research and writing but their keen insights in the fields of software
engineering, acquisition, and management. We are also indebted to Karen Rasmussen for her ability to
make sense of the whole effort, by doing editing, design, and layout and putting these Guidelines into a
readable format.

Larry W. Smith
Project Manager
Software Process Improvement
Software Technology Support Center

If you find these Guidelines profitable and useful, stay current with the latest developments in software engineering,
process improvement, and management at no cost. CrossTalk: The DoD Journal of Software Engineering is
published by the Air Force Software Technology Support Center. If you do not already receive monthly issues of
CrossTalk , you are missing out on a wealth of information and news about what is happening in the software
development arena. To order CrossTalk , free-of-charge, contact:

Customer Service
OO-ALC/TISE
7278 4th Street

Hill AFB, Utah 84056-5205
801-775-5555

www.stsc.hill.af.mil

http://www.stsc.hill.af.mil/

GSAM Version 3.0

iv

Volume 1

Contents
Part 1: Acquisition
Chapter 1 Defense Software Overview
Chapter 2 Software Victory—Exception or Rule?
Chapter 3 Statutory Framework
Chapter 4 DoD Software Acquisition Environment
Chapter 5 System Life Cycle and Methodologies
Chapter 6 Risk Management
Chapter 7 Acquisition Planning
Chapter 8 Contracting for Success

Part 2: Engineering
Chapter 9 Engineering Software-Intensive Systems
Chapter 10 Developing Software Maturity
Chapter 11 Understanding Software Development
Chapter 12 Software Support

Part 3: Management
Chapter 13 Software Estimation: Measurement and Metrics
Chapter 14 The Management Challenge

Volume 2

Contents

Part 1: Points of Contact and Websites
Appendix A Points of Contact and Websites

Part 2: Policy and Information-Related Appendices
Appendix B SECDEF Memoranda
Appendix C Selected Technical Reports
Appendix D Selected Reading and Reference Materials

GSAM Version 3.0

v

Part 3: Engineering-Related Appendices
Appendix E If Architects Had to Work Like Programmers
Appendix F Software Architecture
Appendix G A Comparison of ISO 9001 and the CMM
Appendix H Function Points and Feature Points
Appendix I Software Support
Appendix J SWSC Domain Engineering Lessons Learned
Appendix K Study of the CMM and Software Development

Performance
Appendix L Process Maturity Profile of the Community
Appendix M Software Complexity
Appendix N Metrics—The Measure of Success
Appendix O Swords and Plowshares: Rework
Appendix P Rate Monotonic Analysis: Did You Fake It?
Appendix Q On Board Software for the Boeing 777

Part 4: Management-Related Appendices
Appendix R Lessons Learned from the BSY-2’s Trenches
Appendix S Software Source Selection
Appendix T AIS ORD Recommendations
Appendix U Improving Software Economics in Aerospace & Defense

Industry

Part 1: Acquistion GSAM Version 3.0

Chapter 1

Defense Software
Overview

Chapter 1: Defense Software Overview GSAM Version 3.0

1-2

Contents

1.1 Software’s Role in A Dangerous World ... 1-3
1.2 Software and Future Warfare ... 1-4

1.2.1 Joint Vision 2010: Information Superiority ... 1-4
1.2.2 Software Wargaming and Future Warfare ... 1-5
1.2.3 Army Vision 2010: Digital Battlefield.. 1-6
1.2.4 Navy IT-21 .. 1-7
1.2.5 Marine Corps: Operational Maneuver .. 1-7
1.2.6 Air Force: Global Engagement .. 1-8

1.3 Budgets And Increasing Software Demands ... 1-9
1.3.1 Decreasing Budgets .. 1-9
1.3.2 Modernization Budget Shortfalls .. 1-10
1.3.3 Software: The Force Multiplier... 1-11
1.3.4 DoD Software Spending: Growing Demands 1-11

1.4 Software: The Invisible Component ... 1-13
1.5 Software-Intensive Defense Systems ... 1-14
1.6 DoD Software Domains .. 1-16

1.6.1 Weapon System Software ... 1-16
1.6.1.1 Embedded Software ... 1-17
1.6.1.2 C3 Software ... 1-17
1.6.1.3 Intelligence Software .. 1-18
1.6.1.4 Other Weapon System Software ... 1-18

1.6.2 Automated Information System Software ... 1-19
1.6.2.1 Simulation and Modeling Software ... 1-19
1.6.2.2 Artificial Intelligence .. 1-20

1.7 References .. 1-21

1-3

Chapter 1: Defense Software Overview GSAM Version 3.0

1.1 Software’s Role in A Dangerous World

“The superior ability of the United States warfighters to obtain, process, analyze, and convey
information is our most powerful weapon on the battlefield. It is a cornerstone of our military
strategy captured in Joint Vision 2010. Our superiority in information technology enables the
United States to carry out a two MRC [major regional conflict] scenario with significantly reduced
end-strength.” — Deputy Secretary of Defense James J. Hamre [HAMRE98]

The U.S. is the world’s peacekeeper, provider of humanitarian assistance, and counterterrorist
policeman in an increasingly dangerous world. Jacques S. Gansler, Under Secretary of Defense
for Acquisition and Technology, described the volatile world environment in a speech to the
Precision Strike Association.

“The end of the Cold War has brought great changes in the threat to our security. Today, we are
much…more concerned with a whole host of potential enemies, ranging from terrorists and
transnational organizations to rogue nations, whose intentions are highly unpredictable and,
therefore, in many ways much more difficult to defend against.” — Deputy Secretary of Defense
James J. Hamre [HAMRE98]

The National Defense Council Foundation, an Alexandria, Virginia-based organization, monitors
conflicts and the political, military, socioeconomic threat environment worldwide. It reports that,
“[i]n 1997, the conflict count was at 67, a bump up from the total of 64 last year.” [NDCF97]
The following characterizes the modern threat.

 “The dissolution of a monolithic adversary paves the way for a host of possible threats to U.S.
interests that require rapid and flexible responses...Terrorism will continue to be a considerable
problem...[and] terrorists likely will concentrate on technologies encompassing communications,
sophisticated conventional weapons, and weapon disguise technologies ...While the employment
of advanced and exotic weapons is less likely, their availability is increasing...The growth of
international drug cartels continues and promises greater instability...[which] in turn can lead to
clashes with neighboring countries...[A]bout two dozen countries are pursuing development or
acquisition of nuclear, biological, or chemical weapons...[and] [t]he number of nations that possess
operational theater ballistic missiles...could double to 10 by the year 2010.” — Robert K. Ackerman
[ACKERMAN97]

To counter this threat, the U.S. military is counting on the acquisition of software-intensive
weapon systems and equipment needed to conduct multiple, concurrent contingency operations
worldwide. These systems must be flexible and modifiable to perform in any environment. They
must be deployable in situations where adversaries do not try to match us plane for plane, ship
for ship, or tank for tank. Instead, they use asymmetric means of engagement, such as nuclear,
biological, or chemical weapons, information warfare, and large numbers of low-cost cruise and
ballistic missiles. In this context, software is the most formidable weapon we possess, as it is
easily adaptable to respond to a volatile threat. The warfighter needs more and better software
systems to monitor, — detect, assess, alert, and combat forces intent on disrupting an already
precarious world order.

The warfighter relies on software for virtually every operation, including strategic and tactical
operations; sophisticated weaponry; intelligence, surveillance, and security efforts; and strategic

1-4

Chapter 1: Defense Software Overview GSAM Version 3.0

mobilization and readiness. Indeed, virtually every operation that supports the warfighter is
software-dependent, including routine business functions such as financial, personnel, logistics,
and contract management. DoD’s reliance on software-intensive systems is illustrated by the fact
that it has over:

• 1.5 million computers (of which 827,000 are personal computers),
• 28,000 software systems (of which 11% are mission-critical),
• 10,000 computer networks,
• 88,000 communications systems, and
• 100,000 facility support systems (e.g., security and medical support systems). [HINCHMAN97]

1.2 Software and Future Warfare

In the future, U.S. forces will experience a transition from warfare of attrition, where opposing
sides try to destroy the other’s force structure, to reconnaissance/strike warfare. Opposing sides
will try to destroy and out-perform the other’s software-intensive systems. This will involve the
use of precision, smart weapons, delivered from long range to minimize battlefield casualties.
Future U.S. dominance depends on our ability to obtain and distribute real-time automated
battlefield awareness (knowledge) in-theater, among the Services and our allies. This requires
investments in software systems that can link major weapons platforms to field command units
and in the technology needed to support those systems. [ERWIN98]

“Knowledge in the form of an informational commodity indispensable to productive power is
already, and will continue to be, a major — perhaps the major — stake in the worldwide competition
for power. It is conceivable that the nation-states will one day fight for control of information, just
as they battled in the past for control over territory, and afterwards for control over access to and
exploitation of raw materials and cheap labor.” — Jean François Lyotard, 1979 [LYOTARD79]

1.2.1 Joint Vision 2010: Information Superiority

In his FY98 Report to the President and Congress, Secretary of Defense (SECDEF) William S.
Cohen explained that,

“Out to the mid-term future, the initial template for our future force will be “Joint Vision 2010.”
It is built on an integrated “system of systems” that aims to give our forces total battlespace
awareness, as well as the capability to maneuver and engage the enemy at the times and places of
our choosing throughout the entire battlespace. This system of systems will integrate the laptop,
the microchip, the microwave, the videocam, the satellite and the sensor. It will connect the cockpit,
the quarterdeck, the control panel and the command post and link the shooter to the commander
to the supplier.” [COHEN97]

In Joint Vision 2010, the Chairman of the Joint Chiefs of Staff presents a strategic plan for the
next century premised on the superior application of software-enabled technologies. The Joint
Vision explains how traditional military concepts of maneuver, strike, protection, and logistics
will be leveraged by software-intensive systems to achieve information dominance. It states that

www.dtic.mil/jcs/

1-5

Chapter 1: Defense Software Overview GSAM Version 3.0

“How we respond to dynamic changes concerning potential adversaries, technological advances
and their implications, and the emerging importance of information superiority will dramatically
impact how well our Armed Forces can perform its duties in 2010.” [JCS96]

Joint Vision 2010 states that through information superiority U.S. forces will be able to achieve
full spectrum dominance:

• Dominant maneuver,
• Precision engagement,
• Focused logistics, and
• Full-dimensional protection.

Achieving this full spectrum dominance means continuing to build an integrated, complex set of
software systems (especially a common command, control, communications, computers,
intelligence, surveillance, and reconnaissance (C4ISR) architecture) to achieve dominant
battlespace awareness. [QDR97]

1.2.2 Software Wargaming and Future Warfare

While the art of wargaming has been around for hundreds of years, software models and
simulations are providing critical insights and analytical perspectives heretofore impossible to
achieve. DoD is using software to wargame, predict, and plan for a range of possible threat
scenarios and plausible outcomes up to the year 2020 and beyond. As Gen. Howell M. Estes, III,
(USAF retired), former chief of U.S. Space Command, explains,

“Wargames are critically important…to address real policy issues that need to be straightened
out. Certainly, in the space business, [wargames] have much improved understanding of the critical
nature of [space] systems.” [ESTES98]

National-level software-intensive wargames have become a primary mechanism for regional
commanders, the Pentagon, congressional, White House, State Department, Federal Emergency
Management Agency (FEMA), and national intelligence organization decision-makers to explore
critical national issues, such as:

• Information operations and information warfare;
• “Network-centric” warfare;
• Space control;
• Logistics and mobility;
• “Asymmetric” warfare;
• Interagency links to ensure achievement of the right “effects;”
• Military force reorganization to meet future defense needs; and
• Reorientation of major acquisition programs from “platform centric” to “network-centric”

doctrines. [SCOTT983]

Three major wargames (called “Title-10” games) are service-level with roles and missions defined
by U.S. codes, sometimes involve 1,000s of players, including high-level military officers and
civilian leaders. Title 10 wargames include the following. [SCOTT981]

1-6

Chapter 1: Defense Software Overview GSAM Version 3.0

• Army Wargaming. Army After Next is a comprehensive initiative to better understand the
nature of warfare 30 years into the future and provide insight into today’s development efforts.
It is laying the research foundations necessary for assessing the effects of increased mobility,
lethality, and maneuver. In 1997, this wargame showed that if U.S. satellites are destroyed
early in a conflict, ground forces quickly will become immobilized. [SCOTT981]

• Air Force Wargaming. Global Engagement is exploring transitioning from an air-and-space
force to a space-and-air force through a long-range planning process, which has identified
new operational concepts and their implementation. For example, wargames confirmed the
value of protecting space assets and identified the effectiveness of using both a suborbital
military space plane and expendable launchers to quickly replenish orbital sensors lost during
attacks. [SCOTT981]

• Navy Wargaming. At Sea Fleet Battle Experiments are exploring future naval warfare
concepts, from rotational base issues to asymmetric capabilities and responses. Experiments
are being designed to integrate real-world training with technological advances, innovative
operational concepts, and emerging software-intensive systems. Their effects on fleet
capabilities and future requirements are also being evaluated. For example, Navy is using
wargames to assess the operational effectiveness of certain design features being considered
for its next generation aircraft carrier.

• Marine Corps Wargaming. Applying nonlethal and other innovative technologies, as well
as software algorithms from other disciplines, such as the natural sciences, to military art and
science are being investigated.

• Joint Wargaming. The 1998 Joint Land, Aerospace, and Sea Simulation (JLASS 98), held at
the Air Force Wargaming Institute, was the fifth in a five-year series. It included students
form all service war colleges, the National Defense University, and the Industrial College of
the Air Force (ICAF). The game covered warfighting issues such as: deployment of joint
forces to a conflict region; force employment and sustainment; intelligence, mobilization,
and theatre force requirements; and logistics. Players fought with future weapon systems
such as the Joint Strike Fighter, the F-22, the Airborne Laser, and missile interceptors.
[SCOTT982]

1.2.3 Army Vision 2010: Digital Battlefield

Army Vision 2010 implements Joint Vision 2010 and the concepts identified in Force XXI
through the Digital Battlefield. According to David Borland, Deputy Army Chief Information
Officer (CIO), with the Digital Battlefield,

“[E]veryone on the battlefield can interact at any time using all the tools necessary to convey
thoughts, orders, or plans to any system, mounted or unmounted, on the battlefield in real-time.”
[BORLAND97]

Borland also explains that the Army is pursuing the acquisition of software-intensive systems
“capable of growth for new requirements and technologies compliant with the Joint Technical
Architecture”. [BORLAND97]

The Army’s current efforts are aimed at enabling today’s soldiers and combat systems with
information technology and other software enhancements while beginning long-term research
and development efforts. For example, the Experimental Force (EXFOR) is a digitized, heavy

1-7

Chapter 1: Defense Software Overview GSAM Version 3.0

force testing program that identifies and evaluates new operational concepts, organizational
designs, advanced technologies, doctrine, and tactics.

By leveraging radical advances in information technology, software-intensive advanced weapons,
and platform speeds at the tactical and operational levels, the Army intends to ensure that land
power remains a strategically decisive 21st Century warfighting element. [QDR97]

1.2.4 Navy IT-21

The Navy’s Information Technology for the 21st Century (IT-21), implements the Joint Vision
strategy by defining the use of information system technologies to establish a clear linkage between
command, control, communications, computers and intelligence (C4I) and naval warfare. IT-21
serves as the foundation for “network-centric” warfare that shifts focus from operations of
individual ships and systems to C4I networks that link platforms and weapon systems, or in other
words, link sensors to shooters.

Navy has embraced the concept called “network-centric warfare.” It is the enhanced massed
effect of widely dispersed, robustly networked sensors, command centers, and forces. Combining
forward presence with network-centric combat power, the Navy seeks to decisively close timelines,
alter initial conditions, and head off undesired events before they start. The sea will be used to
gain advantage over the enemy, while naval precision engagements will employ sensors,
information systems, software-intensive precision guided weapons, and lethal forces to attack
key targets. Naval full-dimensional protection is an initiative to address the spectrum of threats
and provide information, air, and maritime superiority, theater air and missile defense, and naval
fire delivery. [QDR97] Automated Information Systems (AIS) and software-intensive technologies
will integrate fleet-service, joint-service, theater, and national sensors with weapon systems and
platforms.

1.2.5 Marine Corps: Operational Maneuver

Marine Corps Operational Maneuver from the Sea is an initiative to develop a tactically adaptive,
technologically agile, opportunistic, and exploitative force. AIS will be used to coordinate what
the Marine in the foxhole sees through his binoculars with the appropriate force needed. It will
convert targets into aimpoints, and translate aimpoints into required mapping functions, identify
the most effective weapons for each target, assign the appropriate ordinance or missile, and
prioritize targets among weapons and platforms. Following weapons launch, automated processes
will provide a reliable engagement assessment. [WALSH97]

The Marine Corps’ future focus is on the enhancement of the individual Marine and his or her
ability to win in combat. Their Combat Development System focuses on generating the most
effective combination of innovative operational concepts, new organizational structures, and
emerging software-intensive technologies. Through the five-year Sea Dragon program, the
Marines have developed an extensive experimentation plan divided into three phases, each
culminating in an Advanced Warfighting Experiment:

1-8

Chapter 1: Defense Software Overview GSAM Version 3.0

• Hunter Warrior examines Naval power projections in a dispersed, non-contiguous littoral
battlespace, enhanced fires and targeting, C4I, and the “single battle.”

• Urban Warrior is a two-year effort to explore operations in urban, near urban, and close
terrain.

• Capable Warrior investigates virtual and live forces. It comprises operational level deception
and maneuvering in response to a crisis, combined with the objective of containing or obviating
an incipient major theater war.

1.2.6 Air Force: Global Engagement

Global Engagement: A Vision for the 21st Century Air Force is the Air Force vision for air and
space warfare through the year 2010. It calls for maintaining and improving capabilities through
quality personnel, integrated global battlespace awareness, and advanced command and control
technologies. Air and space superiority will provide all U.S. forces freedom from attack and
freedom to attack. Air Force precision engagement capabilities will enable the reliable application
of selective, simultaneous force against specific targets. This will achieve desired effects with
minimal risk and collateral damage. Air and space-based assets will contribute to U.S. information
superiority, and agile combat support will allow combat commanders to improve force
responsiveness, deployability, and sustainability.

The Air Force has established six battle laboratories to implement this vision. The concepts
validated in the labs will be assimilated into Air Force organization and doctrine, as well as
training and acquisition efforts. The six labs include the following areas of concentration:

• Unmanned aerial vehicles,
• Information warfare,
• Air expeditionary forces,
• Space capabilities,
• Battle management command and control, and
• Force protection. [QDR97]

On 14 June 1996, Secretary of the Air Force, Sheila E. Widnall, addressed the National Press
Club in Washington, D.C. She talked about hosting a conference on modeling and simulation for
the other service secretaries. They flew to the Joint Training and Simulation Center at the U.S.
Atlantic Command near Langley Air Force Base, VA, a battle lab for training joint force
commanders and their staffs. This battle lab’s software systems gives commanders the ability to
explore options, see the logical consequences of decisions, and see how an intelligent adversary
might respond to various decisions. Windall explained that,

 “At that command center we can conduct an exercise integrating real decision-makers working
against a simulated enemy force — and real aircraft flown on training ranges thousands of miles
away against simulated adversaries — using modeled weaponry so we can get a look at how these
new weapons will affect our capabilities.” [WINDALL96]

1-9

Chapter 1: Defense Software Overview GSAM Version 3.0

1.3 Budgets And Increasing Software Demands

1.3.1 Decreasing Budgets

The disappearance of the traditional monolithic adversary with identifiable threats has brought
about a demand for less defense-related spending. However, we now face a legion of lesser
potential adversaries with widely varied capabilities, goals, and battle environments. To meet a
more diverse mission with a smaller budget requires greater efficiency in the use of our resources.
This means replacing manpower with automation, and large forces with smaller forces, more
carefully directed by accurate information. Software-intensive systems allow us to do accomplish
more with fewer resources. Using a single aircraft with a smart bomb to attack a target carefully
selected from appropriate intelligence information costs much less than sending in multiple aircraft
with multiple conventional weapons to neutralize a minimally-defined target area. Software-
based systems will continue to receive an increasing share of reduced budgets because they
allow weapon systems to be more flexible and effective at an overall lower cost.

“The need for U.S. military forces to adapt to new and more diverse military missions is matched
by the requirement to meet these challenges within the constraints of available resources. The
concurrent explosion in new technologies offers opportunities to innovatively assess new ways of
addressing these issues...Information Age Technologies will provide warfighters with a breadth
and depth of information unparalleled in military history. Using this information to enhance the
command and control of precision strike weapons will provide U.S. forces with capabilities which
have never before been available.” — SECDEF William S. Cohen [COHEN97]

Undersecretary Gansler explains that the 21st Century warfare environment requires extensive
modernization of current systems by taking advantage of rapidly changing software-intensive
technologies (e.g., adding Digital Battlefield capabilities to older systems). [GANSLER981]
According to Gansler,

“Our acquisition team must provide the warfighter with the full protection of superior weapons
and total information superiority in the battlespace. To achieve total information superiority, we
must incorporate advanced information systems into every weapon we acquire.” [GANSLER982]

The 1997 Report of the Quadrennial Defense Review (QDR) details a plan to increase procurement
funds to prepare for future challenges and upgrade aging military systems. Modernization involves
automating older platforms with software systems to bridge the gap until new platforms are
developed to implement the Joint Vision 2010 framework. Table 1-1 lists the FY99 budget requests
submitted to the Congress for major defense modernization programs.

www.defenselink.mil/pubs/qdr

1-10

Chapter 1: Defense Software Overview GSAM Version 3.0

Table 1-1. FY99-FY03 Major Defense Modernization Programs [DBFY99]

1.3.2 Modernization Budget Shortfalls

Shrinking procurement funds, dwindling forces, and expanding missions are compounding
modernization challenges for acquisition managers within defense structure and budget
downsizing. According to Under Secretary Gansler,

“We have dropped our procurement account by 70% over the last 10 years and must now apply
vast new resources to modernization — perhaps $10 to $30 billion a year more — in order to
provide the dollars we need to maintain total superiority in the future battlespace.” [GANSLER981]

The FY99 defense budget authority was $270.5 billion. As listed on Table 1-2, the FY99 budget
includes $48.7 billion for the procurement of more weapon systems, which is projected to reach
$63.5 billion in FY03. [DBFY99] In constant FY99 dollars, the defense budget has dropped 32%
since the end of the Cold War. Spending on new equipment procurement is down by 50%. Active
duty personnel have declined in numbers by nearly 33% since the Berlin Wall fell. While active
troops and spending have been dramatically reduced, the commitments overseas have skyrocketed.
The Army, for example, was involved in 10 major deployments between 1950 and 1989. Since
1990, it has deployed troops in 27 major contingencies — a 16-fold increase. [SKIBBIE98] The
Navy and the Air Force have experienced similar increases in their security commitments, with
38 joint service deployments since 1990.[WOOD98]

Army FY99-FY03
Ammunition $6.6 B
Trucks/Support Vehicles $5.5 B
M1A2 Tank Upgrade $3.2 B
Longbow Apache Helicopter $2.8 B

Navy FY99-FY03
F/A-18E/F Aircraft $15.0 B
DDG-51 Destroyer $14.1 B
New Attack Submarine $7.5 B
LPD-17 Amphibious Transport
Dock Ship $6.5 B

V-22 Tiltrotor Aircraft $5.8 B
Air Force FY99-FY03

C-17 Airlifter $13.4 B
F-22 Fighter $11.7 B
CV-22 Tiltrotor Aircraft $1.7 B

BUDGET AUTHORITY
FY99 FY00 FY01 FY02 FY03

QDR Goal $49.0 B $54.0 B $60.0 B $61.0 B $62.0 B
FY99 Budget $48.7 B $54.1 B $61.3 B $60.7 B $63.5 B

Table 1-2. DoD Procurement Budget FY99 to FY03 [DBFY99]

1-11

Chapter 1: Defense Software Overview GSAM Version 3.0

1.3.3 Software: The Force Multiplier

Under austere budget constraints, DoD is using software as a force multiplier. Software increases
the capabilities of warfighters by arming them with powerful, smart weapons and decision support
tools. It gives them the flexibility to adjust to previously unknown threats. It allows them to do
more with less; and it increases the effectiveness of our service men and women through
information superiority. Thus, our fighting forces are depending on the defense acquisition corps
to equip them with software-intensive systems that have the character, disposition, capability,
usability, interoperability, maintainability, and flexibility needed to fight and win.

1.3.4 DoD Software Spending: Growing Demands

As a single entity, DoD is the world’s largest consumer of software goods and software-related
services. DoD, the Defense agencies, and military services information technology (software,
hardware, and support services) budgets for fiscal year FY98, as reported to Office of Management
and Budget (OMB), are summarized on Table 1-3. [McCONNELL97]

FY98 IT BUDGET (Billions)

DoD $10.2 B

DoD Agencies $3.4 B
Air Force $2.3 B

Navy $2.2 B

Army $2.0 B

Table 1-3. DoD FY98 IT Budget [McCONNELL97]

OMB does not require that DoD report what it spends on software embedded in weapon systems
and in command, control, communications, and intelligence (C3I) systems classified as National
Security Systems (NSS). [Defined below.] However, the GAO explains that, “The Department of
Defense…has estimated it spends $24 billion to $32 billion annually for software embedded in
weapon systems.” [HOENIG97] The median of those two figures added to the total of what DoD
spends on software for other purposes is illustrated on Figure 1-1. Personnel include government
hardware and software engineers, systems analysts, computer programmers, and technicians.
Software budgeted for automated information systems (AIS) and C3I systems, not classified as
NSS, includes software for administrative and operational purposes. (NSS AIS systems that support
weapon systems are included within the weapon system budget numbers.) Support services include
non-NSS software services not provided by government personnel.

1-12

Chapter 1: Defense Software Overview GSAM Version 3.0

Figure 1-1. Composite DoD Annual Software Budget [BROWN97]

The responsibility for finding the funds to make up for Gansler’s $10 to $30 billion modernization
shortfall, in large part has been placed on you, today’s acquisition managers. As you will learn in
Chapter 3, Statutory Framework Governing Software Acquisition, the Revolution in Business
Affairs (RBA), an initiative outlined in the 1997 Quadrennial Defense Review, is expected to
create the revenues to support defense modernization needs. These monies will be generated by
“reengineering” or “reinventing” DoD support activities. Sources of projected savings include:

• Reducing infrastructure,
• Acquisition reform,
• Outsourcing and privatizing,
• Implementing commercial/dual-use technologies and open systems,
• Reducing standards and specifications,
• Integrated process and product development, and
• Cooperative programs with allies. [QDR97]

In light of these plans for funding Defense modernization through improved management, there
is widespread agreement — among DoD, the defense industry, and the Congress — that our
process for determining weapon system requirements and acquiring software-intensive-systems
often is costly and inefficient. One major problem stems from the wide-scale unpredictability of
the acquisition process. In a speech to the 1993 Software Technology Conference, Salt Lake City,
Utah, Lloyd K. Mosemann II, Assistant Deputy Secretary of the Air Force (Command, Control,
Computers, and Support) astounded the audience by saying:

Personnel ($197 million) (Govt. HW/SW
engineers, systems analysts,
compute r programmers & technicians)

Intra-Government Payments/
Collections ($402 million)

AIS/C 3 I Software $238 million) (NSS
not included)

Support Services ($490 million)
(Provided by contractors)

NSS Embedded Weapon Systems &
NSS C3I Software ($24 to $32 billion)

www.defenselink.mil/pubs/qdr

1-13

Chapter 1: Defense Software Overview GSAM Version 3.0

“It might surprise you, or perhaps even shock you, for me to say that the Pentagon does not want
process improvement, it does not want SEI Level 3, or reuse, or Ada, or metrics, or I-CASE, or
architectures, or standards. What the Pentagon wants is predictability! Predictable cost, predictable
schedule, predictable performance, predictable support, and sustainment — in other words,
predictable quality.” [MOSEMANN93]

1.4 Software: The Invisible Component

Software’s job is to tell the computer what to do and how to do it. Referred to as “smart” technology,
software gives the computer its brains. Without software, a computer is just a box with a fan and
a video screen. As Cetron and Davies explain, “Without software to control it, all this hardware
is just scrap metal, plastic, and highly purified sand.” [CETRON97] Even many “simple”
household appliances, such as microwave ovens, bread machines, washers, etc., would be useless
without the embedded software they use for control.

Software has no mass — you cannot see, touch, feel, weigh, smell, or hear it. As such, software
is often misunderstood, ignored, or confused with its hardware because it has no physical
properties. People have trouble understanding something that is invisible, exists in an ethereal
world of magnetic fields and electronic bits and bytes.

Theoretically, because it is intangible — it has none of the physical properties that cause physical
systems to age and break down — it will never wear out. Also theoretically, software could last
forever! Because software is intangible, it can be designed; but it cannot be built in any physical
way.

Not only is software difficult to describe and comprehend in the traditional sense — software is
hard to build. In 1985, David Parnas, an internationally renowned computer expert, explained
that “software is hard” to build because it is inherently and necessarily complex. [PARNAS85]

Software pioneer, Frederick P. Brooks, Jr., explains that, “Software entities are more complex...than
perhaps any other human construct...Software systems have orders-of-magnitude more states
than computers do...[Because] the complexity of software is an essential property,” it does not
lend itself to the simplification techniques found in other disciplines. [BROOKS87] For example,
in mathematics simplified models of complex problems are often used as analytical tools. This
does not work with software. The essence of software is that it achieves the solution of a complex
problem by compounding its complexity (i.e., the algorithms defining a solution are exponentially
more complicated than the real-world problems they solve). [GLASS91]

Software is a relatively new engineering field, whereas computer hardware engineering is much
better defined and disciplined. Semiconductor evolution is so stable and mature, it is easy to
predict where the technology will be two years from now — or even well into the next millennium.
This is illustrated by, what has been dubbed Moore’s Law, after Gordon E. Moore, cofounder of
the Intel Corporation. Moore’s Law states that processor performance and density (the number
of transistors that can be packed onto a microchip), relative to their cost, doubles every 12 to 18
months. This phenomenal rate of productivity translates into a 100-fold improvement over the
past decade, and a 10,000-fold improvement over the past 20 years. After 30 years of production,
Moore’s Law stands firm.

1-14

Chapter 1: Defense Software Overview GSAM Version 3.0

In contrast, software evolution is always playing catch-up with its hardware cousin and is usually
two years behind — if lucky. Once software is able to efficiently use the latest processing power
(by then two years old), it sometimes takes another two years to work out all the bugs. And then,
it’s time to play catch up all over again.

1.5 Software-Intensive Defense Systems

Software-intensive systems have forever changed the American military’s concept of the battlefield.
After Desert Storm, General Colin L. Powell, Chairman of the Joint Chiefs of Staff, wrote about
his “toolbox” of software technology:

“The Information Age has dawned in the armed forces of the U.S. The sight of a soldier going to
war with a rifle in one hand and a laptop computer in the other would have been shocking only a
few years ago. Yet, that is exactly what was seen in the sands of Saudi Arabia in 1990 and 1991.”
[POWELL92]

In contrast to the military hardware which it enables, our constantly changing arsenal of software
distinguishes us from every other advanced military on the globe. Software-intensive systems
give us the technological edge to compete and win in the ever-changing, volatile world
environment.

In a speech on the role of software in modern warfare, Lieutenant General Robert H. Ludwig
explained that, “In Desert Storm men and machines went off to war with something the world has
never seen...software.” When modern weapon systems are referred to as being “smart,” it is
because software provides their brains. For instance, by retrofitting them with smart software-
intensive components, even the intelligence of “stupid bombs” can be raised. As Ludwig succinctly
stated, the “Fly-by-wire F-16C...without software,” is nothing more than, “...a 15-million dollar
lawn dart!” [LUDWIG92]

“The most powerful weapon we possess is an invisible one — our software!” — Alvin & Heidi
Toffler [TOFFLER93]

From an historical perspective, the acquisition and management of software-intensive systems is
a relatively new military endeavor. During the Vietnam War, the F-4 Phantom used virtually no
software in its weapon systems and software was used sparingly in other defense applications.
Back then, software-intensive systems were characterized by big workhorse main frames,
occupying large rooms, using thousands of watts of electricity, tons of air conditioning, punched
card inputs, with long overnight turnarounds. During the 1970s, the rapid evolution of sophisticated
electronic circuitry gave us smaller processors producing more computing power for a fraction
of the cost. These advances, compounded by more demanding requirements, dramatically
increased DoD’s software use. Figure 1-2 represents a summary of Air Force and NASA software
system size growth between 1960 (Vietnam War) and 1995 (post-Gulf War).

1-15

Chapter 1: Defense Software Overview GSAM Version 3.0

Figure 1-2. Software Systems Size Growth 1960 to 1995

Software is used to accomplish many functions formerly performed by specialized hardware,
and in most cases, impossible with hardware alone. For example, software, more than any other
system component, makes stealth technology possible. To cut down on its radar profile (or cross-
section), the B-2 bomber has no vertical surfaces; e.g., it has no tail. Software controls all the
aircraft’s directional stability. The automated flight controls on the F-117 stealth fighter are another
example of how software enables stealth, as illustrated on Figure 1-3. [DANE90]

PERSHING 1A
1

10

100

 1,000

In
st

ru
ct

io
ns

 (
E

q
ui

va
le

n
t

M
em

o
ry

 L
oc

a
tio

ns
 i

n
K

)

Year
 1960 1965 1970 1975 1980 1985 1990 1995

F-111

C-5A

 10,000
Mission Control:

Ground Station

GEMINI 3

GEMINI 12

TITAN

PERSHING 1

GEMINI 3

MERCURY 3

A-7D/E

GEMINI 8 APOLLO 7

F-111

APOLLO 7

SURVEYOR

POSEIDO N C3

TITAN 111C

MARINER
VENUS

MERCURY

VIKING

PERSH IN G 11 (AD)

TRIDENT C4

VOYAGER

PERSHING 11

GALILEO
MISSILE

P-3A
AWACS

B-1A

SHUTTLLE/OFT
B-1B

F-15E

F-16 C/D

C-17
PROJECTED

B-2SHUTTLE/
OPERATIONAL

APOLLO 17

SKYLAB 2

F-22
PR OJECTED

Manned

System
s

Unmanned

Systems

Figure 1-3. The F-117 is an Example of Software-Enabled Stealth [DoD Photo]

1-16

Chapter 1: Defense Software Overview GSAM Version 3.0

Over the years, the importance of software has escalated. For example, 80% of the F-22 Raptor’s
functionality is achieved by software, which comprised 30% of engineering and manufacturing
development (EMD) costs. Software designed it, is helping build it, and will fly it. Lieutenant
General Jim Fain, described software’s importance when he said, “The only thing you can do
with an F-22 that does not require software is to take a picture of it” [and today even the camera
is software-dependent!] [FAIN92]

1.6 DoD Software Domains

The two major DoD software domains are Weapon System Software and Automated Information
System (AIS) software. Despite the different operational requirements of weapon system and
AIS software, both domains perform the same functions in that they each collect, record, process,
store, communicate, retrieve, and display information stored in or input to computers. The guidance
you find here is applicable to the acquisition and management of all software-intensive systems
— whether weapons systems or automated information systems. Differences in the development
or management of software within the two domains are the exception, not the rule, and will be
brought to your attention as required. Software subcategories within the domains are shown in
Figure 1-4.

Command, control,
and communication

Software

Any Other Weapon
System or Mission
Support Software

Information System
Resources (ISR)

Software

Management
Information System

(MIS) Software

Information Resource
Management (IRM)

Software

All Other
Non-Weapon

Software

Embedded
Software

Intelligence
Software

WEAPON SYSTEMS
SOFTWARE

AUTOMATED INFORMATION
SYSTEM (AIS) SOFTWARE

Figure 1-4. DoD Software Domains

1.6.1 Weapon System Software

Weapon systems include aircraft, ships, tanks, tactical and strategic missiles, smart munitions,
space-launched and space-based systems, command and control (C2), and command, control,
communications (C3), and intelligence (C3I) systems. Weapon system software is classified as
embedded, C3, C3I, and all other software that supports or is critical to the weapon system’s
mission. Examples of weapon system software are the Aegis radar and fire control system and
the software on the B-2 bomber. For example, B-2 bomber software must oversee and coordinate
avionics functions, surveillance, electronic countermeasures, smart munitions, and intelligence
systems.

1-17

Chapter 1: Defense Software Overview GSAM Version 3.0

1.6.1.1 Embedded Software

Embedded software is specifically designed into, or dedicated to, a weapon system as an integrated
component of the total system. Embedded software functions as an integral part of the weapon
system, and must be capable of satisfying the requirements for which it was designed or
implemented; however, it does not readily support other applications without some form of
modification. An example of embedded software is that contained within the electronic circuitry
of a smart weapon. The pilot can activate the go-no-go function allowing him to fire-and-forget
his precision guided missiles. He cannot access, control, or modify the onboard software that
governs the munitions’ radar, laser, infrared guidance sensors, or that activates the warhead.
[HUEY91]

On the F-16, annual growth or modification for avionics, mission planning, or automatic test
equipment software for all U.S. and foreign military sales aircraft is estimated at one million
lines-of-code. While the F-16’s embedded software components are very complex, they are only
the tip of the software iceberg needed to develop and field this complex, software-intensive
system, as illustrated in Figure 1-5.

EMBEDDED
PROGRAMS

Host
Computers

Interface
Equipment

Language
Translators

Program
Linkers Program Editors

System Simulators Environment Simulators Test Drivers

Development Tools Test Tools Diagnostic Software

Program Description
Documentation

Tests
Plans

Configuration Management
Procedures

Users
Manuals

Design
Tools

Flow
Charts

Program Design
Documents

Design Tradeoff
Analysis

Development
Standards

Development
Tools

Interface
Documents

Trouble
Reports

Inspections

Figure 1-5. F-16 Embedded Software Iceberg

1.6.1.2 C3 Software

Command, Control, and Communications (C3) software is the category of weapon system software
that communicates, assimilates, coordinates, analyzes, interprets information, and provides
decision support to military commanders. Through advanced applications and computer
technology, the C3 center aids commanders with their mission of exercising authority and giving
direction to assigned forces. It provides instantaneous situational assessment, allowing for
advantageous, timely positioning and decision-making.

1-18

Chapter 1: Defense Software Overview GSAM Version 3.0

1.6.1.3 Intelligence Software

Intelligence, often combined with a C3 system (C3I), plays an important role in times of conflict
and national security emergencies. It also maintains efficiency and responsiveness in day-to-day
military operations. Intelligence software provides fast, reliable, secure information giving
continuity to tactical or strategic operations under all conditions. It is designed to be dynamic
and adapt to rapidly changing environments. This software has the capacity for self-assessment
through reliable warning functions that rapidly detect and react to threats or intruders. Intelligence
software is found in command facilities and communications, surveillance, tracking and warning,
navigation, and decision support systems. [WHITE80]

1.6.1.4 Other Weapon System Software

Associated with every weapon system, there is a variety of software that does not fall under the
embedded, C3, or Intelligence categories. Nevertheless it is integral and absolutely essential.
This software supports the weapon system and its mission. It includes software that performs
mission planning, training, simulation, maintenance, battle management, system development,
program management, scenario analysis, data reduction, configuration management, logistics,
security, safety, quality assurance, and the testing of software and equipment. Examples of other
weapon system software include the applications required to gather literally millions of data
points. These data are generated during the ground and flight testing of any major developmental
aircraft which is required to aid in extensive data analysis and reduction. Figure 1-6 illustrates
the concept of other weapon system software. [DSMC90]

Other
Software

Data
Reduction
Software

Program
Management

Software

Software
Development

Software

Application
Testing

Software

Engineering
Software

Flight
Planning
Software Battle

Management
Software

Logistics
Support
Software

Test
Equipment
Software

Maintenance
Trainer

Software

Crew
Training
Software

Scenario
Analysis
Software

Mission
Planning
Software

Simulator
Software

Figure 1-6. Other Weapon System Software (Not Embedded)

The Ballistic Missile Defense (BMD) program illustrates the extreme range of functional
performance requirements demanded of other weapon system software. BMD software controls
surveillance, tracking, target detection and prioritization, weapons assignment, weapons control

1-19

Chapter 1: Defense Software Overview GSAM Version 3.0

and guidance, system fault tolerance and fail-safe operations, network routing and management,
security-access control, and damage assessment.

1.6.2 Automated Information System Software

While embedded systems relate to and interface with physical world entities, AIS systems relate
to the information world and can have thousands of interfaces with other AIS systems. AIS
software performs the functions of systems operations and support not associated with a weapon
system. AIS supports administrative functions, such as accounting, payroll, finance, personnel,
inventory control, mapping, and equipment and maintenance scheduling. An AIS can access
multiple, large databases of information where applications restructure existing data in a way
that facilitates administrative operations or management decision-making. This category (also
called non-weapon system software) includes:

• Information System Resource (ISR),
• Automated Information System (AIS), and
• Information Resource Management (IRM) software.

DoD relies heavily on commercially developed products for AIS applications. However, you
should remember that security requirements cut across both weapon system and AIS software
domains.

Much of AIS software falls under the industry category of Information Technology (IT). IT includes
a wide spectrum of products and services from computer electronics, computer hardware
manufacturing, computer software, and software-related services. Over the past decade, industrial
growth has shifted dramatically from computer electronics and computer hardware manufacturing
to software products and software-related services.

A major initiative in the area of AIS is the Global Combat Support System program. This system
will provide:

“…total systems integration services and products to modernize standard Automated Information
Systems (AISs) into integrated systems that are responsive to Air Force needs during times of war
and peace.” [GCSS95]

1.6.2.1 Simulation and Modeling Software

Software not only helps us fight and win, it enables us to train and wargame. Simulators used to
train and models used by strategists, are enabled by software and sensors. DoD’s science and
technology strategy places strong emphasis on synthetic environments using software systems
for distributed interactive simulation. Software-intensive developments include:

• Automation and robotics;
• Aided or automatic target recognition; and
• Distributed command, control, and communications.

1-20

Chapter 1: Defense Software Overview GSAM Version 3.0

The fifth Navy Seawolf (a smaller, less expensive version than its predecessors) used simulation
design software (a developed-in-house animation package) to test future stealth submarine design
capabilities. Engineers assembled a software mockup of the Seawolf and analyzed its anticipated
performance characteristics in a virtual undersea environment. Through software models, the
Navy customer was able to take a cyberspace tour of the futuristic fly-by-wire vessel. Software
enabled shock-level tests (anticipated effects of different types of impact damage) to be run on
various Seawolf components. Where ruggedized, versus militarized, equipment can be used was
determined. [ROOS95]

Simulation software also saves time and test resources. During full-scale engineering and
manufacturing development (EMD), durability testing of the C-17 Globemaster airframe was
completed in record time. Over 60,000 simulated flight hours were logged — the equivalent of
two design lifetimes — of which more than 17,000 simulated flights were conducted — the
equivalent of a 60-year operational life. Airframe loads simulating 25 different mission profiles,
ranging from airdrops to short-field landings, were enacted by more than 260 software-intensive
hydraulic actuators. Movement data were processed and analyzed from over 1,000 strain gauges
and deflection monitors. Approximately 11% of the flight profiles were performed in the high
stress environment of flight below 2,000 feet at speeds above 300 knots. Several weeks ahead of
schedule, EMD testing requirements for the C-17 airframe specification were satisfied without
leaving the ground. [SMITH94]

1.6.2.2 Artificial Intelligence

As Admiral James B. Busey, IV (USN) claims simulators relying on artificial intelligence (AI)
software provide high density, fast, effective, and inexpensive ways for us to prepare the warfighter
for possible far-flung encounters and unforeseen conflicts. He explains that in future wars there
will be too much information, too widely spread, for any one individual (or single unit) to cope
without the help of intelligent software systems. Artificial intelligence is based on the fundamental
concept that software can process artificially sensed information, make optimal decisions based
on this information and well-defined objectives, and translate those decisions into actions.
[BUSEY95]

Where databases merely store information, AI systems use information. They treat data as
knowledge — not just surface patterns — but meaningful information that has consequences and
causes things happen. [HAYES93] DoD uses AI models and simulations during concept
exploration for new or upgraded weapon systems acquisitions. It expands and evaluates the
range of technical, operational, and system alternatives. It is also used for test and evaluation
exercises and for planning and decision aids to expand the ability of commanders to train, plan,
and employ their forces. [BUSEY95]

1-21

Chapter 1: Defense Software Overview GSAM Version 3.0

1.7 References

[ACKERMAN97] Ackerman, Robert K., “Military Intelligence Expands Collection and Analysis Focus:
The Difficulty in Predicting Future Roles or Adversaries Mandates Greater Information Gathering and
Analysis,” Signal, Armed Forces Communications and Electronics Association, Fairfax, Virginia, October
1997.

[ALSOP98] Alsop, Stewart, “A Software Junkie Rejects Windows 98,” Fortune, 20 July 1998.
[BORLAND97] Borland, David, as quoted by Joshua A. Kutner, “U.S. Success in Future Battlefield Hinges

on Information Advantage,” National Defense: NDIA’s Business & Technology Journal, December
1997

[BROOKS87] Brooks, Fredrick P., Jr., “No Silver Bullet: Essence and Accidents of Software Engineering,”
Computer, April 1987.

[BROWN95] Brown, Lori Hylton, Christopher Johnson, and William Warlick, Global Competitiveness of
the U.S. Computer Software and Service Industries, U.S. International Trade Commission, June 1995.

[BROWN97] Brown, Linda, “Category 43 FY96 Budget Authority Exhibit,” OSD/C3I, 24 January 1997.
[BUSEY95] Busey, ADM James B., IV, “Battlefield Technologies Muster in Synthetic Arenas,” SIGNAL,

July 1995.
[CETRON97] Cetron, Marvin and Owen Davies, Probable Tomorrows: How Science and Technology Will

Transform Our Lives in the Next Twenty Years, St. Martin’s Press, New York, 1997.
[COHEN97] Cohen, William S., Annual Report to the President and the Congress, Government Printing

Office, Washington, D.C., April 1997.
[DANE90] Dane, Abe, “Black Jet,” Popular Mechanics, July 1990.
[DBFY99] “Department of Defense Budget for FY 1999,” Press Release No. 026-98, U.S. Department of

Defense, The Pentagon, Washington, DC, 2 February 1998.
[DSMC90] Caro, Lt Col Isreal, et al., Mission Critical Computer Resources Management Guide, Defense

Systems Management College, Fort Belvoir, Virginia, 1990.
[ERWIN98] Erwin, Sandra I., “Forging First-Rate Forces Requires Up to $30B Annual Funding Boost,”

National Defense: NDIA’s Business and Technology Magazine, National Defense Industrial Association,
Arlington, Virginia, July-August 1998.

[ESTES98] Estes, Gen. Howell M., III (USAF retired), as quoted by William B. Scott, “Wargames Revival
Breaks New Ground,” Aviation Week & Space Technology, 2 November 1998.

[FAIN92] Fain, Lt. Gen. Jim, (USAF) as quoted by Lt. Gen. Robert H. Ludwig (USAF), “The Role of
Technology in Modern Warfare,” briefing presented to the Software Technology Conference, 14 April
1992.

[GANSLER981] Gansler, Jacques S., “Affordable Weapons Systems; A Design For The Future,” Speech
presented to the Precision Strike Association Annual Programs Review, Fort Belvoir, Virginia, 19 May
1998.

[GANSLER982] Gansler, Jacques S., “Modeling and Simulation: A New Way To Address Environmental
Concerns,” Speech Presented to the Environmental Security Modeling and Simulation Conference,
Alexandria, Virginia, 5 May 1998.

[GCSS95] Global Combat Support System , March 1995
[GLASS91] Glass, Robert L., Software Conflict: Essays on the Art and Science of Software Engineering,

Yourdon Press, Englewood Cliffs, New Jersey, 1991.
[HAMRE98] Hamre, DEPSECDEF John J., “Information Systems: Y2K & Frequency Spectrum

Reallocation,” Statement before The Senate Armed Services Committee, Washington, D.C., 4 June
1998.

[HAYES93] Hayes, Patrick J., “Is Artificial Intelligence Real?: Absolutely — and Vital for Riding the
Rising Tide of Information, Washington Technology, 9 September 1993.

www.dtic.mil/execsec/adr97/toc.html
www.defenselink.mil/news/feb1998/b02021998_bt02698.html
www.acq.osd.mil/ousda/speech/pstrike.html
www.acq.osd.mil/ousda/speech/environment.html
gcss.jsj4.com/gcssoa/
www.defenselink.mil/news/june1998/t06051998.html

1-22

Chapter 1: Defense Software Overview GSAM Version 3.0

[HINCHMAN97] Hinchman, James F., High-Risk Series: Information Management and Technology,
Letter Report, GAO/HR-97-9, United States General Accounting Office, Washington, DC, February 1,
1997.

[HOENIG97] Hoenig, Christopher, Managing Technology: Best Practices Can Improve Performance
and Produce Results, GAO/T-AIMD-97-38, Information Resources Management Policies and Issues
Accounting and Information Management Division, United States General Accounting Office,
Washington, DC, 31 January 1997.

[HUEY91] Huey, John and Nancy J. Perry, “The Future of Arms,” Fortune, 25 February 1991.
[JCS96] Joint Vision 2010, Chairman Joint Chiefs of Staff, Department of Defense, The Pentagon,

Washington, DC, 1996.
[JOHNSON98] Johnson, Susan Tinch, and Jack A. Bobo, Software Workers for the New Millenium: Global

Competitiveness Hang in the Balance, National Software Alliance, Arlington, Virginia, January 1998.
[KEMERER97] Kemerer, Chris F., “Software: Reusable Asset” InformationWeek, 22 September 1997.
[LUDWIG92] Ludwig, Lt Gen Robert H., “The Role of Technology in Modern Warfare,” Speech presented

to the Software Technology Conference, 14 April 1992.
[LYOTARD79] Lyotard, Jean François, “Introduction,” The Postmodern Condition: A Report on Knowledge,

1979.
[McCONNELL97] McConnell, Bruce, as quoted by Bob Brewin, “IT Spending Remains Flat,” Federal

Computer Week, 17 March 1997.
[MOSEMANN93] Mosemann, Lloyd K., II, as quoted in Ada Information Clearinghouse Newsletter, Vol.

XI, No. 2, August 1993.
[NACS92] “A National Strategy for Semiconductors,” The National Advisory Committee on Semiconductors,

February 1992.
[NDCF97] “The NDCF World Conflict List,” National Defense Council Foundation, Alexandria, Virginia,

1997.
[PARNAS85] Parnas, David Lorge, “Software Aspects of Strategic Defense Systems,” American Scientist,

September-October 1985.
[POWELL92] Powell, GEN Colin L., “Information-Age Warriors,” Byte, July 1992.
[QDR97] Report of the Quadrennial Defense Review, U.S. Department of Defense, The Pentagon,

Washington, DC, May 1997.
[ROOS95] Roos, John G., “New and Newer Submarines: As Seawolf Prepares to Prowl the Depths, A

Likely Successor Already Roams — In Cyberspace,” Armed Forces Journal INTERNATIONAL, July
1995.

[SCOTT981] Scott, William B., “Wargames Revival Breaks New Ground,” Aviation Week & Space Technology,
2 November 1998.

[SCOTT982] Scott, William B., “JLASS Wargame Challenges Players’ Real-Time Battle Skills,” Aviation
Week & Space Technology, 2 November 1998.

[SCOTT983] Scott, William B., “’Title-10’ Games Shape Policies,” Aviation Week & Space Technology, 2
November 1998.

[SMITH94] Smith, Bruce A., “Downsizing to Deepen As Backlogs Shrink,” Aviation Week & Space
Technology, 14 March 1994.

[STRASSMANN97] Strassmann, Paul A., The Squandered Computer: Evaluating the Business Alignment
of Information Technologies, The Information Economics Press, New Canaan, Connecticut, 1997.

[SILVESTRI97] Silvestri, George T., “Employment Outlook: 1996-2006; Occupational Employment
Projections to 2006,” Monthly Labor Review, U.S. Department of Labor, November 1997.

[TILLETT98] Tillett, Scott, Colleen O’Hara and Daniel M. Verton, “Agencies’ IT Spending Nears $30B
in Fiscal ’99,” Government Computer News, 18 May 1998.

[TOFFLER93] Toffer, Alvin and Heidi Toffler, War and Anti-War: Survival at the Dawn of the 21st Century,
Little, Brown, and Company, Boston, 1993.

www.access.gpo.gov/cgi-bin/getdoc.cgi?dbname+ado+acy+ado-f:hr97009.txt.pdf
www.access.gpo.gov/cgi-bin/getdoc-cgi?dbname-gao&docid=f:ai970381.txt.pdf
www.dtic.mil/jcs/
www.defenselink.mil/pubs/qdr
www.fcw.com

1-23

Chapter 1: Defense Software Overview GSAM Version 3.0

[WALSH97] Walsh, Edward J., “Naval Mission Planning Built Around Information Systems,” National
Defense: NDIA’s Business & Technology Journal, December 1997.

[WHITE80] White, Eston T., Defense Organization and Management, National Defense University,
Washington, D.C., 1980.

[WIEBNER98] Wiebner, Mike, “Global Government Partners: Tech Firms Jockey for Lucrative Foreign
Contracts,” Washington Technology, 16 July 1998.

[WINDAL96] Windall, Secretary Sheila E., “Visible and Invisible Capabilities,” Speech presented to the
National Press Club, Washington, D.C., 14 June 14 1996.

[WOOD98] Wood, Lt. Gen. C. Norman (USAF Ret.), “High Technology Is Essential to Reviving Our
Defense Force,” Signal: Official Publication of the Armed Forces Communications and Electronics
Association, November 1998.

Part 1: Acquistion GSAM Version 3.0

Chapter 2

Software Victory -
Exception or Rule?

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

2-2

Contents

2.1 Software Victory - Exception or Rule? .. 2-3
2.1.1 Software: The Highest Risk System Component 2-4
2.1.2 Software Disaster Defined.. 2-5
2.1.3 Long Standing Software Problems .. 2-6

2.1.3.1 Persistent Software Program Failures ... 2-7
2.2 Success Vs. Failure ... 2-8

2.2.1 Where Military Software Acquisition Excels .. 2-8
2.2.2 Where Military Software Fails.. 2-9
2.2.3 Obstacles to Improvement .. 2-10
2.2.4 “No Silver Bullet” .. 2-12
2.2.5 Defense Science Board Report on Military Software 2-13
2.2.6 Acquiring Defense Software Commercially .. 2-14

2.3 Why Software Acquisitions Fail .. 2-14
2.3.1 Management Responsibility.. 2-14
2.3.2 Technology-Driven Solutions ... 2-16
2.3.3 Unstable Requirements... 2-17

2.3.3.1 Inadequately Stated Requirements .. 2-17
2.3.3.2 Inadequate User Involvement ... 2-19
2.3.3.3 Poor Communications .. 2-20

2.3.4 Software Complexity .. 2-21
2.3.4.1 Size and Complexity .. 2-22

2.3.4.1.1 Automated Software Development 2-23
2.3.5 Poor Estimates ... 2-24

2.3.5.1 Size/Complexity Estimates ... 2-25
2.3.5.2 Cost/Schedule Estimates .. 2-25
2.3.5.3 Optimistic Estimates ... 2-25

2.3.6 Inadequate Software Staffing .. 2-26
2.3.6.1 Software Labor Shortage .. 2-26
2.3.6.2 Defense Software Jobs ... 2-28
2.3.6.3 Labor Shortage Impacts .. 2-28
2.3.6.4 DoD Hardest Hit by Shortage ... 2-29

2.3.7 The Domino Effect ... 2-31
2.4 References .. 2-32

2-3

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

2.1 Software Victory - Exception or Rule?

Our warfighters are staking the security of the Free World on their arsenal of software-intensive
weapons and information systems. The problems caused by poor acquisition management —
leading to project delays, cancellations, unreliable software, and huge cost overruns — are as
serious a threat to our national security as cyber terrorism or the proliferation of weapons of mass
destruction by our enemies. As the Chairman of the Joint Chiefs of Staff warns in Joint Vision
2010,

“This era will be one of accelerating technological change. Critical advances will have enormous
impact on all military forces. Successful adaptation of new and improved technologies may provide
great increases in specific capabilities. Conversely, failure to understand and adapt could lead
today’s militaries into premature obsolescence and greatly increase the risks that such forces will
be incapable of effective operations against forces with high technology.” [JCS96]

InformationWeek, laments that, “Uncle Sam is the single largest purchaser of computers and
computer-related equipment in the world, but he’s been a terrible shopper and manager.”
[CONE982] The problems go way beyond just the well-publicized debacles like the Federal
Aviation Administration’s Advanced Automation System (AAS). According to Senate investigator
Don Mullinax,

“There are so many horror stories. We see programs where $40 million gets spent, or $90 million,
and then they have to start over because they didn’t know what they wanted to do.” —Don
Mullinax [MULLINAX98]

A 1994 report by the Senate Committee on Government Affairs, Computer Chaos, described a
grim and widespread situation. “The Federal Government continues to operate old, obsolete
computer systems while it has wasted billions of dollars in failed computer modernization efforts.”
The report blamed the failures on “poor management, inadequate planning, and an acquisition
process that is too cumbersome.” [CONE981]

DoD, in particular, has had a distressing history of procuring elaborate, high-tech software-
intensive systems that do not work, and cannot be relied upon, modified, or maintained. Many of
these over-budget, overdue programs have been canceled after reaching full-scale production —
with millions of dollars wasted and not a single system reaching the warfighter. In 1985, Business
Week summarized situation.

“When the Pentagon decides to build a complex new weapon these days, it often seems to run into
disaster. The promise of advanced technology seduces designers and eager contractors into taking
big risks with the public’s money. Frequently, these elaborate projects end up hamstrung by
technical errors, management miscalculations, or congressional interference. The result is weapons
that are grossly overpriced — or don’t work.” [BUSWEEK85]

Over a decade later, problems persist. On April 27, 1995 Frank C. Conahan, senior defense and
international affairs advisor to the U.S. Comptroller General, testified before the U.S. House of
Representatives Committee on the Budget. He explained that,

www.dtic.mil/jcs/
www.informationweek.com

2-4

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

“Over the years, we have reported on the persistent problems that have plagued weapons
acquisition. Many new weapons cost more, are less capable than anticipated, and experience
schedule delays. These problems are typical of DoD’s history of inadequate requirements
determinations for weapon systems; projecting unrealistic cost, schedule, and performance
estimates; developing and producing weapons concurrently; and committing weapon systems to
production before adequate testing has been completed.” — Frank C. Conahan [CONAHAN95]

2.1.1 Software: The Highest Risk System Component

When a major procurement program turns into a fiasco, when costs soar, deliveries fall behind
schedule, and performance is compromised, the problem can often be traced to one high-risk
component - the software! With virtually every major acquisition failure, the software component
can be isolated as a prime contributor to the problem. In December 1990, a series of articles ran
in The Washington Post explaining that,

“Software problems have caused major delays of weapons systems, created malfunctioning aircraft,
and cost the Defense Department billions of dollars in unanticipated costs. Officials acknowledge
that virtually every troubled weapon system, from the electronics of the B-1B bomber to satellite
tracking systems, has been affected with software problems. Even straightforward record-keeping
systems can get bogged down; last year the Navy canceled a software accounting project nine
years in the making after its cost quadrupled to $230 million.” — Evelyn Richards
[RICHARDS901]

In the same series, Colonel Joseph Greene, Jr. (USAF), head of a Pentagon software research
effort, was interviewed about a study he conducted of 82 large military acquisition programs. Of
those, Greene found that programs developing large amounts of software ran 20 months behind
schedule — three times longer than non-software-intensive programs. He calculated that those
delays cost DoD one tenth of its FY90 $100 billion research and procurement budget. Greene
explained that, “[t]he department is paying a huge penalty for not dealing with its software
problems. The penalty is not just late software — it is degraded war-fighting capability.”
[GREENE90] In another study The Washington Post cited, 3/4 of 55 aerospace and defense
contractors ran their software programs in an ad hoc, chaotic manner. [RICHARDS902] The
good news is that by June on 1999, that number had decreased to 29%.

Software-Intensive Programs

5 2015100

Non-Software-
Intensive

Figure 2-1. Average Schedule Delays (in Months) for Large Military Programs

2-5

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

Previously taken for granted, software is now recognized as the highest risk system component
in virtually every major defense acquisition. A Defense Acquisition Board report stated that the
estimated 1.55 million lines-of-code to be built for the F-22 Raptor — the largest software task
ever undertaken on an attack/fighter program — represents the most significant risk to successful
deployment. Interviewed by the General Accounting Office (GAO), F-22 program managers
explained that avionics software integration was the most formidable task for their contractors.
[GAO95]

2.1.2 Software Disaster Defined

In his book, Death March: The Complete Software Developer’s Guide to Surviving “Mission
Impossible” Projects, software guru, Ed Yourdon, defines a software disaster, death march program
as the follows.

“A death march project is one for which an unbiased, objective risk assessment (which includes
an assessment of technical risks, legal risks, political risks, etc.) determines the likelihood of
failure is >50%.” — Edward Yourdon [YOURDON97]

Regrettably, Yourdon concludes that, “Death march projects are the norm, not the exception.”
Depending on the development organization’s cultural idiosyncrasies, Yourdon further categorizes
death march programs as “mission impossible,” “ugly,” “suicidal,” and “Kamikaze.”
[YOURDON97]

Stephen Flowers explains in his book, Software Failure: Management Failure, that there are
varying degrees of software acquisition failure, including “flawed but usable,” “totally unusable,”
“unused,” and “absolute disaster.” He says a program can be called a failure if it falls into the
one (or more) of the following categories:

• Never used - On implementation, it does not perform as originally intended, or it is so user-
hostile it is rejected by users.

• Cost exceeds benefits - The cost of development exceeds any benefits the system may bring
during its useful life.

• Not completed - Due to problems with system complexity, program management, or program
longevity (where the development is no longer relevant due to advances in technology), the
system is abandoned before it is completed. [FLOWERS96]

NOTE: Throughout these Guidelines, a distinction is made among the terms program,
application, and project. The following definitions apply:

• Program: A major acquisition or software development.

• Project: A less than major software development or a smaller subsystem
development.

• Application: Often referred to as “software” or “computer program,” the code and
documentation component of a computer system.

2-6

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

2.1.3 Long Standing Software Problems

“Progress, far from consisting in change, depends on retentiveness...Those who cannot remember
the past are condemned to repeat it.” — George Santayana [SANTAYANA05]

Although the software industry is reaching its 50-year mark, most of the same problems that
have plagued the acquisition of software persist. DoD is not alone in its inability to acquire
successful software-intensive systems. Software acquisition failures are also commonplace in
the private sector. Industry surveys and years of data collected by software statistical experts,
such as Capers Jones, Paul Strassmann, Larry Putnum, and Howard Rubin, indicate that the
average software program is:

• 6 to 12 months behind schedule, and
• 50 to 100% over budget. [YOURDON97]

For example, the Standish Group is a Massachusetts-based research firm who has conducted
extensive surveys on the software industry. Their findings are listed in Table 2-1. Standish Group
defines a software acquisition program failure as one that is abandoned before delivery or that is
totally unusable upon completion. [JAMES97]

Table 2-1. Standish Group Software Industry Survey Results

In a report prepared for Rome Laboratory’s Data & Analysis Center for Software (DACS),
McGibbon states that production in the average U.S. software company is poor. [McGIBBON96]
The results of the McGibbon survey are listed in Table 2-2.

Multiyear Software Industry Studies Survey
Program Success Result

% Successful 27%
% Cost overruns 33%
% Schedule overruns 33%
% Total program failures 40%

Table 2-2. DACS Software Industry Survey Results [MCGIBBON96]

“Software’s Chronic Crisis,” a Scientific American article by Wyatt Gibbs cites the results of an
IBM study of 24 leading companies developing large, distributed software systems is summarized
on Table 2-3. Gibbs says large-scale software development failures do not function as intended
or are not used at all. In addition, software is still handcrafted by artisans using techniques they

Extensive Literature Review Survey
Success Factor Result

% Software programs cancelled 25%
% Latent defects in delivered
software 15%

% Time spent on rework 30% - 40%
% Schedule overruns 50%

www.dacs.dtic.mil/

2-7

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

can neither measure nor consistently repeat. Table 2-4 lists the average performance on large-
scale software development programs industry-wide. [GIBBS94]

Table 2-3. IBM Software Industry Survey Results [GIBBS94]

24 Distributed Software Developers
Program Success Factor Survey Result

% Cost overruns 55%
% Schedule overruns 68%
% Software system rework 88%

Table 2-4. Scientific American Software Industry Survey Results [GIBBS94]

Large-Scale Software Development Programs
Survey Factor Survey Result

% Programs cancelled 33%
% Schedule overruns 50%
% Operational failures 75%

Finally, Table 2-5 lists several examples of non-military software program failures.

YEAR PROJECT RESULTS
1980’s International Telegraph &

Telephone (ITT) - 4 switching
systems

• 40,000 function point system
• $500 million lost
• Cancelled

1987 California Department of Motor
Vehicles, Automated
Vehicle/Drivers License System

• 3 (5,000 function point size)
switches

• $30 million lost
• Cancelled

1989 State of Washington -
Automated Social Service
Caseworker System

• 7 years to build
• Failed to meet user needs
• $20 million lost
• Cancelled

1992 American Airlines - Flight
Booking System

• $165 million lost
• Cancelled

Table 2-5. Major Non-Military Software Failures [GIBBS94]

2.1.3.1 Persistent Software Program Failures

In the preface to his book, Flowers explains why software managers fail to learn from the mistakes
of failed programs.

2-8

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

“In researching this book, time and again I came across the strange collusion that exists between
the buyers and sellers of information systems. When things go wrong with an information system
development, it will almost always result in both sides being eager to bury the facts of the case.
Confidentiality agreements, non-disclosure contracts, and undisclosed out-of-court settlements
are all ways of trying to keep the lid on what is a seething cauldron of failure. And the most likely
result of this industrial amnesia? More of the same.” — Stephen Flowers [FLOWERS96]

The reason we keep making the same mistakes over and over is that we refuse to listen and see.
And those things which we do learn we do not act upon! For us to conquer the software war, we
must win the management battle. If we do not reengineer the software acquisition task, our
programs are doomed to join the ranks of the software norm — program failure! The purpose of
these Guidelines is to equip you with the ability to avoid many problems and recognize others
while they are still solvable. Once you understand what these problems are and why they occur,
you will be equipped to do something about containing or eliminating them in your program.

“It’s fine to celebrate success, but it is more important to heed the lessons of failure.” — Bill
Gates [GATES95]

2.2 Success Vs. Failure

If all our acquisitions were as bad as some of them, we could not be the world leader that we are.
Even so, the road to improvement requires self examination, of both our successes and failures.
Both can give us valuable information about what we are doing right, and what we are doing
wrong. Too much emphasis on the good blinds us to situations and practices that will eventually
bring our downfall. Focusing exclusively on the darker side can overwhelm our determination to
improve and hide those things bring success. The system is worth saving, but it will require an
in-depth consideration of where and why we have success and failure in military acquisitions.

2.2.1 Where Military Software Acquisition Excels

Capers Jones identified several areas where military software acquisition has best in class attributes
when compared to commercial software, as illustrated in Table 2-6. Much of this has resulted
from the efforts of forward thinking project managers and others who are concerned with the
long range future.

Factors Where Military Software Acquisition Excels
It leads in process assessment and process analysis
It leads in applications larger than 100,000 function points
It is among the best in reusability research
It is among the best in CASE research
It is the world leader in Ada language research
It is a world leader in configuration control
It is a world leader in requirements traceability
It is among the best in quality control for weapons systems
It has the highest frequency of cost estimating tool usage

Table 2-6. Why Military Software Excels [JONES95]

2-9

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

The factors to which Jones attributes the success of military and commercial software programs
are listed in Table 2-7.

Military Software Acquisition
Success Factors

Commercial Software Acquisition
Success Factors

Contract was let without litigation Product achieves significant market share
Project adheres to relevant commercial
standards

Product is profitable

Project adheres to best commercial practices Product prevails in any litigation
Product is highly reliable with excellent
quality

Product protects unique features

Project conforms to all requirements Product leads to follow-on business
Requirements are stable within 15% Customer support is good to excellent
Schedules are predictable within 10% User satisfaction is good to excellent
Costs are predictable within 10% Feature set is better than competitors
Project passes critical design review (CDR) Time to market is better than competitors
Product actually deployed and used Quality levels are good to excellent

Table 2-7. Military and Commercial Software Success Factors [JONES95]

2.2.2 Where Military Software Fails

Capers Jones has also identified why military software acquisition program failures outnumber
commercial software failures, especially in logistics support and command and control (C2)
applications. In the commercial world, software product failure often leads to corporate bankruptcy,
where industry averages approach, or exceed, a 50% product failure rate. In any given market
niche, Jones explains that a rule of thumb is,

• 10% of commercial software products are very successful,
• 20% are mildly successful,
• 40% are marginal, and
• 30% are failures.

The factors Jones identifies as leading to military and commercial software failures are listed in
Table 2-8.

2-10

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

Table 2-8. Factors Leading to Military and Commercial Software Acquisition Failure
[JONES95]

Jones claims the military software world lags behind the civilian software world by quite a few
years. The factors creating this discrepancy are listed in Table 2-9.

Military Software Failure Factors Commercial Software Failure Factors
Contract is challenged in court Product fails to achieve market share
Project adheres to poor civilian practices Product is readily imitated
Product is very unreliable and of poor quality Product loses significant litigation
Product fails to meet all requirements Product generates no ancillary business
Requirements are out of control Customer support is poor to marginal
Schedules are out of control User satisfaction is poor to marginal
Costs are out of control Feature set lags competitors
Project fails critical design review (CDR) Time to market lags competitors
Product not used or not deployed Quality levels are poor to marginal

Factors Where Military Software Lags Behind
It lags in the adoption of fundamental metrics
It lags in the productivity measurement technology
It excels all other industries in the production of large documents
Its schedules are longer than any other kind of software project
Its productivity is lower than for any other industry
Its contracts for software have the highest rates of challenges and litigation
Its contractors rank first in layoffs and downsizing
Its contractors lag in staff benefits and compensation
Its contractors lag in training and education of technical staff
Its contractors lag in training of project managers
Its contract software has the highest growth of creeping user requirements
Its contracts associated with SEI maturity levels are much less effective
than civilian performance-based contracts

Table 2-9. Factors Where Military Software Lags Behind Commercial Software
[JONES95]

2.2.3 Obstacles to Improvement

Improvement is always blocked by obstacles. In his book, Software Failure: Management Failure,
Stephen Flowers lists the obstacles to Defense software acquisition success.

• Technology-driven. Tendency for acquisitions to be technology-driven, rather than customer-
driven. There is no fear that the customer (the warfighter) will take their business elsewhere.

• Low-cost solutions not sought. Solutions making use of leading-edge technologies results in
high-cost, high-risk approaches rather than low-cost, proven solutions.

• Short-term tenure of DoD acquisition managers. Lack of management continuity needed to
oversee large-scale, long-term software developments has adverse affects on program focus
and progress.

2-11

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

• Changing program priorities. Changes in federal policy and funding priorities can negatively
impact development program schedule and cost.

• Imposition of external deadlines. National security needs impose deadlines by which software
products must be operational.

• Bureaucratic decision-making process. The level of government oversight reflects the need
to ensure the highest level of accountability for the use of public funds. Financial integrity
and federal funding and budgeting procedures have created organizational structures unsuited
for effective software program management.

• High level public access and oversight. Compared to commercial software acquisition
programs, which are usually shrouded in secrecy, defense program information, as well as
outcomes, are open to public scrutiny. [FLOWERS96]

Hinton suggests that the obstacles to implementing commercial best practices in Defense software-
intensive acquisitions include the following.

• Definition of success. The definition of software-intensive program success is more
complicated in DoD than in the commercial world. Success is defined as getting DoD and
the Congress to fund the acquisition program on an annual basis. Optimistic assessments of
system performance and cost help ensure this kind of success; realistic risk assessments of
unknowns do not. If problems arise in software development, there is not nearly the risk of
failure that a commercial product faces. By the time a software-intensive system enters
production, the point of sale to the customer has already occurred.

• Acquisition funding instability. As a Defense acquisition program proceeds, program success
is measured in terms of the funding it receives every year within the budget process. Failure
can mean anything from a funding cut to cancellation. In addition, DoD acquisition programs
do not receive the corporate support commercial programs do. There is feeding frenzy-like
competition among and within the Services for their piece of the acquisition budget pie.

• Overly optimistic estimates. DoD acquisition programs are scrutinized by Service executives,
OSD, independent cost estimating and testing agencies, audit agencies, and the Congress.
With this competition and oversight, reporting software acquisition risks or full-blown
problems make programs vulnerable to criticism and possible loss of funding. These pressures
encourage overly optimistic cost, performance, and schedule estimates. This contrasts with
commercial software-intensive acquisitions, where once a program is launched it receives
full corporate support and resources. Commercial program estimates are kept realistic because
failure to succeed may affect the firm’s bottom-line and future.

• Risk management. Problems or indications that overly optimistic estimates are decaying do
not help sustain a software-intensive acquisition in subsequent years. Thus, their admission
is implicitly discouraged. Likewise, good software system test results can help a program,
whereas negative test results are equated with failure. Not knowing how the system performs
presents a safer course of action, and testing is delayed until late in system development.
Estimates of system performance (realistic or not) are safer than bad news.

• Technology-based solutions. Risks in the form of ambitious software technology advancements
and tight cost and schedule estimates are accepted as necessary for a successful program
launch. There is little incentive to admit to high risks until it is absolutely necessary, because
that may doom the program. As long as estimates are accepted by DoD and the Congress and
the program is funded, the program manager is successful. [HINTON98]

2-12

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

2.2.4 “No Silver Bullet”

“Of all the monsters that fill the nightmares of our folklore, none terrify more than the werewolves,
because they transform unexpectedly from the familiar into horrors. For these, one seeks bullets
of silver that can magically lay them to rest. The familiar software project, at least as seen by the
nontechnical manager, has something of this character; it is usually innocent and straightforward,
but is capable of becoming a monster of missed schedules, blown budgets, and flawed products.”
— Frederick P. Brooks, Jr. [BROOKS87]

The April 1987 issue of Computer included the most famous, and oft quoted, paper on the
software crisis ever published, “No Silver Bullet: Essence and Accidents of Software Engineering,”
by software pioneer Frederick P. Brooks, Jr. In it, Brooks compared our software problems to
werewolves. Like werewolves, software programs are often unexpectedly transformed from
commonplace to untamable monsters. Without warning, a normal, routine software development
has the capability of becoming a disaster. While a Silver Bullet has the power to slay a werewolf,
Brooks claims no Silver Bullet exists that can magically slay our software problems.

Brooks saw two major obstacles to improving the way we build software. One is the essence of
software — the difficulties inherent in the software beast itself. The other is the accidents —
those difficulties found in the production of software that are not inherent. Of the essence, Brooks
took the position that software is hard and always will be because it has an inherent and necessary
complexity. Brooks explained that,

“[s]oftware entities are more complex...than perhaps any other human construct...Software systems
have orders-of-magnitude more states than computers do...[and] [t]he complexity of software is
an essential property.” — Frederick P. Brooks, Jr. [BROOKS87]

This complexity does not lend itself to the simplification techniques found in other disciplines.
For example, the field of mathematics uses simplified models of complex problems as analytical
tools. The essence of software is that it achieves the solution of a complex problem by compounding
its complexity (i.e., the algorithms defining the solution are more complicated than the real-
world problems they solve.) [GLASS91]

Brooks also analyzed major breakthroughs, which have increased productivity and improved
software quality over the years. Advances, such as high-order languages, faster processing times,
and computer-aided software engineering environment (CASE) tools, have achieved quantum
leaps in dealing with the accidents. However, he said that it is doubtful technological advances of
any magnitude will solve our chronic problems. The promises of Silver Bullets that will yield
spectacular progress in software development (common occurrences in the hardware arena) are
not to be believed.

Brooks’ recommended solutions to the software dilemma are rather mundane compared to his
description of the problem. He tells us “a disciplined, consistent effort to develop, propagate,
and exploit the following suggestions should yield an order of magnitude improvement.”

2-13

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

• Buy software, rather than build it. “Every day this becomes easier, as more and more vendors
offer more and better software products for a dizzying variety of applications.”

• Grow software; don’t build it. Develop software incrementally and refine requirements
through prototyping. Partial solutions are easier to correct and modify than a full-blown,
finished product that does not perform as envisioned.

• Employ and cultivate the best and the brightest. “Sound methodology can empower and
liberate the creative mind; it cannot inflame or inspire the drudge. Great designs come from
great designers!” [BROOKS87]

2.2.5 Defense Science Board Report on Military Software

A final report was released in 1987 by the Defense Science Board (DSB) Task Force on Military
Software. The Task Force was chaired by Frederick Brooks and manned by some of the most
astute experts in the field. It pulled no punches in waging a frontal attack on DoD’s on-going
software troubles when it stated:

• “Many previous studies have provided an abundance of valid conclusions and detailed
recommendations. Most remain unimplemented. If the military software problem is real, it is
not perceived as urgent.

• “We do not see any single technological development in the next decade that promises ten-
fold improvement in software productivity, reliability, and timeliness.

• “Few fields have so large a gap between best current practice and average current practice.
• “The Task Force is convinced that today’s major problems with military software development

are not technical problems, but management problems.” [DSB87]

The report addressed the institutions governing military software development, and the obstacles
encountered when transitioning technology and modern management practices to a new
engineering discipline. The report’s recommendations for improving software development are
summarized as follows.

• DoD should assume software requirements will be met with COTS subsystems and
components until it is proved they are unique [requirements].

• DoD should develop metrics and measuring techniques for software quality and completeness,
and incorporate these routinely in contract.

• DoD should examine and revise regulations to approach modern commercial practice insofar
as practicable and appropriate.

CAUTION! Only adopt the commercial practices that enhance the successful program
attributes discussed throughout these Guidelines. Avoid all others!

• DoD should mandate iterative setting of specifications, rapid prototyping of specified systems,
and incremental development.

• DoD should mandate the use of risk management techniques in software acquisition.
• DoD should develop economic incentives for contractors to offer modules for reuse and to

buy modules rather than building new ones.
• DoD should enhance education for software personnel.

2-14

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

The thrust of the DSB report is summarized in the following statement.

“We call for no new initiatives in the development of technology, some modest shift of focus in
technology efforts under way, but major re-examination and change of attitudes, policies, and
practices concerning software acquisition.” [DSB87]

2.2.6 Acquiring Defense Software Commercially

The 1994 Defense Science Board Report, Acquiring Defense Software Commercially, makes an
important observation about trends (or lack thereof) in DoD software acquisition. It states that,
“[d]espite the increased emphasis given to software issues by the DoD...the majority of the
recommendations resulting from these studies have not been implemented.” [DSB94] The report’s
recommendations germane to this discussion include the following:

• Establish mechanisms to allow both current ability to perform and past performance as key
factors in source selection;

• Define software architectures to enable rapid changes and reuse;
• Facilitate early systems engineering and iterative development;
• Require program managers to stay with programs at least through beta testing to maintain

continuity and understanding of original requirement nuances.

2.3 Why Software Acquisitions Fail

2.3.1 Management Responsibility

“When I entered the workforce in 1979, the Peter Principle (the concept by which capable workers
were promoted until they reached their level of incompetence) described management pretty
well…Lately, however, the Peter Principle has given way to the ‘Dilbert Principle.’ The basic
concept of the Dilbert Principle is that the most ineffective workers are systematically moved to
the place where they can do the least damage: management.” — Scott Adams [ADAMS96]

As illustrated above, industry and government experts have arrived at the same conclusion: DoD’s
inability to build reliable, economical software is due primarily to poor management practice.
Management problems are people problems. Success or failure depends on the experience, skills,
and ability of acquisition and development teams to critically evaluate and improve process and
product quality. Poorly trained managers, or a misunderstood and immature acquisition or
engineering process leads to unpredictable costs, schedules, and product quality. According to
Senate staffer, Bill Greenwalt,

“Management is the most difficult component of the problems Federal Agencies face. We have a
long way to go.” [GREENWALT98]

Blum sees the software development process from three perspectives. He describes software
design as looking forward, software quality assurance as looking backward, and management as
looking downward. Although not earthshaking, his explanation does place management above

2-15

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

the detailed, technical work — looking down. This, he claims, makes management the most
arduous in software development task — and consequently, the primary source failure. [BLUM92]
In his book, The Five Pillars of TQM, General Bill Creech (USAF retired) makes the same
observation:

“You must do more than talk about it; you must change the organization ‘conceptually’ and
‘structurally’ to bring leadership alive at all levels. Principles flow from the top down; decisions
flow from the bottom up.” [CREECH94]

In other words, management fails because decision making is coming from the wrong direction.
We are trying to make decisions from the top down, when they need to come from the bottom up.
To control it, managers need a better understanding of the software product and the engineering
process. Software-intensive acquisitions fail due to the following (or a combination them):

• Technology-driven solutions,
• Unstable requirements,
• Software’s inherent complexity,
• Thinking automated technology will make up for poor engineering practice,
• Poor estimation of size, schedule, and cost,
• Inadequate software staffing, and
• The domino effect resulting from any combination of the above.

There are no quick, easy solutions to these major, oft-repeated problems. If there were, these
Guidelines would not be so thick! The battle damage assessments in the previous section illustrate
the severity of our problems. The interrelated and multifaceted practices you need to avoid and
best practices you need employ to correct these problems are discussed throughout these
Guidelines.

The success or failure of a major software-intensive acquisition program depends on a highly
complex combination of factors, not all of which are under the control of the acquisition manager.
As illustrated on Figure 2-2, these factors can influence the management of a program at the
organizational, acquisition, and program levels. Critical failure/success factors are the crucial
risk elements of a software acquisition program. They may be managerial, financial, technical,
human, or political in nature. Program success or failure occurs as a result of both subtle and
obvious interactions among all factors. When one or more factors are in a less than optimal state,
they increase the likelihood that a program will fail, or worst case — become a disaster.
[FLOWERS96]

2-16

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

Figure 2-2. Examples of Interrelated Factors Affecting Software Acquisition Success

2.3.2 Technology-Driven Solutions

“[The] most critical aspect of profound military innovation is not technology, but understanding
what we can do with it.” — SECDEF William S. Cohen [COHEN97]

To maintain our competitive edge and military superiority, software-intensive Defense systems
often include performance requirements and design features demanding the acquisition of
unprecedented technologies. Joint Vision 2010 places DoD’s strategic vision in the lap of software
technology. However, technology-driven solutions often result in acquisition disaster.

No one — not even the software developer — fully understands the implications of applying the
unprecedented to a particular problem set. Thus, technology-based acquisitions are often a leap
of blind faith, rather than pragmatic solutions. Flowers warns that the pure (black and white)
world of software is often overturned by a costly realization of how messy the real world
[battlefield] is.

DoD is not the only buyer with a predilection for technology-driven solutions. In 1995, KPMG
reissued a 1989 survey to 250 large software development organizations in Great Britain, which
focused on why software acquisitions fail. KPMG defined a software program failure as “a
project that has failed significantly to achieve its objectives and/or has exceeded its budget by at
least 30%,” [NOTE - Yourdon’s definition above was a 50% budget overrun.]

Software
SubcontractorsSoftware

SubcontractorsSoftware
SubcontractorsSoftware

Subcontractors

Organizational Management
Regulatory
Political
Oversight
Funding

Acquisition Management
Cultural
Oversight
Reporting
System Requirements

Program Management
Cost/Schedule/Size Estimation
Reporting
Software Requirements
Software Staffing

Technical Management
Software Size/Complexity
Technology
Maturity

ProgramProgram

AcquisitionAcquisit ion

Organizat ionOrganization

2-17

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

Because only half of the companies surveyed responded in 1995, KPMG surmised that industry
had become reluctant to discuss software program failures. In 1989, only 7% of respondents
thought technology was the cause of failure, whereas, 45% thought technology was to blame in
1995. KPMG concluded, “Technology is developing faster than the skills of the developers.”
[COLE95]

With the complexity and array of software-intensive solutions, an educated, knowledgeable user
is essential to acquisition success. When it comes to technology-based solutions, the warfighter
must be encouraged to:

• Actively participate in defining the problem, and
• Assist in developing an appropriate solution.

2.3.3 Unstable Requirements

Essentially all software reports and studies concur that Requirements instability is a serious
software failure factor. It is reasonable to assume requirements are going to change as user missions
evolve in response to operational, threat, and technological changes. Thus, the first and most
important factor to consider when managing unstable requirements is designing a software
architecture with change-tolerant flexibility. It is also important not to accommodate subtle near-
term requirements that can compromise the overall architectural design and limit future change.
The second factor to consider is controlling the process and rate at which inevitable requirement
changes are incorporated. If ad hoc, sporadic, or frequent modifications to requirements or their
interpretation are inflicted on developers, creeping changes in cost and schedule are a given. In
addition, what sometimes appear to be minor changes have dramatic side effects elsewhere in
the software system. Full (technical and effort) evaluation of the consequences of each change
must be included in the management process (in addition to configuration management control).
Ad hoc incorporation of changed requirements will invalidate original estimates of cost and
schedule, and impact product quality.

The fact that software is soft and changeable is also why software maintenance costs are more
exorbitant than for other disciplines. According to Glass, we fail to realize that although software
is soft, “it is not so soft that change is free. Far from it, in fact. Change is the biggest money-
maker in the software world!” [GLASS91] We also do not realize that unstable requirements are
negative characteristic of the software beast. We fail to freeze requirements at the outset of the
program — when the Software Requirements Specification (SRS) is approved. If requirements
keep evolving as the software is built (and especially if there is concurrent hardware development),
it is next to impossible to develop a successful product. Software engineers find themselves
shooting at a moving target and throwing away design and code faster than they can crank it out.

2.3.3.1 Inadequately Stated Requirements

One source of instability is “inadequately stated” requirements. Indefinite and undefined software
requirements also lead to creeping cost and schedule changes which can continue even after the
system enters development. The most important, yet difficult, software development task,
requirements definition and analysis, plagues software managers in all industry sectors. Ill-defined
requirements lead to poor specifications, which impact cost, schedule, and ultimately quality and

2-18

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

user satisfaction. Requirements creep has the greatest impact on our ability to produce accurate
estimates [discussed below]. Figure 2-3 illustrates how the ability to predict software cost increases
as requirements become progressively better defined. [BOEHM81] The two lines show the high
and low estimate ranges. In the beginning of a project, during the feasibility study phase, cost
estimates range anywhere between one fourth (.25) the real cost and four times the real cost.
Estimates get better as the project progresses until the cost is known with exactness at the end.

x
0.8x

0.67x

.05x

0.25x

1.25x
1.5x

2x

4x

FEASIBILITY

CONCEPT OF
OPERATION

PLANS AND
REQUIREMENTS

REQUIREMENTS
SPECIFICATIONS

PRODUCT
DESIGN

PRELIMINARY
DESIGN

SPECIFICATION

PRODUCT
DESIGN

DETAILED
DESIGN

SPECIFICATION

DEVELOPMENT
AND TEST

ACCEPTED
SOFTWARE

PHASE AND MILESTONES

R
E

L
A

T
IV

E
 C

O
S

T
 R

A
N

G
E

Classes of people, data
sources to support

Query types, data loads,
intelligence-terminal
tradeoffs, response times

Internal data
structure, buffer
handling techniques

Programmer
understanding of
specifications

Detailed scheduling
algorithms, error
handling

EXAMPLE SOURCES OF
UNCERTAINTY,
MAN-MACHINE

INTERFACE SOFTWARE

Figure 2-3. Software Cost Estimation Accuracy versus Phase [BOEHM81]

Requirements creep, something an acquisition group can manage and control, was a serious C-
17 Globemaster development risk.

Although developed using mostly non-developmental items (NDI) and commercial-off-the-shelf
(COTS) software, creeping performance requirements significantly increased technical risk. Some
of the changes in software requirements were driven by manufacturing and weight problems that
were resolved by the incorporation of new, lighter weight subsystems that were software intensive.
For example, when the C-17 development program began in 1985, the Government planned the
development of 4 subsystems with about 164,000 lines-of-code. By 1990, this number had
increased to 56 subsystems and about 1,356,000 lines-of-code, including approximately 643,000
newly developed lines-of-code, as illustrated on Figures 2-4 and 2-5. [HINTON98]

2-19

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

Figure 2-4. C-17 Software Subsystem Growth 1989-1990

0

10

20

30

40

50

60

Subsystem Growth

1985
1990

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

Software Size Growth Total New Code

1985

1990

Figure 2-5. C-17 Software Size Growth 1989-1990

2.3.3.2 Inadequate User Involvement

Paul Paulson, president of Doyle, Dane, and Bernbach, a large New York brokerage firm, was
quoted in the New York Times as saying,

“You can learn a lot from the client. Some 70% doesn’t matter, but that 30% will kill you.”
[PAULSON79]

Misinterpretation of user requirements is a major, if not the greatest, contributor to software
failure. Not understanding your client (the military user) while managing software development
is one sure way to make your program crash-and-burn. Misunderstood requirements are also the
source of costly support problems.

User involvement is critical throughout requirements analysis and design, where feedback is
essential to determine whether perceived user needs have been correctly translated into software
functionality. The 1992 final report of the Software Process Action Team found that the primary
reason major software-intensive programs fail was the inability to translate user needs into
viable software requirements. The report states:

2-20

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

“The procurement process often results in government acquisitions that fail to meet user needs.
The problem is exacerbated during system development when requirements decisions are made
without adequate user input and without full understanding of the overall impact on costs,
schedules, performance, and other critical factors. Current government and industry practices
have led to requirements specifications that contain design information, inappropriate levels of
detail, inadequate requirements, and poor traceability.” [PAT92]

Lessons-learned from the Air Force’s Nuclear Mission Planning and Production System (NMPPS)
warn that users often do not start out with a clean slate when explaining their operational, readiness,
and logistics requirements. Additionally, they may view the statement of their requirements as
one more document being coordinated within headquarters, which can be changed with minimal
impact. Personnel with operational experience can also contribute to the problem because they,
too, assume they generally know the requirements and need to ask users fewer questions.
[KEENE91]

Another example of the user involvement issue occurs when the program office designates
responsibility for defining system requirements to someone other than the user. These user
representatives, often called functional analysts, use a systems analysis approach to functional
system design. While some functional analysts have extensive backgrounds in the target system,
others rely on a limited understanding of user requirements. In both cases, understanding user
requirements quickly diminishes without frequent exposure to the target system’s operational
environment and its users.

Once developed, functional specifications are passed on to programmers who must interpret
them and write the code. Large programs can have 50 or more programmers receiving functional
guidance using this method. Considering that initial guidance is likely to be partially flawed at
best, a second translation compounds the situation. During system testing, efforts are expended
in determining whether a software error was introduced during functional design or a defect
during coding. The likely result of this design-to-product process is the most costly software
failure — software redesign and rework. [HENDERSON95]

NOTE - Throughout these Guidelines, the distinction is made between the terms “error”
and “defect.” They are defined as:
Error: A mistake inserted during design.
Defect: A mistake inserted during coding.

2.3.3.3 Poor Communications

The main reason errors occur during requirements definition and analysis is poor communications.
During the requirements phase, the user tries to articulate a concept of expected system function
and performance into concrete detail. The software engineer attempts to translate user definitions
into models of information, control flow, operational behavior, and data content. The chances for
misinterpretation, misinformation, and ambiguity are numerous. General John W. Vessey, when
serving as Chairman of the Joint Chiefs of Staff, explained that

“More has been screwed up on the battlefield and misunderstood at the Pentagon because of the
lack of understanding of the English language than any other single factor.” [VESSEY84]

2-21

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

Lack of understanding of what software is, how it performs, and difficulty in conveying what it is
to do, are compounded by inherent shortcomings of the English language. The dilemmas
confronting software engineers are expressed in the user’s statement, “I know you believe you
understood what you think I said, but I’m not sure you realize that what you heard is not what I
meant.” [PRESSMAN92] Under these conditions, designers fail to translate conceptual user
needs into functional software requirements. Software that does not fit user needs is destined for
the trash heap! Brooks explains,

“The hardest single part of building a software system is deciding precisely what to build. No
other part of the work so cripples the resulting system if done wrong. No other part is more
difficult to rectify later.” [BROOKS87]

Data collected at Rome Laboratory indicate that over 50% of all software errors are “requirements
errors.” Requirements errors are more expensive to correct the further they percolate throughout
the life cycle. It is often 50 times more expensive to correct a defect during systems integration
than during requirements analysis. [DiNITTO92] Figure 2-6 illustrates how the cost to correct
requirements errors increases during subsequent phases of development.

Figure 2-6. Error Propagation Cost

NOTE - See Chapter 11, Understanding Software Development, for an in-depth discussion
on system and software requirements.

2.3.4 Software Complexity

The complexity issue arises when confronted with the enormous tasks we often want our software
to perform. With the Strategic Defense Initiative (SDI), for example, we undertake giant, unique
developments that require years of effort and hundreds of people to produce. Being unprecedented,
they cannot be built using previous knowledge and cannot be tested under actual operational
conditions or in the environment in which they will be used. Nailing down how the software
should perform under these circumstances is often problematic.

The irony with software is that, while it has automated just about every labor-intensive activity
known to man, software is still handmade. In addition to being handmade and hard to build, it is
inherently prone to human error. As Parnas and Brooks explained, software is risky because it is
hard to build. The complexity of hardware pales in comparison with that of software. For any
given hardware problem, there is a high percent of component reuse and a finite number of

CorrectRequirements

Requirements Errors

Correct Design

Design Errors

Design Errors due to
Requirements Errors

Correct Code

Code Errors

Code Errors due to
Design Errors

Code Errors due to
Requirements Errors

Correct Code

Corrected Code

Erroneous Code due to
Design Errors

Erroneous Code due to
Requirements Errors

User Need

Specify
Requirements

Design

Code Test and Correct

$

$

$

$

$

$

$

$

$

$

$

$

$

2-22

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

solutions. With software — even with optimized solutions — there are a near-infinite number of
possible correct solutions. Theoretically, any set of problems from any other discipline can be
solved within the software domain. [GLASS92]

2.3.4.1 Size and Complexity

“The business of creating new computer software — the programs that make computers work —
is one of the most complex, painstaking, even exasperating jobs around. It is as if someone is
writing War and Peace in code, puts one letter out of place and turns the whole book into gibberish.”
—Robert N. Britcher [BRITCHER98]

Size and complexity go hand in hand. The bigger the application, the more complex it becomes.
Complexity plagues us because we often fail to take a disciplined approach to design and thereby
create more complexity than needed. Although sometimes necessary to match problem complexity,
software size and complexity must be kept to the minimum. Ed Yourdon places odds on successful
program completion by size. By software development program size, the odds of success are as
follows.

Table 2-10. Odds of Successful Completion by Software Team Size [YOURDON97]

NOTE - These Guidelines are applicable to all software acquisitions; however, the main
focus is on Yourdon’s large-scale to mind boggling size programs.

David McLure, GAO’s assistant director, confirms that, “The government’s track record on large
systems is bleak.” [McLURE98] In 1987, Tom DeMarco and Timothy Lister, reported that the
cause is sociology factors! [DeMARCO87]

In addition, highly complex solutions are destined to be high-cost maintenance nightmares! The
bigger, the more complex the software — the more difficult it is to understand — the greater the
chance that defects will propagate throughout the code. The cost of making changes and correcting
defects often soars beyond acceptable levels, resulting in programs abandoned after exorbitant
expenditures of unrecoupable resources. According to James Johnson, chairman of The Standish
Group,

“Software projects are far more likely to be successful if they’re highly focused and built upon
well-understood technology. If you can reduce the scope of the project, your chances of success
are far greater.” [JOHNSON98]

Brooks explains that the best designs are those that “produce structures that are faster, smaller,
simpler, cleaner, and produced with less effort.” [BROOKS87]

Program Size Number of
People Length of Program Odds of

Success
Small scale <10 3-6 months High
Medium-sized 20 – 30 1-2 years Slight
Large scale 100 – 300 3-5 years Bleak
Mind boggling 1,000 – 2,000 7-10 years Doomed

2-23

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

Size and complexity not only create technical problems, they create serious team and management
problems. Fernando Corbato summarizes the size/complexity problem with the following.

“The most obvious complexity problems arise from scale. In particular, the larger personnel
required, the more levels of management there will be…The difficulty is that with more layers of
management, the top-most layers become out of touch with the relevant bottom issues and the
likelihood of random serendipitous communication decreases. Another problem of organizations
is that subordinates hate to report bad news, sometimes for fear of ‘being shot as the messenger’
and at other times because they may have a different set of goals than the upper management.
And finally, large projects encourage specialization so that few team members understand all of
the project. Misunderstandings and miscommunication begin, and soon a significant part of the
project resources are spent fighting internal confusion. And, of course, mistakes occur.”
[CORBATO92]

2.3.4.1.1 Automated Software Development

Software technology has been the greatest instrument for improving man’s efficiency since the
Industrial Revolution. When properly used, it provides remarkable competitive advantage.
Paradoxically, while software significantly increases the efficiency of its users, the way software
is produced is quite inefficient. Not only is software handcrafted — it is produced by manual
labor! Where automation has achieved the most significant increases in human productivity,
little progress has been made in automating the software process. According to Capers Jones,

“The problem is that software has the highest manual labor content of almost any manufactured
item in the second half of the 20th Century.” [JONES90]

Increasing software productivity and quality is the greatest challenge to the software community.
We must learn to produce software cheaper, better, and faster. In our quest for more efficient
methods, we sometimes fail to realize there are no easy solutions. We often focus too much on
software’s potential, real or imagined, and ignore its limitations. As Brooks explains,

“...as we look to the horizon of a decade hence, we see no Silver Bullet. There is no single
development, in either technology or in management technique, that by itself promises even one
order-of-magnitude improvement in productivity, in reliability, in simplicity.” [BROOKS87]

Why do unproven methods and technologies cause program failures? Glass tells us “the search
for magic solutions diverts us from the more important search for mundane ones.” We neglect
proven reliable solutions and invest in the hope that a pie-in-the-sky magic one will emerge.
[GLASS92] They make us focus all our attention on one method or technology that promises
vast improvements, rather than implementing proven ones in parallel. When building large,
complex software-intensive systems, it takes more than just one tool or technology advance for
significant process improvement. Multifaceted approaches, including tools, methods, techniques,
and processes used in parallel are the proven way to quantifiable progress. [JONES94]

Unproven methods and tools are also the reason why software technology transfer has been so
slow. Rarely have these methods been successfully transferred from the laboratory to the production
line. The reason many wash out is few can scale up to the demands of large, software-intensive
developments. While new technologies can increase productivity, we fail in acquiring and
managing them. We tend to jump on the hype bandwagon, select, and acquire them without

2-24

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

detailed knowledge of their impact on the development process. Once a financial commitment
has been made, we find these tools do not blend in with established processes. We do not anticipate
the extra time and resources required to train software personnel on the new processes required
by the tools. In addition, we may have to reengineer our old process to fit the one imposed by the
new technology. Many a program has failed because tool selection is not based a needs-driven
process and a pre-acquisition determination that they will be beneficial to the people who must
use them. [See Chapter 11, Understanding Software Development, for a more detailed discussion
on software tools.]

2.3.5 Poor Estimates

Management, like all other software activities, is a problem-solving exercise. It involves deciding
what must be accomplished, how to do it, monitoring what is being performed, and evaluating
what has occurred. The “what” is expressed in the Software Development Plan (SDP) [see
Chapter 11, Understanding Software Development] and the “how” in the allocation of resources
(e.g., schedule and budget). Too often, we stop after these first two steps. We do not remember
that software development is dynamic and our original plans and estimates must be constantly
updated. We need more time than projected. New requirements are added. Key personnel are
sent to other programs. We fail to monitor activities and adjust our plans and resources accordingly.
[BLUM92] For example, when change requests are submitted, we fail to make a solid estimate
of their impact on our cost and schedule predictions and to change those figures to accommodate
the new requirements. We fail to tell our customers (the warfighter or the Government, if you are
a contractor) that if they want a change badly enough, they will have to pay for it. It is easy to
understand this problem, but few managers act on it. [GLASS92] We are caught up in trying to
please and wind up playing a fatal game of catch-up.

“[T]he most common problem in building software systems is not the construction of them itself,
but rather the estimation of the costs of that construction. Why is there such a problem of estimation?
Because the software field has not made a conscientious effort to develop histories of past project
costs. Because the construction of software is an extremely complex task — some say it is the most
complex task ever undertaken by human beings. Because the lack of history and the amount of
complexity, a barrier was produced that no amount of mathematical techniques and no amount of
individual expertise has been able to overcome. It is all too common for a software project to fail
to meet its cost and schedule targets, because the targets themselves were simply (and grossly!)
wrong.” — Robert L. Glass [GLASS98]

The fundamental reason software-intensive developments overrun cost and schedule, resulting
in quality and performance shortfalls, is our inability to estimate or to establish realistic program
baselines. No matter how smooth the development process, how efficient the tools, or how smart
the designers, our predictions of cost and schedule are frequently out of sync with what actually
occurs in the production of a software product, or politics dictate the establishment of a baseline
with insufficient funds, schedule, or both. We often forget that software development involves
much more than simply writing code. For example, we are still learning that software inspections
and testing take longer than anticipated and that maintenance consumes between 60% and 80%
of the software dollar. We also do not account for the cost of scrap and rework involved when a
developer has an ad hoc, chaotic development process. Boehm claims the cost for rework to be
about 44% of every dollar spent, as illustrated in Figure 2-7. [BOEHM81]

2-25

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

Figure 2-7. Defect Rework Compared to Other Development Costs [BOEHM81]

2.3.5.1 Size/Complexity Estimates

Predicting the size and complexity of the software to be built is at the heart of our estimation
difficulties. As mentioned above, software is intangible — we cannot weigh it, box it, put our
arms around it, or paint a picture of it. Thus, our attempts to project how big it will be, how hard
it will be to create, or how long it will take are problematic. When software is precedented (i.e.,
a similar system has been built) size and complexity projections (and thus, cost and schedule) are
usually more accurate. In unprecedented systems, however, our inability to estimate the intangible
is acute.

2.3.5.2 Cost/Schedule Estimates

A 1993 RAND Corporation study concluded that over the years, there has been no improvement
in controlling cost growth on the average weapon system. [RAND93] These overruns persist
despite the implementation of Defense initiatives to mitigate cost risk and growth, including the
significant risk management guidelines DoD instituted in 1985 to improve the transition from
development to production. There is often a substantial discrepancy between what was originally
estimated to develop and produce a system (per unit) and what the system (per unit) costs once in
production. This happens because all factors are not considered, history for a similar project is
unreliable or not available, or too much optimism is injected into the process to make the costs
more palatable.

2.3.5.3 Optimistic Estimates

“I cannot imagine any condition which could cause this ship to flounder. I cannot conceive of any
vital disaster happening to this vessel.” — E.J. Smith, Captain of the Titanic, 1912

“Titanic Effect: The severity with which a system fails is directly proportional to the intensity of
the designer’s belief that it cannot.” — ACM SIGSOFT, 1986

Preliminary Design
12%

Detailed Design
16%

Code and Unit Test
12%

Integration and System
Test
10%

R E W O R K

44%

Requirements
6%

2-26

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

In DoD, we are subject to spending and budget scrutiny from the Congress, the press, the public,
and upper management. Under pressure, contractors and military managers often make overly
optimistic estimates about how much the software will cost and how long it will take to produce.
It is human to discard pessimistic cost, schedule, and size estimates and base projections on the
best of all possible worlds. We fail to manage risk and build a management reserve or worst-case
scenario into cost/schedules for fear our programs will not be approved or funded if we submit
figures that are more realistic. Within the framework of the annual Defense budget, problems or
indications that program estimates are decaying do not help sustain it in subsequent years, and
thus their admission is discouraged.

An optimistic program cost estimate makes it easier to launch a software-intensive development
and sustain annual approval; admission that costs are likely to be higher could invite failure.
[HINTON98] This acquisition culture compounds the likelihood for shortcuts in the development
of a system that was improperly funded and scheduled. Also, in these cases the problem is often
not the actual cost, schedule, and size estimates (which in many cases may be reasonable) — it is
the failure to use these estimates to establish reasonable, attainable program baselines.

“I cannot give you the formula for success, but I can give you the formula for failure—which is:
Try to please everybody.” — Herbert B. Swope [SWOPE50]

2.3.6 Inadequate Software Staffing

“We have suddenly discovered that our great national resource is not our mines, mills and factories,
but people. People with ideas, energy, ambition. Creative people. People who are willing to take
a chance. People who can be motivated to excel.” — Harold S. Longman [LONGMAN92]

Success or failure in software acquisition depends on the skills, experience, and ingenuity of the
people who build, implement, and maintain it. The winners and the losers in the global security
environment will be those nations with the best people to invent, engineer, and put that software
technology to work for the warfighter. The old axiom rings true, “an idea can turn to dust or
magic depending on the talent that rubs against it.” [BERNBACH82] In 1979, the GAO made
some stirring comments about the state of software development, which unfortunately, still ring
true. It stated that,

“[s]everal factors contributed to the [software development] situation. First, the invisible nature
of both the work process and its product made software projects very difficult to manage and
predict. Second, the explosive growth of the use of computers created demand for new programmers,
most of whom were self-taught on the job; and frequently, low productivity and poor quality
resulted. Third, there was little idea then of how to train programmers properly. Fourth, a tradition
grew that programmers were secretive craftspersons, whose products, during development, were
their own property.” [GAO79]

2.3.6.1 Software Labor Shortage

The Software Program Manager’s Network (SPMN), a tri-service (Army, Navy, and Air Force)
organization (with Navy as lead), was formed in response to the 1994 Software Best Practices
Initiative [see Chapter 4, DoD Software Acquisition Environment]. The SPMN mission is to

2-27

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

address software development and maintenance problems on major software-intensive programs
DoD-wide. One particular problem with which the SPMN is grappling is the shortage of skilled
software workers on Defense acquisition programs. Congress has directed the SPMN to assist
“in the development of industry and academia pilot projects to attract, train, and retain skilled
software personnel for software-intensive projects within the Navy and DoD.”

In response to this directive, the SPMN formed the National Software Alliance (NSA). In the
NSA report, Software Workers for the New Millennium: Global Competitiveness Hangs in the
Balance, the software worker shortage is described as being two-fold. [JOHNSON98] First,
there are not enough software professionals to fill escalating labor demands. Second, there is a
shortage the highly specialized software skills and experience needed by employers. The NSA
summarizes the demand for software as follows:

The three software occupations classified by the U.S. Department of Labor are: computer
programmers, computer systems engineers, and computer scientists (database
administrators, computer support specialists, and all other computer scientists.)

• 72% of all U.S. software workers are employed by non-software related industries; only 28%
of software workers are employed by software goods and service industries.

• Between 1996 and 2006, total U.S. employment is projected to increase by 18.6 million jobs,
a 14% growth rate. During the same period, total software worker employment is projected
to increase by 75%, from 1,502,000 to 2,634,000 software workers.

• Between 1996 and 2006, U.S. employment is projected grow at an annual rate of 1.3% for all
industries. During the same period, computer and data processing services employment is
projected to grow at an annual rate of 9.3%, seven times faster than the national average.

• Between 1996 and 2006, the three software occupations are projected to be the fastest growing
occupations in the U.S. economy.

• Computer engineers will grow 109%, from 216,000 to 451,000 workers.
• Systems analysts will grow 103%, from 506,000 to 1,025,000 workers.
• Database administrators, computer support specialists, other computer scientists will grow

118%, from 212,000 to 461,000 workers.
• Between 1996 and 2006, in addition to the newly created jobs, 245,000 replacement workers

will be needed to fill the jobs of software workers leaving the field.
• Between 1996 and 2006, the computer and data processing services industry (the leading

employer of software workers) is projected to be the fastest growing U.S. industry, increasing
108%, from 1,208,000 to 2,509,000 workers. (The next fastest growing industry, health
services, will increase 68% over the ten-year period.)

Throughout this decade, the demand for software professionals has grown at an unprecedented
rate. In 1996, virtually every industry in the U.S. economy employed software workers — about
1.5 million in all. [SILVESTRI97] These industries are competing fiercely for a finite labor pool,
driving up salaries, bonuses, and stock options, in an often ineffectual attempt to attract and
retain employees. A number of factors contribute to the increasing demand, such as growth of
the Internet, electronic commerce, the software export market, high-tech industries, and the Year
2000 fix. Market expansion in areas such as microelectronics, biotechnology, machine tools and
robotics, aerospace, and other software-intensive industries have also intensified pressure on the
pool of software professionals. As the demand for software increases, the demand for qualified

www.software-alliance.org
www.softwar-alliance.org/acrobat/980312_NSA_millennium_complete.pdf

2-28

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

software workers will escalate at an even faster rate. The NSA summarizes impacts of the software
labor shortage as follows.

• 59% of high-tech companies report they are understaffed;
• 62% of high-tech companies plan to increase staffing.
• 61% of high-tech companies report that a lack of properly skilled applicants is their greatest

staffing challenge.
• 66% of high-tech companies identify staffing problems as their primary barrier to growth.
• The average annual turnover rate for software professionals is about 14.5%.
• Many software “hot jobs” have annual salary increases of 15% to 20%.
• In 1996, the number of unfilled information technology jobs was estimated to be between

190,000 and 450,000 open positions nationwide. [JOHNSON98]

2.3.6.2 Defense Software Jobs

DoD, the world’s single greatest consumer of software, has been the hardest hit of all federal
agencies by the software labor shortage. The impact on DoD in-house software maintenance and
development has been particularly severe, where government salaries are not competitive with
those in the private sector. A July 1998 report by Peter Jennings on ABC World News Tonight
highlighted the situation in the Air Force.

“And more bad news for the Air Force, which prides itself on high technology, can be found
buried deep in the computer rooms that are the nerve centers for the force. Chief Master Sergeant
Steve Lovin says he can no longer hang on to any computer specialist. A typical first-term airman
who’s making $20,000 a year can get anywhere from $60,000 to $80,000 a year starting working
for industry at this point.” [JENNINGS98]

Jennings interviewed a typical computer specialist, Regina Nienaber, who was leaving the Air
Force after her first three-year commitment. He asked if many people at her experience level
were reenlisting. She replied that in the last 24 months, only one 1 out of 12 of her co-workers
was staying in the service. According to Jennings,

“[t]he other services have similar problems. The Army and the Navy are losing highly trained
technicians and computer specialists to the private sector at about the same rate as the Air Force.
The Defense Department tells us that military salaries are, on average, 14% below comparable
jobs in the private sector. And the Pentagon estimates it would cost $30 billion to make them
equivalent. The Army will offer a $6,000 bonus to a computer specialist who will reenlist. But it
doesn’t compare to what they can get on the outside.” [JENNINGS98]

2.3.6.3 Labor Shortage Impacts

As explained throughout this chapter, software acquisition failure/success factors are interrelated.
Less than optimum conditions in one factor bleed over and disrupt the equilibrium of others.
Brooks explains,

2-29

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

“Not only technical problems but management problems as well come from the complexity [of
software]…It makes it hard to find and control loose ends. It creates the tremendous learning and
understanding burden that makes personnel turnover a disaster.” [BROOKS87]

Staffing problems result in program delays, cost overruns, and poor software quality. In fact,
DoD felt the impact of the software labor shortage as far back as 1990. An article in Government
Executive stated,

“Rep. John Murtha (D-PA) feels...software is the technology that threatens the nation’s military
dominance...Between the vast complexity of such programs [F-22 Advanced Tactical Fighter]
and a severe shortage of software engineers to write them, many weapons projects are falling
seriously behind schedule...The software crisis is in large part a personnel crisis. And the unnamed
coconspirators in it are the nation’s universities. Universities don’t seem to understand what a
software engineer is...The bottom line is that software has generated hell on earth for project
managers, leading to delays, cancellations, lost jobs, and huge cost overruns. And all those
interviewed agree that the best they can hope for in the next 5 to 10 years is that the temperature
of their hellish environment will lower from ‘burn’ to ‘roast.’” — Alton Marsh [MARSH90]

The hellish software personnel problems that plagued DoD in 1990 persist. In fact, temperatures
in the software arena are on the rise. DoD, once the hotbed for high-tech innovation, is being
outpaced by the commercial sector where success is defined by the effective adaptation of the
most powerful, advanced software-intensive technologies. With limited defense dollars, DoD is
losing a recruitment war with the commercial sector for the best and brightest software
professionals upon which it critically depends.

DoD contractors are handicapped by the same budget constraints as their defense customers, and
hobbled by federally established labor rates intolerant of extraordinary salary surges in any
particular labor segment. Defense contractors are also restricted from outsourcing DoD software
development to foreign workers by the Federal Acquisition Regulation (FAR). Their ability to
compete with escalating commercial sector salaries is also limited by the corporate need to make
a profit often bound by fixed-price and/or fixed-fee contracts. The problem is exacerbated in
locations where DoD and Defense contractors compete with the private sector for highly-skilled
software workers in already tight labor markets, such as California and metropolitan Washington,
D.C. [PIETRUCHA97]

2.3.6.4 DoD Hardest Hit by Shortage

The demand for software professionals is the most acute in non-software industry and government
sectors. These jobs, where the majority of software workers are employed, are less desirable, pay
less, and are often more difficult to fill. As illustrated on Figure 2-8, DoD software positions are
among the least desirable, the hardest to fill, and represent the greatest demand. [JOHNSON98]
Also shown is the segmenting of the national demand for software workers into three tiers by
Avron Barr and Shirley Tessler, from the Stanford University Computer Industry Project.
[BARR98]

2-30

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

Figure 2-8. Software Worker Employment Tiers. Size of Tier Represents Demand.
[BARR98]

• Tier 1 - The top tier, representing less than 10% of the workforce, is comprised of the venture
capital-funded software startups, “boutique” software service companies, and software
publishing organizations. Big salaries, signing bonuses, equity sharing, and challenging work
environments draw the best and brightest from other industry segments and the colleges.
This tier, Barr and Tessler claim, is growing at an annual rate of 15% and has been the least
impacted by the software labor shortage.

Jeffrey Bier, Vice President of Lotus Development Corporation, described Tier 1 software workers
in a speech, “Managing Creatives,” at Industry Week’s annual Managing for Innovation
Conference.

“Creatives are intense. They’re always thinking about work. For them, there’s no such thing as
‘Miller Time.’ They think in their sleep...They are happy to come to work every day and solve
puzzles. As one of my people says, ‘You come in every day and you’re given a set of games to play.
Fifteen puzzles. Things don’t fit and you’ve got to make them fit.’ To the creative person, that’s
heaven!...In general, they work for three things. First, the ‘fun’ of creation itself. Second,
‘admiration’ — especially from their peers. Third, the excitement and ‘glory’ of taking part in a
successful creation.” [BIER95]

• Tier 2 - This second tier includes computer and high-tech equipment manufacturers,
telecommunications, financial services, and other software-intensive industries. While market
demand has increased software salaries, this tier is having difficulty recruiting and retaining
the best and brightest that are lured away by savvy Tier 1 recruiters. Because jobs in these
firms are not as glamorous, nor are software workers as revered as they are in Tier 1, the
majority of Tier 2 jobs are filled by whomever companies can find to accept the salaries
offered.

u TIER1:
u Software start-ups, boutique software

firms,
u Software publishers,
u R&D (corporate & university)

u TIER 2:
u Value-added resellers, consulting

firms, systems integrators, software-
intensive industries (IBM, AT&T...),
aerospace, embedded software (GM,
Boeing...), corporate IS, applications
development

u TIER 3:
u DoD, federal, state & local

government

Most Desirable

Least Desirable

2-31

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

• Tier 3 - This tier is at the bottom of the software worker supply chain. One of the largest
employment segments, it includes most government and manufacturing organizations. In
Tier 3 the strategic importance of software and a strong software workforce has not reached
executive-level awareness. This tier lacks a competitive response to the tight labor market.
Tier 3 has been the hardest hit by the labor shortage because workers (once they have gained
skills and experience) readily move from these positions to Tier 2, where salaries and working
conditions are more desirable. [BARR98]

2.3.7 The Domino Effect

Programs tend to get in trouble in small, but progressively compounding increments. Schedule
changes, due to unrealistic estimates of development time required, often start as unnoticeable
changes in plans that go undetected by most managers. Schedule slips, starting small, have the
potential of becoming major problems because even small slips impact the delivery of other
related elements and almost always affect cost. Late software (on the system’s critical path) has
a domino effect on other system components, which have to slip their schedules while waiting
for the delinquent software. By failing to recognize and deal with this problem with expeditious
corrective action, the situation can quickly deteriorate into a software disaster!

When the product is late, we apply management pressure to reduce the slack between our projected
delivery date and the illusive real one. This aggravates into a Catch-22 situation. With inadequate
resource and schedule estimates, the time required to build quality in may be insufficient. In
addition, to meet schedule and keep down cost, the easiest thing with which to economize is
testing. [GLASS92] Before we realize it, a late, over-cost program evolves into an unreliable
one. From the developer’s point of view, when a cost/schedule disaster is discovered, they often
try to protect their contract with alternative proposals attempting to deliver less for the same
price. This leads to down-scoping and eliminating or trading off requirements, to stay within
initial projections. [MARCINIAK90] This is a very serious situation because it means resources
have been expended, or often exhausted, and the user does not get the system for which was paid
for. After years of schedule and cost overruns many programs have been canceled without the
delivery of a single line-of-code.

Poor performance in one risk area translates into problems in other areas. For example, software
quality directly relates to the quality of the management and engineering processes, because
quality problems quickly become exorbitant cost problems. Once the software is delivered and
in the user’s hands, latent defects often need correction. Most defense systems have long
operational lives, the software of which must be modified to adapt to new or changing
requirements, and upgraded to new technologies. In general, our software is so unique, custom-
crafted, and poorly documented, the only one who can figure it out is the original designer —
who is often working on something else or otherwise unavailable. This translates into software
that imposes heavy training loads and high labor costs.

2-32

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

2.4 References

[ADAMS96] Adams, Scott, The Dilbert Principle, Harper Collins Publishers, New York City, New York,
1996.

[BARR98] Avron, and Shirley Tessler, “How Will the Software Talent Shortage End?” American Programmer,
January 1998.

[BERNBACH82] Bernbach, William, as quoted in the New York Times, October 6, 1982.
[BLUM92] Blum, Bruce I., Software Engineering: A Holistic View, Oxford University Press, New York,

1992.
[BOEHM81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1981.
[BRITCHER98] Britcher, Robert N., “Why (Some) Large Computer Projects Fail,” included in Robert

Glass, Software Runaways: Lessons Learned from Massive Software Project Failures, Prentice Hall
PTR, Upper Saddle River, New Jersey, 1998.

[BROOKS87] Brooks, Fredrick P., Jr., “No Silver Bullet: Essence and Accidents of Software Engineering,”
Computer, April 1987.

[BUSWEEK85] “Forget the $400 Hammers: Here’s Where the Big Money is Lost,” Business Week, July 8,
1985.

[COHEN97] Cohen, SECDEF William S., Keynote Speech presented at the National Defense University
Joint Operations Symposium QDR Conference, Fort McNair, Washington, D.C., 23 June 1997.

[COLE95] Cole, Andy, “Runaway Projects — Causes and Effects,” Software World, Vol. 26, No. 3, UK,
1995; as quoted in Robert L. Glass, Software Runaways: Lessons Learned from Massive Software
Project Failures, Prentice Hall, Upper Saddle River, New Jersey, 1998.

 [CONAHAN95] Conahan, Frank C., “Defense Programs and Spending: Need for Reforms,” Testimony
Before the Committee on the Budget, House of Representatives, GAO/T-NSAID-95-149, April 27,
1995.

[CONE981] Cone, Edward, “Federal CIOs Look Past Failures,” InformationWeek, January 12, 1998.
[CONE982] Cone, Edward, “Crash-Landing Ahead,” InformationWeek, January 12, 1998.
[CORBATO92] Corbato, Fernado, “On Building Systems That Will Fail,” Communications of the ACM

34, No. 9, September 1992.
[CREECH94] Creech, General Bill, The Five Pillars of TQM: How to Make Total Quality Management

Work for You, Truman Talley Books, Button, New York, 1994.
[DeMARCO87] DeMarco, Tom and Timothy Lister, Peopleware: Productive Projects and Teams, Dorset

House Publishing Co., New York, 1987.
[DiNITTO92] DiNitto, Samuel, A., Jr., “Rome Laboratory,” CrossTalk, Software Technology Support Center,

Hill AFB, Utah, June/July 1992.
[DSB87] “Report of the Defense Science Board Task Force on Military Software,” Office of the Under

Secretary of Defense for Acquisition, September 1987.
[DSB94] “Report of the Defense Science Board Task Force on Acquiring Defense Software Commercially,”

Office of the Under Secretary of Defense for Acquisition & Technology, June 1994.
[FLOWERS96] Flowers, Stephen, Software Failure: Management Failure, John Wiley & Sons, West Sussex,

UK, 1996.
[GAO79] Contracting for Computer Software Development—Serious Problems Require Management

Attention to Avoid Wasting Additional Millions,” FGMSD-80-4, United States General Accounting
Office, Washington, D.C., November 9, 1979.

[GAO95] Tactical Aircraft: Concurrency in Development and Production of the F-22 Aircraft Should Be
Reduced, GAO/NSIAD-95-59, United States General Accounting Office, Washington, D.C., April 1995.

[GATES95] Gates, Bill, “The Importance of Making Mistakes,” USAir Magazine, July 1995.

www.informationweek.com/664/64iufa2.htm
www.informationweek.com/664/64iufaa.htm

2-33

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

[GIBBS94] Gibbs, W. Wyatt, “Software’s Chronic Crisis,” Scientific American, September 1994.
[GLASS91] Glass, Robert L., Software Conflict: Essays on the Art and Science of Software Engineering,

Yourdon Press, Englewood Cliffs, New Jersey, 1991.
[GLASS92] Glass, Robert L., Building Quality Software, Prentice-Hall, Inc., Englewood Cliffs, New Jersey,

1992.
[GLASS98] Glass, Robert L., Software Runaways: Lessons Learned from Massive Software Project Failures,

Prentice Hall PTR, Upper Saddle River, New Jersey, 1998.
[GREENE90] Greene, Col. Joseph, Jr., as quoted by Evelyn Richards, “Pentagon Finds High-Tech Projects

Hard to Manage: The Army Still Awaits Computerized Battlefield,” The Washington Post, December
11, 1990.

[GREENWALT98] Greenwalt, Bill, as quoted by Edward Cone, “Federal CIOs Look Past Failures,”
InformationWeek, January 12, 1998.

[HENDERSON95] Henderson, COL Jerry M., “Will Army Software Win the Information War?” Army
RD&A, July-August 1995.

[HINTON98] Hinton, Henry L., Best Practices: Successful Application to Weapon Acquisitions Requires,
Changes in DOD’s Environment, GAO/NSIAD-98-56, National Security and International Affairs
Division, United States General Accounting Office, Washington, D.C. 20548, March 24, 1998.

[JAMES97] James, Geoffrey, “IT Fiascos…and How to Avoid Them,” Datamation, November 1997.
[JCS96] Joint Vision 2010, Chairman of the Joint Chiefs of Staff, Department of Defense, The Pentagon,

Washington, D.C., 1996.
[JENNINGS98] Jennings, Peter, “Military Readiness: Can the Air Force ‘Fight and Win Any War’?” World

News Tonight with Peter Jennings, July 16, 1998.
[JOHNSON98] Johnson, Susan Tinch, and Jack A. Bobo, Software Workers for the New Millenium: Global

Competitiveness Hang in the Balance, National Software Alliance, Arlington, Virginia, January 1998.
[JONES90] Jones, Capers, as quoted by Evelyn Richards, “Society’s Demands Push Software to Upper

Limits: More Computer Crises Likely,” The Washington Post, December 9, 1990.
[JONES94] Jones, Capers, Assessment and Control of Software Risks, Yourdon Press, Englewood Cliffs,

New Jersey, 1994.
[JONES95] Jones, Capers, Patterns of Software System Failure and Success, International Thomson

Computer Press, Boston, MA, December 1995.
[KEENE91] Keene, Charles A., White Paper “Lessons-Learned: Nuclear Mission Planning and Production

System,” Air Force Strategic Communications Computer Center (SAC), Offutt AFB, Nebraska, January
17, 1991.

[LONGMAN92] Longman, Harold S., as quoted by Jerome B. Landsbaum and Robert L. Glass, Measuring
& Motivating Maintenance Programmers, Prentice Hall, New Jersey, 1992.

[MARCINIAK90] Marciniak, John J., and Reifer, Donald J., Software Acquisition Management: Managing
the Acquisition of Custom Software Systems, John Wiley & Sons, Inc., New York, 1990.

[MARSH90] Marsh, Alton, “Pentagon Up Against a Software Wall,” Government Executive, May 1990.
[McGIBBON96] McGibbon, Thomas, A Business Case for Software Process Improvement: A DACS State-

of-the-Art Report, Data & Analysis Center for Software, Rome Laboratory, Rome, New York, September
30, 1996.

[McLURE98] McLure, David, as quoted by Edward Cone, “Crash-Landing Ahead,” InformationWeek,
January 12, 1998.

[MOSEMANN95] Mosemann, Lloyd K., II, Keynote Address presented to the 1995 Software Technology
Conference, Salt Lake City, Utah, 1995.

[MULLINAX98] Mullinax, Don, as quoted by Edward Cone, “Federal CIOs Look Past Failures,”
InformationWeek, January 12, 1998.

[PAT92] “Software Process Action Team Final Report: Process Improvement for Systems/Software
Acquisition,” Air Force Systems Command, June 30, 1992.

www.access.gpo.gov/cgi-bin/getdoc.cgi?dbname-gao&docid=f:ns98056.txt.pdf
www.datamation.com
www.abcnews.com/onair/worldnewstonight/transcripts/wnt_980716_trans.html
www.dacs.dtic.mil/techs/roi.soar/roi.pdf

2-34

Chapter 2: Software Victory - Exception or Rule? GSAM Version 3.0

[PAULSON79] Paulson, Paul J., as quoted in the New York Times, May 4, 1979.
[PIETRUCHA97] Pietrucha, Bill, “US Infrastructure Vulnerable to Computer Attack — Report,” Newsbytes,

October 24, 1997.
[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Second Edition,

McGraw-Hill, New York, New York, 1992.
[RAND93] “An Analysis of Weapon System Cost Growth,” RAND Corporation, MR-291-AF, 1993.
[RICHARDS901] Richards, Evelyn, “Society’s Demands Push Software to Upper Limits: More Computer

Crises Likely,” The Washington Post, December 9, 1990.
[RICHARDS902] Richards, Evelyn, “Pentagon Finds High-Tech Projects Hard to Manage: The Army Still

Awaits Computerized Battlefield,” The Washington Post, December 11, 1990.
[SANTAYANA05] Santayana, George, Chapter 12, “Reason in Common Sense,” The Life of Reason,

Volume 1, 1905.
[SILVESTRI97] Silvestri, George T., “Employment Outlook: 1996-2006; Occupational Employment

Projections to 2006,” Monthly Labor Review, U.S. Department of Labor, November 1997.
[SWOPE50] Swope, Herbert B., U.S. Journalist Speech, as quoted in The Columbia Dictionary of Quotations,

Columbia University Press, 1995.
[VESSEY84] Vessey, GEN John W., as quoted in the New York Times, February 25, 1984.
[YOURDON97] Yourdon, Edward, Death March: The Complete Software Developer’s Guide to Surviving

“Mission Impossible” Projects, Prentice Hall PTR, Upper Saddle River, New Jersey, 1997

Part 1: Acquistion GSAM Version 3.0

Chapter 3

Statutory Framework
Governing Software
Acquisition

Chapter 3: Statutory Framework GSAM Version 3.0

3-2

Contents

3.1 Statutory Framework and Your Program ... 3-4
3.2 Converting to the New Paradigm .. 3-4

3.2.1 Information Technology Reinvention Paradigm..................................... 3-5
3.3 Framework Governing Software Acquisition ... 3-5

3.3.1 Integrated Legislative Suite .. 3-5
3.3.2 Chief Financial Officers (CFO) Act .. 3-7
3.3.3 Government Management Reform Act (GMRA) 3-7
3.3.4 Government Performance and Results Act (GPRA) 3-8

3.3.4.1 DoD Memorandum: GPRA .. 3-10
3.3.4.2 Quadrennial Defense Review (QDR).. 3-11

3.3.5 Federal Acquisition Streamlining Act (FASA) 3-13
3.3.5.1 FASA Title V Subtitle A ... 3-14

3.3.5.1.1 DoD Acquisition Program Cost, Schedule, Performance
 Goals ... 3-15
3.3.5.1.2 Acquisition Personnel Performance Incentives 3-15

3.3.5.2 Technology Insertion .. 3-15
3.3.5.3 Program Cycle Regulations .. 3-15

3.3.6 Federal Acquisition Reform Act (FARA) .. 3-16
3.3.7 Paperwork Reduction Act (PRA) ... 3-18

3.3.7.1 Moving to a Paper-Free Contracting Process 3-20
3.3.8 Clinger-Cohen Act ... 3-20

3.3.8.1 Raines Rules .. 3-22
3.3.8.2 Information Technology Management Reform Act
 Implementation ... 3-25
3.3.8.3 Information Technology Management Strategic Plan 3-25

3.3.8.3.1 DoD IM Strategic Plan ... 3-26
3.3.8.4 Requirements for Compliance with Reform Legislation for IT

Acquisition (Including NSS)... 3-26
3.3.8.4.1 Cohen Act Applicability to National Security Systems
 (NSS).. 3-27

3.3.8.5 Implementation of Subdivision E of the Clinger-Cohen Act 3-28
3.3.8.5.1 DoD Chief Information Officer ... 3-29
3.3.8.5.2 DoD Executive Board .. 3-29

3.3.8.6 IT Investment Management Insight Policy for Acquisition 3-30
3.4 DoD 5000.1/DoD 5000.2-R and the Statutory Framework 3-31

3.4.1 Milestone Decision Authority (MDA) .. 3-32

Chapter 3: Statutory Framework GSAM Version 3.0

3-3

3.4.1.1 Elimination of the MAISRC ... 3-32
3.4.2 Software-Intensive Systems.. 3-33

3.4.2.1 Software Engineering ... 3-33
3.4.2.1.1 Information Security ... 3-34

3.4.2.2 C4I Support Plan .. 3-34
3.4.3 Results-Oriented Acquisition Management ... 3-35

3.4.3.1 Linking Acquisition Programs to Strategic Goals 3-35
3.4.3.2 Nontraditional Acquisition.. 3-35

3.4.4 Acquisition System Reengineering ... 3-35
3.5 References .. 3-37

3-4

Chapter 3: Statutory Framework GSAM Version 3.0

3.1 Statutory Framework and Your Program

The statutory framework governing the acquisition of software-intensive systems was enacted by
the Congress to reengineer an acquisition and management system that had grown out of control,
cost too much, and was unresponsive to warfighter needs. Implementing the principles of
performance-based management is a national strategic acquisition goal. The focus of oversight
has shifted from micro-management of contractor to the results of those processes — quality
products, timely deliveries, service excellence, competitive pricing, professional integrity, and
proven performance. This chapter discusses the statutory background, which directs the policies
under which you will manage acquisition to become part of a more responsive and efficient
acquisition system.

3.2 Converting to the New Paradigm

“Our information technologies and our knowledge economy give us the opportunity to do things
we never dreamed possible 50 years ago. But to seize this opportunity, we must pick up the wreckage
of our industrial era institutions and rebuild.” — David Osborne [OSBORNE92]

The findings of the 1993 National Performance Review (NPR), led by Vice President Al Gore,
were published in the final report, Creating a Government That Works Better and Costs Less,
The report detailed the results of an intensive, six-month study of the Federal Government. It
described Federal agencies overburdened by layers of bureaucracy, outdated, stovepiped software
systems, needless miles of red tape, a quagmire of acquisition rules and regulations, inaccurate
financial data, powerless government employees, and a frustrated American public.

Thirty years ago, the use of software/hardware goods and services (information technology)
were relatively new to both the public and private workplace. The Federal Government (with
DoD as the lead) was the world’s largest buyer of information technology and most software
systems were built exclusively for government use. While still the greatest single consumer of
software-intensive technologies, the Federal Government has been out-paced by the commercial
sector as the largest technology market. Aside from explicitly government-unique technology
(e.g., weapon systems), the Government now seeks to buy mostly commercial items made for
general automated information system (AIS) and command, control, and communication (C3)
applications. Despite this change, many of the laws governing acquisition had not been changed
since their inception.

Because effective use of knowledge-based systems defines the competitive edge, leading U.S.
companies enhance, augment, upgrade, or replace their software-intensive assets every 18-months,
to attain market advantage. In contrast, products routinely used in the commercial sector have
not been available for government use for months, or even years, after their introduction. An
antiquated, Federal acquisition system — causing lengthy delays and exorbitant costs — has
hindered modernization operations. The result has been an inefficient, expensive Government
unable to take advantage of the time and cost savings knowledge-based systems provide.

www.npr.gov/
www.npr.gov/library/nprrpt/annrpt/redtape93/index.html

3-5

Chapter 3: Statutory Framework GSAM Version 3.0

3.2.1 Information Technology Reinvention Paradigm

The NPR recommended a series of steps needed to strip away the antiquated industrial model
and its maize of government red tape. The steps, which are germane to this discussion, include:

1. Streamline the budget process by removing the restrictions that literally force managers to
waste money;

2. Streamline procurement to reduce the enormous waste built into a processes used to buy
$200 billion a year in goods and services;

3. Reorient the inspectors general from punishing rule and regulation violations to helping
agencies perform better; and

4. Eliminate thousands of other regulations that hamstring Federal employees. [GORE93]

NOTE - The NPR Home Page contains a wealth of “hands on” tools for frontline Federal
managers.

3.3 Framework Governing Software Acquisition

“Making Government more effective and efficient is a national issue. But getting it to work better
and cost less will be impossible if Federal agencies cannot learn to manage with modern practices
the Information Age demands.” — Charles A. Bowsher, Comptroller General of the United States
[BOWSHER96]

Since the NPR, the list of acquisition and management reform initiatives is formidable. DoD
acquisition managers have had to implement a virtual barrage of reforms, involving new legislation,
new contract vehicles, and new management practices. The new laws ease procedures for buying
commercial services and products and require better business planning and results-oriented
management for major software-intensive acquisitions. Moreover, each of these laws fits into a
broader government-wide framework for accomplishing Federal reengineering missions and goals.
Thus, today’s acquisition environment brings a new DoD operational process. The challenge is
to understand the laws and regulations, how they fit together, and how they affect your management
task. Within this climate of radical change, gaining sufficient expertise to implement this process
is crucial for acquisition success. [BURMAN98]

3.3.1 Integrated Legislative Suite

When implemented together, the Federal reform legislation provides a fully integrated information
system for monitoring and assessing Federal agency missions and strategic priorities.
[HINCHMAN97] It includes (in order of discussion):

www.npr.gov/

3-6

Chapter 3: Statutory Framework GSAM Version 3.0

• Chief Financial Officers (CFO) Act of 1990
• Government Management Reform Act (GMRA) of 1994
• Government Performance and Results Act (GPRA) of 1993
• Federal Acquisition Streamlining Act (FASA) of 1994
• Federal Acquisition Reform Act (FARA) of 1996
• Paperwork Reduction Act (PRA) of 1995
• Clinger-Cohen Act of 1996

As illustrated on Figure 3-1, the centerpiece of this statutory framework is the Government
Performance and Results Act (GPRA). The GPRA requires DoD and other agencies to:

• Set multiyear strategic goals (with corresponding annual goals),
• Measure performance (towards achieving goals), and
• Report progress (annually).

Over the years, poor, inaccurate financial accounting has cost the Federal Government billions of
dollars. To remedy this financial neglect the Congress enacted the Chief Financial Officers (CFO)
Act, then expanded it with the Government Management Reform Act (GMRA). These laws
require DoD and other agencies to maintain integrated accounting and financial management
systems that enable accurate cost reporting and systematic performance measurement.

Figure 3-1. Relationship of Reform Legislation to the GPRA

Sound software acquisition management that supports Defense strategic goals is integral to
improving mission performance, cutting costs, and enhancing warfighter responsiveness. This
can be accomplished by:

• Successful acquisition program management,
• Treating software acquisitions as investments,
• Continually assessing the quality of cost estimates, and
• Measuring actual costs and comparing them with original estimates.

Clinger
Cohen Act

(1996)

Government
Management
Reform Act

(1994)

Federal
Acquisition

Streamlining
Act (1994)

Paperwork
Reduction
Act (1995)

Chief
Financial

Officers Act
(1990)

National
Performance

Review
(1993)

Federal
Acquisition
Reform Act

(1995)

Government
Performance

& Results
Act (1993)

3-7

Chapter 3: Statutory Framework GSAM Version 3.0

These cost estimating best practices are embodied in the information technology reform legislation
of the Paperwork Reduction Act (PRA) and the Clinger-Cohen Act. The Clinger-Cohen Act
requires that all software system investments include an assessment of estimated costs, benefits,
and risks compared to alternative solutions.

The Federal Acquisition Streamlining Act (FASA) and the Clinger-Cohen Act streamlined the
acquisition process and removed many barriers to Federal business process improvement. Under
these laws, DoD and other agencies must now link technology plans to accomplishing mission
goals. Through the Federal Acquisition Reform Act (FARA), Congress enacted new acquisition
workforce requirements, streamlined the procurement process, and made buying commercial
technology easier. [HINCHMAN97] The objective of all these legislative acts is to increase your
ability to focus on DoD acquisition program goals — acquisition success!

3.3.2 Chief Financial Officers (CFO) Act

The Chief Financial Officers (CFO) Act of 1990 requires that DoD (and other agencies covered
by the Act) improve financial management and reporting operations. The CFO Act calls for the
integration of Federal accounting and budgeting systems and the independent audit of agency
financial statements. This linking of accounting and budgeting systems and the rigors of financial
audit are intended to improve budget data accuracy.

The CFO Act established government-wide Chief Financial Officers (CFOs) and attempted to
ensure that oversight officials have accurate and complete information to assess whether agency
funds are being spent as intended by the Congress. CFO functions include the development and
reporting of cost information and the systematic measurement of performance, including in-
house and contractor performance. In January 1991, DoD established the Defense Financial
Audit Service (DFAS) in response to the CFO Act. It provides accounting support to all the
Services to improve, standardize, and consolidate financial and accounting policy, systems, and
operations.

3.3.3 Government Management Reform Act (GMRA)

The GMRA of 1994 made the CFO Act’s requirements for annual audited financial statements
permanent and expanded its authority to include the entire Executive Branch. It defines an agenda
to resolve the Government’s lack of timely, reliable, useful, and consistent financial information.
Under this law, DoD must annually prepare and have audited department-wide financial
statements. The Office of Management and Budget (OMB) designated the Military Services as
“Components,” which are also required to prepare annual audited financial statements. The GMRA
is an attempt to provide congressional and Executive Branch decision-makers with accurate,
audited financial and program cost information. How the CFO Act and GMRA relate GPRA
program performance and financial result requirements to the Annual Budget Request is illustrated
on Figure 3-2.

3-8

Chapter 3: Statutory Framework GSAM Version 3.0

Figure 3-2. CFO Act and GMRA Link GPRA Financial and Program Performance
Results to Budget Decisions

3.3.4 Government Performance and Results Act (GPRA)

Congress enacted the GPRA of 1993 to improve the effectiveness, efficiency, and accountability
of Federal programs by having DoD and other agencies direct management focus towards program
results. The GPRA differs from the past 50-years of government reform initiatives in two important
ways. First, the GPRA defines a government-wide, multiyear, iterative implementation process,
which includes pilot programs and formal reform concept evaluations. Thus, the GPRA increases
the likelihood for integrating planning, budgeting, and performance measurements while guarding
against unreasonably high expectations, which disappointed earlier reform initiatives. Second,
the GPRA embodies a new operational environment by linking performance outcomes and
spending results to budget decisions.

Under the GPRA, DoD and other agencies must develop a department-wide 5-year strategic
plan, annual performance plans and measures, and annual performance reports. The specific
requirements of these plans, measures, and reports are outlined in DoD Memorandum: Government
Performance and Reports Act, discussed next. The GPRA specifically defines the following:

3-9

Chapter 3: Statutory Framework GSAM Version 3.0

• Outcome measure. An assessment of program activity results compared to intended program
goals (e.g., regional peace or communism expunged).

• Output measure. The tabulation, calculation, or recording of an activity or effort (e.g., sorties
flown or missiles launched).

• Program activity. The programs and activities listed in the Appendix section of the Budget
of the United States Government.

The goal of linking resources with results has potential risks as well as rewards. The risk lies in
expecting too much too soon. For example, it is difficult to tie discrete, long-term outcomes to
specific budget commitments, or expect that performance results can quickly provide solutions
under annual budget constraints. Conversely, the GPRA has the potential to interject explicit
performance results into Defense budget decisions, thus changing the debate from simple inputs
to expected and quantifiable outcomes. The GPRA also requires that DoD plan and measure
performance using the same structures as those used in the annual Defense budget request —
i.e., program activities. This aims at assuring a simple, straightforward link among plans, budgets,
performance information, and the related congressional oversight and resource allocation process.

The Government Accounting Office (GAO) guidebook, Executive Guide: Effectively
Implementing the Government Performance and Results Act, identifies a set of key steps and
associated practices that leading organizations have used to successfully implement reform efforts
consistent with the GPRA. [BOWSER98] Figure 3-3 illustrates these key steps and associated
practices.

Figure 3-3. Key Steps and Critical Practices for Effectively Implementing GPRA
[BOWSHER96]

NOTE - The National Partnership for Reinventing Government (NPR) Managing for
Results Home Page contains more information on the Results Act and related web sites.

S TE P 2 :STE P 2:
Measu re Perfo rm anc e

Practices:
4. Produce measures at
 each organizational level
 that:

- Demonstrate results,
- Are limited to the vi tal

 few,
- Respond to mul tiple

 priorities, and
- Link to responsible

 programs.
5. Collect data.

S T E P 3:S T E P 3:
Use Perform ance

Information
Practices:

6. Identify performance gaps.
7. Report information.
8. Use information.

ST EP 1 :S TEP 1 :
Def ine Mission &

Desired Outcomes
Practices:

1. Involve stakeholders.
2. Assess environment.
3. Align activi ties, core
 processes, and
 resources.

Rein force G PRA Im plementation
Practices:

 9. Devo lve decision-making accountability.
10. Create incen tives.
11. Build expertise.
12. Integrate management reforms.

www.gao.gov/special.pubs/gg96118.pdf

3-10

Chapter 3: Statutory Framework GSAM Version 3.0

3.3.4.1 DoD Memorandum: GPRA

DoD Memorandum: Government Performance and Results Act (GPRA), signed by the Under
Secretary of Defense on 30 April 1997, outlines DoD policy for compliance with GPRA
requirements. This includes a 5-year strategic plan, annual performance plans, and annual reports
to Congress on program progress in meeting performance goals.

• DoD Strategic Plan. The GPRA requires that all government agencies submit a 5-year strategic
plan to the OMB and to the Congress. DoD fulfilled GPRA requirements for a strategic plan
with the Quadrennial Defense Review (QDR). The QDR will be used to revise DoD’s mission
statement, vision, and corporate goals. It will be incorporated in the Defense Planning Guidance
(DPG) issued by the SECDEF. DoD’s plan for GPRA implementation includes integrating
GPRA requirements with the Planning, Programming, and Budgeting System (PPBS. GPRA
guidance will be channeled through key PPBS documents, including the DPG, the Program
Objectives Memoranda (POM) Preparation Instructions (PPI), Program Decision Memoranda
(PDMs), and the annual budget call.

• DoD Performance Plan. In addition to a strategic plan, the GPRA requires that DoD submit
annual performance plans and performance reports. The performance plan contains
performance measures and targets that, if achieved, indicate progress towards meeting the
goals and objectives of the QDR.

• Performance Report. The GPRA performance report is an accountability document that
contains the quantitative results and program evaluations defined in the performance plan.
The first performance report is due March 2000. For performance plan and reporting purposes,
the Assistant Secretary of Defense (Strategy and Requirements) will extract DoD’s “corporate
goals” from the QDR and publish them annually in the DPG. During program review, the
Office of Program Analysis and Evaluation (PA&E) will select performance measures that
indicate progress towards meeting QDR goals, and conduct a review to ensure that component
POMs are programmed accordingly. Figure 3-4 illustrates how the GPRA provisions are
implemented by the QDR and products of the PPBS process.

Although GPRA provisions outline incremental implementation, agency compliance has not
been as successful as the Congress had envisioned. GAO reviews indicate that continued progress
is needed in how agencies address three difficult planning challenges:

• Setting a strategic direction,
• Coordinating crosscutting programs, and
• Ensuring the capacity of information systems is sufficient to gather, process, and analyze

GPRA required performance and cost data.

Specifically, many of the strategic goals contained in agencies’ strategic plans fail to focus on
results to the extent feasible and are not always expressed in a manner conducive to assessing
progress in terms of actual performance. [STEVENS98] In addition, GPRA implementation may
not become effective until well after the Year 2000 (Y2K), when the expense and challenge of
the Y2K software bug is behind us. At that time, agencies will be able to focus on acquiring
information systems with the capacity needed to track, measure, and control their mission-critical
programs in a manner compliant with the GPRA.

3-11

Chapter 3: Statutory Framework GSAM Version 3.0

Figure 3-4. DoD Compliance with the GPRA through the PPBS Process

3.3.4.2 Quadrennial Defense Review (QDR)

The Report of the Quadrennial Defense Review (QDR) [required by the Military Force Structure
Review Act, included in the FY97 National Defense Authorization Act], was completed in May
1997. It represents the most comprehensive review ever conducted of Defense posture, policy,
and programs. It examined national security threats, risks, and opportunities facing the United
States up to the year 2015. It categorized these items into force structure, readiness posture,
military modernization programs, defense infrastructure, and other DoD elements. Based on this
analysis, a defense strategy was designed to implement the national defense goals outlined in the
President’s National Security Strategy for a New Century. According to SECDEF William S.
Cohen,

“That was the great contribution of the Quadrennial Defense Review: to give us a realistic plan to
reach this visionary goal, not only to modernize the force — which implies evolutionary change —
but also to foment revolutionary change to take our forces well into the future.” [COHEN971]

One Quadrennial Defense Review (QDR) objective was to understand the financial risk in DoD
program plans and devise ways to manage that risk. The QDR identified sources of instability
built into the Fiscal Year Defense Plan (FYDP) and presented plans to mitigate that instability
through more realistic planning assumptions in the FY99DP. These assumptions include more

www.defenselink.mil/pubs/qdr
www2.whitehouse.gov/WH/EOP/NSC/html/nschome.html

3-12

Chapter 3: Statutory Framework GSAM Version 3.0

force structure and personnel reductions, more base closures and realignments, streamlining
operations, and more prudent new weapon acquisitions.

By adopting commercial best practices, streamlining management oversight, eliminating redundant
functions, and outsourcing or privatizing where appropriate, the Defense Departments will be
able to further reduce infrastructure costs and personnel. This will be accomplished by business
process reengineering and the acquisition and adoption of software-intensive technologies. DoD’s
strategy for preparing now for an uncertain future has four main parts.

1. Replace aging weapon systems. Pursue a focused modernization effort by acquiring cutting-
edge technologies to ensure continued U.S. military superiority over time.

2. Exploit the Revolution in Military Affairs (RMA). Links modernization efforts to
transforming warfighter capabilities to retain our military superiority in the modern art of
warfare and a volatile security environment. To ensure U.S. forces dominate any future
battlefield, software-intensive systems will be harnessed through advanced concepts, doctrine,
and organizations. According to SECDEF Cohen,

“…an important thing to keep in mind as we pursue this revolution is that history shows that [the]
most critical aspect of profound military innovation is not technology, but understanding what we
can do with it. The primary, important military technologies are increasingly widely available.
The key to success is developing innovative operational concepts, doctrine, and organizations
that can best exploit these technologies.” [COHEN972]

3. Exploit the Revolution in Business Affairs (RBA). The RBA is an initiative to improve the
efficiency and performance of DoD support activities by adopting the business best practices
employed by leading private sector organizations. These include “reengineering” or
“reinventing” DoD support (business) functions (e.g., streamlining, reorganizing, downsizing,
consolidating, automating, and commercializing operations). These measures are projected
to free resources for investment in high-priority RMA areas. Successful implementation of
RBA activities will result in:

− Shorten cycle times (particularly with the acquisition of mature systems);
− Enhanced program stability;
− Increased efficiencies; and
− Assurance that management stays focused on core competencies.

Sources of projected revenue savings include:

− Reduced overhead and streamlined infrastructure;
− Taking maximum advantage of acquisition reform;
− Outsourcing and privatizing of support activities (when the necessary competitive

conditions exist);
− Leveraging commercial and dual-use technology and open systems;
− Reductions in unneeded standards and specifications;
− Integrated process and product development; and
− Increased cooperative development programs with allies.

3-13

Chapter 3: Statutory Framework GSAM Version 3.0

4. Insure for contingencies. Hedge against unlikely, but significant, future threats by managing
risk in a resource-constrained environment. Position the U.S. military to respond in a timely
and effective manner to new threats as they emerge. This will be accomplished through the
Acquisition Reserve of Funds.

The Acquisition Reserve of Funds is a QDR initiative that addresses DoD’s often notorious and
long-standing acquisition problems. It is based on the premise that

“…complex, technologically advanced programs all bear some risk of costing more than planned.
When unforeseeable growth in cost occurs, offsets from other programs must be found, which in
turn disrupts the overall modernization program. Our programming process must provide sufficient
flexibility in the form of program reserves to address this risk.” [QDR97]

The Acquisition Reserve of Funds will to be used to mitigate the effect of unforeseen problems
that might threaten to upset an acquisition program’s cost and schedule. DoD plans to begin
accumulating the risk reduction fund in FY00 and expects it to grow to about $1 billion by FY03.
Revenues will be accrued from contributions by the Office of the Secretary of Defense (OSD)
and the Services.

The Reserve has the potential for both risks and rewards. For example, the Reserve could be used
for communicating to acquisition managers those practices that are encouraged and those that
are not. If DoD allows acquisition programs to use the fund to pay for problems revealed late in
development or early in production, the fund could reinforce existing incentives for not dealing
with risks until they become full-blown problems. Conversely, if program managers are encouraged
to use the fund to mitigate risks early to preclude future problems, it could be used to reward
managers for revealing risks early in the acquisition cycle when they are still solvable. [HINTON98]

3.3.5 Federal Acquisition Streamlining Act (FASA)

“The Acquisition Streamlining Act of 1994 is the most significant change in law affecting
procurement in five decades. It will transform the way we buy goods and services. We have turned
the system upside down...now we must tell the contractor what we need the system to do, not how
to do it.” — Dr. Paul Kaminski [KAMINSKI94]

On 13 October 1994, the Federal Acquisition Streamlining Act (FASA) became public law. This
law was designed to create a more equitable balance between government-unique requirements
and the need to lower the cost of doing government business. According to Norm Augustine,
former Under Secretary of the Army and former Lockheed Martin Corporation CEO, this legislation
is “the first successful initiative in memory to reform the much-maligned defense acquisition
process.” [AUGUSTINE95]

The FASA contains more than 200 sections changing the laws that govern how DoD and other
Federal agencies acquire almost $200 billion in goods and services annually. [DRELICHARZ94]
With the enactment of the FASA, a comprehensive definition of commercial item was included
in the Federal Acquisition Regulation (FAR). The FASA lifts many formerly rigid acquisition
regulations and allows DoD to better implement management best practices. FASA reform
provisions, as outlined by the Federal Acquisition Institute, affecting the acquisition of major
software-intensive systems include the following.

http://thomas.loc.gov/cgi-bin/query/C?c103/temp/~c103radeu2
www.arnet.gov/far/current/97_104/html/toc.html

3-14

Chapter 3: Statutory Framework GSAM Version 3.0

• Market research. Before developing new requirements documents to solicit offers, DoD
should collect and analyze information about existing capabilities within the commercial
marketplace that can satisfy Defense needs.

• Preference for COTS and NDI. The FASA established a preference for commercial-off-the-
shelf (COTS), and then non-developmental items (NDI), to the maximum extent practicable.
Only when it is determined that neither of these items is available, can DoD consider buying
custom-developed, DoD-unique items.

• Quality and non-price evaluation factors. DoD must consider [service and product] quality
in every source selection, by including one or more non-price evaluation factors (e.g., past
performance, technical excellence, management capability, personnel qualifications, prior
experience, or schedule compliance).

• Commercial buying practices for COTS. The FASA limits contract clauses for the purchase
of COTS to those required by law or those consistent with standard commercial practices.
For example, when acquiring COTS, the Government reserves the right to not debrief all
bidders. Acquisition managers are also encouraged to use commercial-like management
practices so suppliers do not need separate DoD and commercial production lines. This
includes:
− Relying on the contractor’s inspection system,
− Acquiring limited, minimal data rights,
− Relying on past performance,
− Using product literature and product samples for technical evaluation,
− The use of oral presentations,
− Using buyer financing, and
− Relying on limited warrantees. [BRISLAWN97]

• FACNET. The FASA established the Federal Acquisition Computer Network (FACNET), an
automated list of what the Government wants to buy. With FACNET, suppliers are able to
submit proposals electronically, eliminating paper solicitations and contracts.

• Indefinite delivery indefinite quantity (IDIQ) and multiple award contracts. The use of
indefinite quantity contracts rather than a requirements contract is encouraged. When using
indefinite quantity contracts, multiple awards are the preference.

• Contractor past performance. The Government may use contractor past performance to
identify the offeror with the best track record in providing quality deliverables, controlling
costs, and minimizing the need for Government oversight.

• Performance-based payments. Performance-based payments are contract financing payments
for fixed-price contracts based on:
− Performance measured by objective, quantifiable methods,
− Accomplishment of defined events, or
− Other quantifiable measures of results. [GUIDE95]

3.3.5.1 FASA Title V Subtitle A

Title V of the FASA implements the results-oriented, performance-based management
requirements of the GPRA. Title V provisions are outlined in Subtitle A for DoD (and Subtitle B
for civilian agencies). Subtitle A discusses the development of measurable cost, schedule, and
performance goals, incentives for acquisition personnel to reach these goals, the need to reduce
the time for technology insertion, and the review of program cycle regulations.

3-15

Chapter 3: Statutory Framework GSAM Version 3.0

3.3.5.1.1 DoD Acquisition Program Cost, Schedule, Performance Goals

At the end of each fiscal year, the Director of Acquisition Program Integration must determine
whether each Major Defense Acquisition Program (MDAP) has reached 90% or more of its cost,
schedule, and performance goals when compared to Acquisition Program Baseline (APB)
thresholds. If 10% or more of a program’s goals are missed, a timely review is required to address
whether a program breach is needed and to recommend suitable action, including termination.
Major acquisition program baselines must be coordinated with DoD’s Comptroller before
approval.

3.3.5.1.2 Acquisition Personnel Performance Incentives

DoD must provide a system of incentives for acquisition managers that relates pay, evaluations,
and promotions to contributions in achieving program goals. Incentives must be reviewed and
personnel actions identified that encourage acquisition management excellence. Recommendations
for legislative changes needed to improve the management of acquisition programs and personnel
are to be submitted to the Congress.

3.3.5.2 Technology Insertion

DoD must report annually on whether the average period for converting emerging technology
into operational capability has decreased by 50% or more from the average period at the date of
the FASA’s enactment. DoD plans to reduce the time for technology insertion by:

• Using commercially available technologies;
• Encouraging tradeoffs between cost, schedule, and performance at various development stages;

and
• Expanding the use of Advanced Concept Technology Demonstrations (ACTD).

3.3.5.3 Program Cycle Regulations

DoD must review its regulations to ensure that acquisition program cycle procedures focus on
achieving goals consistent with the Program Baseline Description. [COOPER96] Figure 3-5
illustrates main FASA and Title V provisions.

3-16

Chapter 3: Statutory Framework GSAM Version 3.0

Figure 3-5. FASA and DoD Title V Provisions

3.3.6 Federal Acquisition Reform Act (FARA)

The Federal Acquisition Reform Act (FARA) of 1995 (included in the FY96 National Defense
Authorization Act) contains provisions to reform Federal acquisition laws that apply to the
management of information technology. The FARA also refined certain provisions of the FASA
and outlined reforms that were further enacted by the Clinger-Cohen Act (discussed below).
FARA provisions include the following.

• Small purchase threshold. It increased the threshold for small purchases to $100,000. Thus,
the FARA applies to procurements between $100,000 and $5,000,000 (in constant FY95
dollars), which accounts for 63% of what the Federal Government spends on computer software
and hardware goods and services.

NOTE - The Defense Federal Acquisition Regulation Supplement (DFARS) increased
the simplified acquisition threshold to $200,000 for any contract awarded and performed
outside the United States in support of a contingency operation.

www.gsa.gov/staff/v/mvilfara.htm

3-17

Chapter 3: Statutory Framework GSAM Version 3.0

• DoD acquisition workforce reduction. The FARA requires the consolidation of the Defense
acquisition organization and a 25% reduction of DoD’s acquisition workforce by 2000.

• Efficient solicitation process. To make the acquisition process more efficient and streamlined.
For example, the FARA contains provisions that allow the Government to limit the number
of proposals submitted within the competitive range (as stated in FAR Part 15).

• Commercial-off-the-shelf (COTS) items. As stated in FAR Part 12), the FARA lifts the
requirement for certified cost or pricing data for certain COTS items (e.g., information
technology); applies simplified acquisition procedures to COTS; and exempts some COTS
purchases from certain procurement laws and certification requirements.

• COTS modifications. The FARA does not apply to modifications of COTS items normally
available to the general public or minor modifications made to meet Federal requirements
not available in the commercial marketplace. Minor modifications are those that do not
significantly alter the item’s (or component’s) non-government function, essential physical
characteristics, or change the purpose of a process.

• Commercial services. The FARA applies to commercial support services, such as installation,
maintenance, repair, and training, if they are provided to the Government using the same
workforce and under similar terms and conditions as those offered to the public.

• Non-developmental items (NDI). The FARA applies to NDI, if the Government determines
that the NDI was developed exclusively at private expense and sold in substantial quantities,
on a competitive basis, to multiple State and local governments.

• Modular contracting. The FARA encourages agencies to use modular contracting for an
acquisition of a major system of information technology instead of making large, single
purchases of these systems. The FARA does not mandate modular contracting in every
acquisition, but says this method should be used to the maximum extent practicable. It also
states that each increment of an information system acquisition should, to the maximum
extent practicable, be awarded within 180 days after the date the solicitation is issued. After
contract award, each increment should be delivered to the Government within 18 months.
[FONTANA97] Figure 3-6 illustrates FASA and FARA acquisition reforms provisions.

www.farsite.hill.af.mil/VFFARa.html
www.farsite.hill.af.mil/VFFARa.html

3-18

Chapter 3: Statutory Framework GSAM Version 3.0

Figure 3-6. FASA and FARA Acquisition Reform Provisions

3.3.7 Paperwork Reduction Act (PRA)

While DoD and other agencies have vast information system investments, the benefits of these
resources have frequently been disappointing. As you learned in Chapter 2, Software Victory:
Exception or Rule, information system acquisitions often experience schedule slips, incur cost
overruns, and fail to provide promised improved mission performance. The Paperwork Reduction
Act (PRA) of 1995 [amending the PRA of 1980 and expanded by the Clinger-Cohen Act (discussed
next)] incorporates the information technology management best practices of leading public and
private sector organizations. The PRA requires that DoD and other agencies improve operational
efficiency and achieve mission goals through the results-oriented use of software-intensive
technologies. PRA goals include:

cio.gov/S244_enr.txt

3-19

Chapter 3: Statutory Framework GSAM Version 3.0

• Paperwork burden. Minimize the paperwork burden resulting from the collection of
information by or for DoD.

• Government Information Resource Management (IRM) practices. Coordinate, integrate,
and standardize DoD information resource management policies and practices.

• Data quality. Improve the quality and use of Defense information;
• Data cost. Minimize the cost of creation, collection, maintenance, use, dissemination, and

disposition of DoD information.
• Results-based information system acquisitions. Ensure that information systems are acquired,

used, and managed to improve DoD mission performance.

The PRA requires that DoD and other agencies develop and maintain a strategic Information
Resource Management (IRM) Plan that describes how IRM activities are used to accomplish
agency missions. DoD must develop and maintain an ongoing process to address the following.

• Leveraged IRM decisions. Ensure that IRM operations and decisions are integrated with
organizational planning, budget, financial management, human resource management, and
program decisions.

• Accurate information resource cost data. In cooperation with the Defense Financial Audit
Service (DFAS), develop a full and accurate accounting of information system expenditures,
related expenses, and results.

• Results-oriented information resource goals. Establish GPRA performance-based goals for
improving the contribution of information resources to program productivity, efficiency, and
effectiveness. Establish methods for measuring progress and define clear roles and
responsibilities for achieving performance goals.

• Continuously updated information resource inventories. Maintain a current and complete
inventory of information resources.

• IRM training programs. Provide formal IRM training for program and management officials.

The PRA requires OMB’s Office of Information and Regulatory Affairs (OIRA) to establish the
following goals:

• A government-wide 10% paperwork reduction goal for FY96 and FY97;
• A 5% reduction goal for FY98 to FY02, and
• Annual agency paperwork reduction goals to the maximum practicable opportunity.

On 13 January 1997, OMB instructed DoD and other agencies to establish goals and timetables
to achieve a cumulative paperwork reduction of 25% by the end of FY98. [BROSTEK97] Figure
3-7 illustrates the relationship of the PRA to the CFO/GMRA and the GPRA.

3-20

Chapter 3: Statutory Framework GSAM Version 3.0

Figure 3-7. Relationship among the PRA, CFO/GRMA, and GPRA

3.3.7.1 Moving to a Paper-Free Contracting Process

USD Management Reform Memorandum: Moving to a Paper-Free Contracting Process by 1
January 2000, was signed by Undersecretary of Defense, John J. Hamre, on 21 May 1997. To
simplify and modernize the DoD acquisition process in the area of contract writing, administration,
finance, and auditing, the Under Secretary of Defense (A&T) was assigned the responsibility for
developing a blueprint to move to the Department to a totally paper-free contract writing,
administration, finance, and auditing process. The plan incorporates the Department’s ongoing
initiatives for use of purchase cards, electronic catalogues, electronic commerce and imaging.

3.3.8 Clinger-Cohen Act

The Clinger-Cohen Act of 1996 [formerly the Information Technology Management Reform Act
(ITMRA)] was enacted to address long-standing, government-wide weaknesses in information
resource management. It defines an integrated set of acquisition and management best practices
needed to build the information technology infrastructure outlined in the NPR (discussed above).
It repealed the 1965 Brooks Automatic Data Processing Act, characterized by strict regulatory
control over information resources, an excessive documentation approval process, and a lengthy
acquisition cycle in which systems were often obsolete when fielded.

www.acq.osd.mil/ar/doc/manref2.pdf

3-21

Chapter 3: Statutory Framework GSAM Version 3.0

The Clinger-Cohen Act [also called the “Cohen Act,” “CCA,” or “CIO Act”] is the GPRA and
FARA for information resource acquisition and management. It applies GPRA performance-
based principles to information resource management (IRM) and carries FARA information
technology acquisition reform legislation a step further. Under the Cohen Act, DoD and other
agencies must develop agency-wide information resource strategic plans, annual performance
plans and measures, and annual performance reports on information resource programs. The
specific requirements of these plans, measures, and reports are outlined in OSD Memorandum:
Requirements for Compliance with Reform Legislation for Information Technology, discussed
next. Major Cohen Act results-oriented provisions include:

• Chief information officer (CIO). The Cohen Act directs DoD and other agencies to implement
modern management practices where senior executives are directly responsible for information
resource decisions. It requires the appointment a qualified, senior-level Chief Information
Officer (CIO) to establish strict, DoD-wide information technology standards and impose
discipline over technology spending. The DoD CIO must ensure that inefficient work processes
are reengineered and that information resource contributions towards accomplishing mission
objectives are measured, evaluated, and reported to OMB.

• Decentralization of procurement authority. With the repeal of the Brooks Act, DoD and
other agencies can purchase their own information systems without having to go through the
General Services Administration (GSA). OMB imposes oversight control over DoD
information system spending through the budgeting process.

• Capital planning and investment control. DoD and other agencies must make investment
decisions based on measurable criteria related to risk-adjusted ROI, alternative solutions,
shared benefits or costs with other agencies, and verifiable progress towards meeting mission
schedule, quality, and cost goals.

• Performance and results-based management. DoD and other agencies must establish strategic
performance goals for all major information systems that support the Department. DoD must
quantitatively assess performance improvement progress against comparable private or public
sector best practice benchmarks. These assessments are to include cost, schedule, productivity,
and quality of results. Progress in meeting strategic goals must be analyzed, and mission-
related processes reengineered (as appropriate) before significant information system
investments are made to support those processes.

• Accountability. DoD and other agencies must ensure that AIS accounting, financial, asset
management, and other information systems provide reliable, consistent, and timely
performance data.

• Standards and guidelines. Standards and guidelines for efficiency, security, and privacy of
DoD information systems must be established, maintained, and followed. The Director of
OMB will evaluate DoD’s management practices and mission performance before approving
major information system investments, to the extent practicable.

• Information technology acquisition. The Federal Acquisition Regulatory Council (responsible
for the FAR) is responsible for ensuring that the process for acquiring major information
systems is simplified, clear, and understandable. This process must address risk management,
incremental acquisition, and the timely incorporation of COTS. For the acquisition of MAIS
systems, modular contracting [discussed above] is to be used to the maximum extent
practicable.

• Procurement protest authority. With the repeal of the Brooks Act, the GSA Board of Contract
Appeals has been abolished. Procurement protest authority resides with the U.S. Comptroller
General and the GAO.

3-22

Chapter 3: Statutory Framework GSAM Version 3.0

• Process improvement. To be funded, information system investments must produce
quantifiable improvements in the way people work or missions are performed. Processes
must be improved rather than automating existing business functions or replacing old
technology. In addition, major AIS and C3 investments must lead to meaningful, bottom-line
ROI. Programs with low potential to provide quantifiable improvements must be identified
early and terminated or avoided.

• Technical architecture. An integrated information technical architecture is critical to prevent
fragmented, stove-piped systems DoD-wide. Technology applied to new business processes
must be compatible with, and seamlessly integrated into, the DoD information technical
architecture.

Executive Order 13011, Federal Information Technology, implements the Cohen Act. It established
an agency-wide CIO council to serve as a forum, share ideas, and make government-wide
recommendations. The Order also established the Government Information Technology Services
Board (GITSB) to assure that NPR recommendations are carried out. Concerns over National
Information Infrastructure (NII) security issues resulted in a revision to OMB Circular A-130,
Management of Federal Information Systems. Federal Acquisition Regulation, “Section 39.001,
Acquisition of Information Resources,” has been rewritten to reflect Cohen Act acquisition policies.

NOTE - See the Federal CIO Home Page for an updated list of relevant Cohen Act-related
documents.

3.3.8.1 Raines Rules

OMB Memorandum 97-02, Funding Information Systems Investments (issued by OMB Director Franklin
D. Raines), referred to as “Raines Rules,” summarizes eight strict information technology performance and
investment criteria. To receive continued Congressional funding, DoD must meet certain criteria when reporting
to OMB. According to Raines Rules, DoD investments in major information systems proposed for funding in
the President’s Budget should comply with the following.

• Mission support. Information system acquisitions must support core DoD mission functions.
• Alternative sources. Information system acquisitions are undertaken because no alternative

private or government source can effectively support the DoD function.
• Work process reengineering. Information system acquisitions must support work processes

that have been simplified or redesigned to reduce costs, improve effectiveness, and make the
maximum use of COTS.

• Business case analysis. Information system acquisitions must demonstrate a projected ROI
that is equal to or better than alternative uses of public resources. ROI may include:
− Improved mission performance in accordance with GPRA measures;
− Reduced cost;
− Increased quality, speed, or flexibility; or
− Increased warfighter or worker satisfaction.

www.itpolicy.gsa.gov/regs/exo13011/exo13011.htm
www.gits.gov/
www2.whitehouse.gov/WH/EOP/OMB/html/circulars/9130/html
www.farsite.hill.af.mil/VFFARa.html
http://cio.gov
http://cio.gov

3-23

Chapter 3: Statutory Framework GSAM Version 3.0

• DoD information architecture consistency. Information system acquisitions must be consistent
with Federal, DoD, Service, and DoD agency information architectures which:
− Integrate DoD work processes and information flows with software-intensive technology

to achieve strategic Defense goals;
− Reflect the DoD IM Strategic Plan and the DoD Year 2000 Management Plan; and
− Specify standards that enable information exchange and resource sharing, while retaining

flexibility in the choice of suppliers and local work process design.
• Reduce risk. Reduce information system acquisition risk by:

− Avoiding or isolating custom-designed components to minimize potential adverse impacts
on the overall system;

− Using fully tested pilots, simulations, or prototype implementations before going to
production;

− Establish clear measures and accountability for program progress; and
− Secure substantial involvement and buy-in from all program stakeholders.

• Modular contracting. Information system acquisitions are implemented in phased, successive
increments as narrow in scope and as brief as practicable, each of which fulfills a specific
function or an overall mission need. Each increment must deliver a measurable net ROI
independent of future increments.

• Risk sharing. Employ an acquisition strategy that appropriately:
− Allocates risk between DoD and the contractor;
− Effectively uses competition;
− Ties contract payments to accomplishments; and
− Makes maximum use of COTS.

Figure 3-8 lists Cohen Act-related documents. Figure 3-9 illustrates how the Cohen Act relates
to the GPRA. Where the GPRA is the statutory framework centerpiece for results-based
management, the Cohen Act is the information technology centerpiece for results-based
management and acquisition reform.

3-24

Chapter 3: Statutory Framework GSAM Version 3.0

Figure 3-8. Cohen Act-Related Documents

3-25

Chapter 3: Statutory Framework GSAM Version 3.0

Figure 3-9. The Cohen Act is the Centerpiece for Information Technology Results-
Based Management and Acquisition Reform

3.3.8.2 Information Technology Management Reform Act Implementation

ASD(C3I) Memorandum: Information Technology Management Reform Act (ITMRA) of 1996
Implementation, 6 August 1997, identified four imperatives critical to DoD’s successful
implementation of the Cohen Act.

1. Orient information technology investments towards a strategic business and mission focus;
2. Manage information resource investments based on performance and results;
3. Mandate performance measurements for all information technology, including National

Security Systems (NSS) information systems; and
4. Use business process reengineering prior to information system acquisition.

3.3.8.3 Information Technology Management Strategic Plan

ASD(C3I) Memorandum: Information Technology Management (ITM) Strategic Plan, 20 March
1997, outlines DoD’s plan for compliance with the Cohen Act. The DoD IM Strategic Plan
(attached to the memorandum) is DoD’s road map for information resource management into
the next century. It provides an overarching vision and specific strategies to guide DoD information
technology planning and resource decision making. DoD Component CIOs, Military Departments,
Defense Agencies, and Field Activities are to use this plan as the basis for developing supporting
strategic plans and IT investment portfolios.

5-Ye ar IRM Strate g ic P la ns/Goa ls
Annua l IRM Plans /G oals
Me asure IT P rogram Pe rformanc e
Annua l Reports on IRM Resu lts

D ec entra liz ed P rocu rem ent A utho ri ty
Capi tal P lann ing & Investm en t Con tro l
P erform ance -based M anage ment
A cc oun tabi lity
IT St andards & G uide line s
S tre aml ined IT Ac quis iti on
T echn ical IT A rchit ecture

Go ve rn m en t
P erfo rm a n c e

& R esu lt s
A ct (199 3)

U nifo rm IRM Prac tic es
P erfo rm ance -based IRM goals
Re sul ts -based IT A cquisi tions
A cc u rate IT Cos t D ata

DoD A cquisit ion W orkforc e Reduc ed
COT S & ND I Inform a tion S ys tem s
Stream line Ac quisition
FA R Exe mptions for CO TS IT
Modul ar/Inc reme ntal Contrac ting

Buy CO TS & N D I
N o G overnm e nt-unique Require men ts
Cont ract or Pa st Pe rformanc e
E lec tronic Contrac ting

R ela te Finan cial & Program
P erfor m anc e to A nn ua l

Bu dge t Re qu est

G o ve rn m en t
P erf o rma n c e

& R es u lts
A c t (19 93)

Fed eral
A cqu is it ion

S tre am lin ing
A ct (1994)

M easure Fi nanci al P erform ance
A nnual Re ports on Results

C h ief
F in anc ia l

O ffice rs A ct
(19 90)

Go vern ment
Man agem ent
R eform A ct

(19 94)

5 -Y ear S tra tegic P lans/G oal s
A nnual P la ns/Goa ls
M easure P rogram Pe rformanc e
A nnual Re po rts on Results

Pap erw ork
R e duc tio n

Ac t
(19 95)

Fe dera l
A cquisi tio n

R e form
Ac t (199 5)

C l ing er -
C ohen Ac t

(1 996)

www.dtic.mil/c3i/cio/imp_mem.html
www.dtic.mil/c3i/cio/references/itmstpln/itmstpln_memo.html

3-26

Chapter 3: Statutory Framework GSAM Version 3.0

3.3.8.3.1 DoD IM Strategic Plan

The DoD Information Management (IM) Strategic Plan Supporting National Defense (DoD IM
Strategic Plan), Version 1.0, March 1997, provides overall direction and guidance for managing
DoD information resources. It establishes DoD’s shared IRM vision, key goals and objectives,
measures of performance, and strategies to accomplish IRM goals. Specifically, it provides the
following.

• Links IM to joint warrior operational needs and mission support needs;
• Coordinate and integrates IM activities across functional areas and organizations;
• Creates broad mechanisms to systematically manage DoD IM resources and programs;
• Complies with the Cohen Act; and
• Serves as a model plan for IM strategic plans at other DoD levels and in other functions.

The DoD IM Strategic Plan focuses on two critical success factors: the joint and coordinated
activity of DoD Components, and the customer. Customer orientation complies with the DoD
priority to realign the way it does business, as reflected in IM mission and vision statements.

• IM mission. Provide the right information, at the right place and time from the right sources,
in a form that users can understand and reliably use to effectively and efficiently accomplish
their missions and tasks.

• IM vision. Information superiority will be achieved through global, affordable, and timely
access to reliable, secure information for worldwide decision-making and operations. Critical
success factors needed to realize the vision are characterized by four fundamental goals.

• Goal #1. Become a mission partner. IM is grounded in our national defense mission by
using joint mission planning and analysis processes as the basis for defining information
service and performance requirements.

• Goal #2. Provide services that satisfy customer information needs. This builds on Goal 1
requirements by using the customer/supplier model to meet mission service requirements.

• Goal #3. Reform IM processes to increase efficiency and mission contribution. This goal
captures the essence of the Cohen Act by emphasizing the management process improvements
needed to effectively deliver information and services to DoD mission customers.

• Goal #4. Ensure DoD’s vital information resources are secure and protected. This reflects
the pervasive impact of information assurance on DoD mission performance.

3.3.8.4 Requirements for Compliance with Reform Legislation for IT
Acquisition (Including NSS)

OSD Memorandum: Requirements for Compliance with Reform Legislation for Information
Technology (IT) Acquisitions (Including National Security Systems), 1 May 1997, states that the
Cohen Act applies to all DoD information system acquisitions, including those supporting weapon
systems and other National Security Systems (NSS). NSS are exempt from the Cohen Act (as
they were under the Nunn-Warner Amendment to the Brooks Act), with the exception that they
must now comply with specific management best practices (discussed next). In consolation with
the DoD CIO and CFO, the Cohen Act requires that OSD assess and maximize the value of
information resources and manage DoD information system acquisition risks.

www.c3i.osd.mil
www.c3i.osd.mil

3-27

Chapter 3: Statutory Framework GSAM Version 3.0

3.3.8.4.1 Cohen Act Applicability to National Security Systems (NSS)

“Recent guidance from OMB places added emphasis on managing investments, to include weapons
systems.” [OSD97]

The Cohen Act applies to all Defense software-intensive system domains. It applies to and
combines:

• Administrative systems. Automated information systems (AIS);
• Communications systems. Command, control (C2), communications (C3), computer (C4),

and intelligence (C4I) systems, and
• NSS support systems. Information systems that support National Security Systems (NSS).
• Excludes contractor systems. It does not include software-intensive goods or services acquired

by a federal contractor incidental to a federal contract. [CLINGER96]

NOTE - A list of current ACAT 1A Major Automated Information Systems (MAIS) programs
can be found on the Defense Technical Information Center (DTIC) website.

NSS acquisitions must be reviewed by the appropriate Milestone Decision Authority (MDA) to
ensure they comply with Cohen Act provisions except as determined not to be practicable on a
case by case basis. The DoD CIO [ASD(C3I)] and USD(A&T) are responsible for providing
guidance in making these determinations.

NOTE - The Defense Acquisition Board (DAB) is the Milestone Decision Authority
(MDA) for Major Defense Acquisition Program (MDAP) NSS and the DoD CIO is the
MDA for MAIS NSS.

For NSS subject to review, the DoD CIO will provide an assessment of Cohen Act compliance to
the MDA through the Defense Acquisition Board (DAB) and Major Automated Information
System Review Council (MAISARC) Integrated Product Team (IPT) process. Component MDAs
and ClOs are to follow similar practices for NSS information system programs subject to their
review and approval. Once it is determined that an acquisition program falls under the NSS
classification [including Black and Special Access Programs (SAP)], it is exempt from all but the
following Cohen Act provisions.

• Performance and results-based management. OSD will prescribe performance measures
and other controls for the NSS information system. The director of OMB will evaluate DoD’s
management practices and mission before approving significant investments in the NSS
information system, to the extent practicable.

• DoD CIO. The DoD CIO will provide advice and assistance to OSD to ensure the NSS
information system is acquired consistent with law and policy.

• Capital planning and investment control. To the extent practicable, the following applies:
− OSD is required to implement a process for assessing and managing NSS acquisition

risk; and
− OMB is required to track and report on major capital NSS information system investments

made by OSD and compare them with the information system performance of other
agencies.

www.dtic.mil/c3i/infotech/major_systems.doc
www.dtic.mil

3-28

Chapter 3: Statutory Framework GSAM Version 3.0

• Accountability. To the extent practicable, OSD is required to establish policies and procedures
to ensure the NSS information system is used effectively and to provide financial or program
performance data to OMB.

• Enforcement of accountability. OMB is to exercise controls that increase or reduce DoD’s
NSS information resources.

• Exemption for contractor systems. An NSS program is exempt from having its information
resource management or information system acquisition contracted out to the private sector.
[OSD97]

Figure 3-10 illustrates the reporting and oversight responsibilities for DoD information systems
under the Cohen Act.

C3I
DoD CIO

Chief Information Officer

DoD Information Technology Resources

National Security Systems Non-National
Security Systems

Black and
SAP NSS

Intelligence
C4I

Weapons
Cyrptological

Logistics, Financial,
Medical, Other IT

Infrastructure
(C2, C3, C4)

CIO
Oversight

DoD Oversight

Not Reported
to OMB

Reportable
(Identified to OMB)

Reportable &
Visible to OMB

OMB

Figure 3-10. DoD Information Resource Oversight and Reporting Responsibilities

3.3.8.5 Implementation of Subdivision E of the Clinger-Cohen Act

OSD Memorandum: Implementation of Subdivision E of the Clinger-Cohen Act of 1996 (Public
Law 104-106), 2 June 1997, states that three questions must be asked before DoD invests in
information technology.

1. What functions are we performing and are they consistent with our mission?
2. If we should be performing particular functions, could they be performed more effectively

and at less cost by the private sector?
3. If a function should be performed by DoD, the law requires that the function be examined

and redesigned or reengineered before applying new technology.

www.dtic.mil/c3i/itmroles.doc

3-29

Chapter 3: Statutory Framework GSAM Version 3.0

3.3.8.5.1 DoD Chief Information Officer

The DoD Chief Information Officer (CIO), the Assistant Secretary of Defense for Command,
Control, Communications and Intelligence (ASD(C3I)), will promote improvements to DoD
work processes and supportive information resources. The Service CIO’s will act as advisors to
and implement the policies and guidance issued by the DoD CIO. The DoD CIO is the primary
DoD representative to Federal and interagency bodies supporting Federal information technology
policies. DoD is a leader in the use of information technology and these capabilities are to be
shared with other Federal Agencies to the maximum extent practicable. [The assignment of duties
and delegation of authorities for the DoD CIO are attached to this memorandum.]

3.3.8.5.2 DoD Executive Board

DoD Executive Board, chaired by the DoD CIO, is the principal forum to discuss improvements
in DoD IM practices. The Council serves in an advisory and coordinating capacity to improve
the management and use of information technology by providing a forum for the exchange views
concerning information technology. [A copy of the approved DoD Executive Board charter is
also attached to this memorandum.] Figure 3-11 illustrates the DoD Executive Board organization
hierarchy. Table 3-1 lists DoD Executive Board Members with hyperlinks to their respective web
sites.

DoD CIO
Council Chair

ASD (C3I)

Executive Secretariat
POIM, ODASD (C3I)

Technical Advisor
Director, DISA

USD (A&T)

USD (C)

USD (P) Deputy DoD CIO

Director C4 Systems
JCS

Director, PA&E

CIO, Marine Corps

CIO, Air Force

CIO, Navy

CIO, Army

Figure 3-11. DoD Executive Board Organization [Source: ASD(C3I)]

www.c3i.osd.mil

3-30

Chapter 3: Statutory Framework GSAM Version 3.0

Table 3-1. DoD Executive Board Members [SOURCE: ASD(C3I)]

3.3.8.6 IT Investment Management Insight Policy for Acquisition

ASD(C3I) Memorandum: Information Technology (IT) Investment Management Insight Policy
for Acquisition, 25 July 1997, explains that DoD must embrace new ways of doing business and
understand the need to treat technology expenditures as investments. Polices, practices, and
procedures must be revised and cultural and organizational barriers overcome. IT investment
management must be fully integrated with the IT capital planning and investment control process.

This insight policy is part of an IT investment process which is evolving from centralized IT
oversight and to an environment that fosters greater teamwork, open dialog, and a sense of
common purpose. The following steps streamline IT acquisition policy and institutionalize IT
acquisition investment management.

• Step 1. IT acquisitions, including NSS, that exclusively support MDAP or MAIS. Insight
will be gained through the IPT process and MAISARC or DAB documentation. No separate
submissions are required. Requirements for compliance with reform legislation are stated in
OSD Memorandum: Requirements for Compliance with Reform Legislation for Information
Technology Acquisitions (Including National Security Systems), 1 May 1997, discussed above.

• Step 2. IT acquisitions that do not exclusively support MDAPs or MAISs. DoD Components
shall submit either:
− A copy of the Acquisition Plan (AP) prepared in accordance with DFARS Subpart 207.1,

if an AP is required; or
− An IT Acquisition Paper (ITAP). [NOTE - The format for an ITAP is included as an

attachment to this memorandum.]

ORGANIZATION CIO

Department of Defense Mr. Arthur L. Money
Joint Staff MG Stephen T. Rippe
Department of the Army LTG William H. Campbell
Department of the Navy Dr. Ann Miller
Marine Corps LGEN(S) Robert Shea
Department of the Air Force LtGen Gregory Martin
Defense Finance and Accounting Service Mr. C. Vance Kauzlarich
Defense Information Systems Agency Ms. Shirley L. Fields
Defense Logistics Agency Ms. Carla von Bernewitz
National Security Agency Mr. Ronald Kemper
Defense Intelligence Agency Mr. Dennis G. Clem
Defense Contract Audit Agency Mr. Michael L. Koza
Defense Security Assistance Agency Mr. Kent Wiggins
Inspector General Mr. Nicholas T. Lutsch
Defense Commissary Agency Ms. Rosita O. Parkes
National Imagery and Mapping Agency Mr. W. Douglas Smith
Advanced Research Projects Agency Mr. David Thompson
Ballistic Missile Defense Organization Mr. Robert Snyder
Defense Special Weapons Agency Dr. Stephen E. Turpin
On-site Inspection Agency LTCOL Lorraine Y. Bejjani
United States Special Operations Command COL Steven R. Sawdey, USA
OASD (Health Affairs) Mr. Jim Reardon
Washington Headquarters Service (WHS) Mr. Robert S. Drake
National Reconnaissance Office Ms. Janet Gale

www.dtic.mil/c3i/policy/itpol725.html

3-31

Chapter 3: Statutory Framework GSAM Version 3.0

• Step 3. DoD Components shall incorporate an IT investment baseline performance
agreement into their IT acquisition procedures. The ASD(C3I) Guide for Managing Information
Technology as an Investment and Measuring Performance, Version 1.0, 14 February 1997,
contains a sample investment baseline agreement which may be tailored or expanded to meet
specific program requirements for developing the agreement, its breach variance and its
performance measures.

These procedures apply to the OSD, Military Departments, Chairman of the Joint Chiefs of Staff,
Combatant Commands, DoD Inspector General, Defense Agencies, and DoD Components. They
are applicable to the following IT acquisitions, including NSS.

1. IT acquisitions in exclusive support of MDAPs or MAISs.
2. IT acquisitions not exclusively in support of MDAPs or MAISs, with the following estimated

IT cost.
− Army, Navy, and Air Force:

⋅ $120 million or greater total IT cost, or
⋅ $30 million or greater in a single year.

− Other DoD Components, competitive:
⋅ $30 million or greater total IT cost.

− Other DoD Components, other than full and open competition:
⋅ $3 million or greater total IT cost.

An IT Investment Management Insight Framework will document strategies and methods for
identifying, developing, and institutionalizing new capabilities and procedures throughout the
Department. As IT investment practices mature within the framework, they will migrate to the
5000 and/or 8000 series.

3.4 DoD 5000.1/DoD 5000.2-R and the Statutory
Framework

DoD has updated its acquisition policies to accomplish several objectives, including compliance
with the FASA, PRA, and the Cohen Act. These policy updates are known as DoD 5000.1, Defense
Acquisition Directive (March 23, 1996) and defense acquisition regulation, DoD 5000.2-R,
Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated
Information Systems (MAIS), (Revision 3, 15 March 1998).

The most important item in the current revision applies to software-intensive systems. With the
Cohen Act’s repeal of the Brooks Act, acquisition policy for MDAPs (for embedded weapon
systems) and MAIS has been combined into one guidance document. Historically, DoD treated
these two classes of programs separately in terms of policies and procedures. Several separate
AIS policy documents in the 7920 and 8120 directive and instruction series were cancelled.
While the revised DoDD 5000.1 specifies guiding principles for all DoD acquisition programs,
the new regulation 5000.2-R applies specifically to major programs. The intent of this change is
to decentralize acquisition practice and allow Component Acquisition Executives more autonomy
in managing the programs for which they are accountable.

www.acq.osd.mil/api/asm/50001.pdf
www.acq.osd.mil/api/asm/50002c3.pdf

3-32

Chapter 3: Statutory Framework GSAM Version 3.0

3.4.1 Milestone Decision Authority (MDA)

MDAPs (ACAT I) are subject to Milestone Decision Authority (MDA) review by the DAB under
the responsibility of the USD (A&T). The Program Manager (PM) is in charge of the program
and Integrated Product Teams (IPTs) are empowered to help the PM resolve issues before DAB
reviews, thus streamlining the review process. By combining all acquisition programs under the
5000-series, on joint ACAT I and ACT IA programs, requirements have been cut in half. As
illustrated on Figure 3-12, on joint programs only one of each of the following need be prepared:

• One quality assurance program;
• One program change control program;
• One integrated test program; and
• One set of documentation and reports to include:

− One joint program Operational Requirements Document (ORD),
− One Test and Evaluation Master Plan (TEMP),
− One Acquisition Program Baseline (APB),
− One Defense Acquisition Executive Summary (DAES),
− One Quarterly Report for ACAT IA programs, and
− One Selected Acquisition Report (SAR) for ACAT I programs.

3.4.1.1 Elimination of the MAISRC

OSD Memorandum: Elimination of the Major Automated Information System Review Council
(MAISRC), 28 July 1998, was signed by Deputy Secretary of Defense, John J. Hamre. It states
that since 15 March 1996, oversight of Major Automated Information System (MAIS) acquisition
programs (ACAT IA programs) has been largely conducted through the integrated product team
(IPT) process. With the success of acquisition reform and the IPT process, and the related emphasis
on teamwork, tailoring, and empowerment, it is rarely necessary to hold a formal meeting of the
MAISRC. As part of DoD streamlining initiatives, the MAISRC is disestablished. The MAISRC
Overarching IPT (OIPT) has been redesignated the Information Technology OIPT.

ASD(C3I), the DoD CIO, continues to be the MDA for ACAT IA programs. When issues regarding
ACAT IA programs cannot be resolved by the IPT process, the DoD CIO or his designee will
convene a special review to resolve issues.

3-33

Chapter 3: Statutory Framework GSAM Version 3.0

Figure 3-12. Review and Reporting Structure for MDAPs and MAIS under DoD 5000.2-R

3.4.2 Software-Intensive Systems

DoD 5000.1 recognizes that software is a critical element in DoD systems. It states that it is
critical that software developers have:

• A successful past performance record,
• Experience in the software domain or product line,
• A mature software development process, and
• Evidence of use and adequate training in software methodologies, tools, and environments.

3.4.2.1 Software Engineering

DoD 5000.2R requires that all software developments must be managed and engineered using
commercial best processes and practices to reduce cost, schedule, and performance risks. As
required by the Cohen Act, software-intensive systems must be designed and developed based
on systems engineering principles, which include:

• Architecture. Software system architectures are developed that support open system concepts;
exploit commercial off-the-shelf (COTS) computer products; and provide for incremental
improvements based on modular, reusable, extensible software.

• Reuse. Software reuse opportunities are identified and exploited (Government and industry)
before beginning a new software development.

Integrated
Product

Team (IPT)

Decision
Authority (MDA)

Information
Technology
Overarching

IPT

(ACAT IA)(ACAT I)

DoD Regulation
5000.2-R

“Mandatory Procedures
for MDAPs and MAIS”

March28,1998

DoD Directive
5000.1

“Defense
Acquisition”

March15,1996

Defense
Acquisition
Board (DAB)

ASD(C3I)ASD(A&T)

Defense
Acquisition
Executive
Summary

MAIS
(ACAT IA)

MDAP
(ACAT I)

Milestone

3-34

Chapter 3: Statutory Framework GSAM Version 3.0

• Programming languages. Programming languages are selected in the context of the systems
and software engineering factors that influence overall life-cycle costs, risks, and potential
for interoperability [see ASD(C3I) Memorandum, Use of the Ada Programming Language,
29 April 1997].

•· Standard data. DoD standard data is used [see DoDD 8320.1].
• Successful contractors. Contractors are selected with:

− Domain experience in developing comparable software systems;
− Successful past performance record; and
− Demonstrable software development capability and a mature process.

• Measurement. Contractors are selected with a mature measurement process for planning,
tracking assessing, and improving the software development process and software product(s).

• Risk management. Information system operational risks have been assessed [see DoDD S-
3600.1].

• Year 2000. All software is Year 2000 compliant.

3.4.2.1.1 Information Security

In compliance with PRA and Cohen Act provisions, AIS systems must be managed and engineered
using best known processes and practices to reduce security risks, including the risks of timely
accreditation. Information assurance requirements must be included in program and systems
design activities to ensure availability, integrity, authentication, confidentiality, and non-repudiation
of critical program technology and information. This includes providing for the restoration of
information systems by incorporating protection, detection, and reaction capabilities. Information
assurance requirements are to be established and maintained throughout the acquisition lifecycle
for all ACAT IA programs (and others as applicable). All AISs must meet security requirements
in accordance with DoDD 5200.28 and be accredited by the Designated Approving Authority
before processing classified or sensitive unclassified data. Exceptions to the DoDD 5200.28
requirement to use trusted computer products, listed on the Endorsed Products List, will be
granted only by the DoD CIO [ASD(C3I].

3.4.2.2 C4I Support Plan

DoD recognizes that 60% to 80% of a software-intensive system’s life cycle cost is incurred
during post-deployment software support (PDSS). To implement Total Ownership Cost (TOC)
initiatives, for C4I systems and all weapons systems/programs that interface with C4I systems,
DoD 5000.2R requires that a support plan be prepared. The C4I Support Plan includes:

• System description,
• Employment concept,
• Operational support requirements (including C4I, testing, and training),
• Interoperability and connectivity characteristics, and
• Management and scheduling.

An evaluation of compatibility, interoperability, integration, and intelligence support for targeting
requirements must also be performed for all major weapons, systems, and programs. C4ISR (C4I
surveillance and reconnaissance) requirements must be reviewed and updated at every milestone
decision and whenever the concept of operations or intelligence requirements change.

web7.whs.osd.mil/pdf/pdf.d83201p.pdf
web7.whs.osd.mil/pdf3/d520028(3-21-88)/d520028.pdf

3-35

Chapter 3: Statutory Framework GSAM Version 3.0

3.4.3 Results-Oriented Acquisition Management

Even before the FASA and Cohen Act, 10 U.S.C. 2435 required that DoD establish GPRA cost,
schedule, and performance goals in an Acquisition Program Baseline (APB) document for each
MDAP.

DoD’s implementation of FASA, Title V performance-based management provisions are reflected
in DoD 5000-2R by emphasizing the determination of producibility early in the development
cycle. The policy states that producibility is key to managing risk and that existing development
processes must be capitalized on when possible. It also states that production should not be
approved until the design has been stabilized, development processes have been proven, and
facilities, equipment, [and people] are in place. [HINTON98]

3.4.3.1 Linking Acquisition Programs to Strategic Goals

To comply with the GPRA, the Mission Need Statement (MNS) must be linked with the mission
described in the DoD Strategic Plan (the QDR). This emphasizes the interrelationships among
defining requirements, managing system development, and making funding decisions. The main
objective is to translate users’ needs into products with affordability as a key discriminator.

3.4.3.2 Nontraditional Acquisition

DoDD 5000.1 encompasses several guiding principles that reflect how a reinvented defense
acquisition system is responding to larger changes in the global threat environment. For example,
the new policy stresses the importance of nontraditional acquisition:

“Demonstrations based on mature technologies may lead to more rapid fielding. Where appropriate,
managers in the acquisition community shall make use of non-traditional acquisition techniques,
such as Advanced Concept Technology Demonstrations (ACTDs), rapid prototyping, evolutionary
and incremental acquisition, and flexible technology insertion.” [DoD 5000.2R Para 2.7]

Other nontraditional policy principles include modeling and simulation, innovative practices,
modular contracting for MAIS acquisitions, and Cost As an Independent Variable (CAIV). Moving
away from the historical report-based interaction model, DoD 5000.2-R explicitly relies on
Integrated Product Teams (IPTs) [discussed in Chapter 4, DoD Acquisition Environment] to
break down the barriers between different organizations and acquisition disciplines. IPTs enable
integrated solutions to management problems.

3.4.4 Acquisition System Reengineering

With the 5000-series DoD consolidated an acquisition policy system that had grown out of control,
by “deconstructing” and consolidating it into a minimal set of mandatory principles and procedures
to empower managers with the greatest possible discretion. Thus, the regulation states that it is
not be supplemented by any DoD Component documents. It directs DoD officials to keep to a
minimum service-specific directives, regulations, policy memoranda, or regulations to implement
the mandatory procedures. It also seeks to separate mandatory policies and procedures from

www.acq.osd.mil/api/asm/50002c3.pdf

3-36

Chapter 3: Statutory Framework GSAM Version 3.0

discretionary practices. The intent is to empower acquisition managers with the freedom to exercise
sound judgment when structuring and managing defense acquisition programs. For example,

“The Department encourages PMs to continually search for innovative practices that reduce
cycle time, reduce cost, and encourage teamwork.” [DoDD 5000.1, para 2.h.]

This revision has responded to the perception that the past 5000-series documents were unwieldy
and too complex. To make them user-friendly, the current documents are incorporated into the
Defense Acquisition Deskbook [discussed in Chapter 4, DoD Acquisition Environment], the
universal electronic and hard copy repository of all DoD mandatory and discretionary guidance.
[FERRARA96]

3-37

Chapter 3: Statutory Framework GSAM Version 3.0

3.5 References

[AUGUSTINE95] Augustine, Norm, “Martin Marietta’s CEO Speaks to Program Manager,” Program
Manager: Journal of the Defense Systems Management College, Fort Belvoir, Virginia, March-April
1995.

[BOWSHER96] Bowsher, Charles A., Executive Guide: Effectively Implementing the Government
Performance and Results Act, GAO/GGD-96-118, General Government Division, United States General
Accounting Office, Washington, D.C., June 1996.

[BRISLAWN97] Brislawn, Matthew E., and Bruce S. Potocki, “Application of Commercial Practices to
Military Programs; Opportunities for Cost Reduction,” Proceedings of the 1997 Acquisition Symposium,
Acquisition Reform: Sustaining the Momentum — Full Speed Ahead! Rockville, Maryland, 25-27 June
1997.

[BROSTEK97] Brostek, Michael, Paperwork Reduction: Government-wide Goals Unlikely To Be Met,
GAO/T-GGD-97-114, Testimony, General Government Division, United States General Accounting
Office, Washington, D.C., 4 June 1997.

[BURMAN98] Burman, Allan V., “Today’s Special: Acquisition Reform,” Government Executive, January
1998.

[CLINGER96] Clinger-Cohen Act, PL(104-106), Div. E, Sec. 5002(3)(A), (B), and (C), 1996.
[COHEN971] Cohen, SECDEF William S., Keynote Speech presented at the National Defense University

Joint Operations Symposium QDR Conference, Fort McNair, Washington, D.C., 23 June 1997.
[COHEN972] Cohen, SECDEF William S., Report of the Quadrennial Defense Review, U.S. Department

of Defense, The Pentagon, Washington, DC, May 1997.
[COOPER96] Cooper, David E., Clifton E. Spruill, Arnett Sanders, and John L. Carter Acquisition Reform:

Implementation of Title V of the Federal Acquisition Streamlining Act of 1994, GAO/NSAID-97-
22BR, Briefing Report, National Security and International Affairs Division, United States General
Accounting Office, Washington, DC, 31 October 1996.

[DRELICHARZ94] Drelicharz, Joseph A., “Highlights of the Federal Acquisition Streamlining Act of
1994,” Program Manager: Journal of the Defense Systems Management College, Fort Belvoir, Virginia,
March-April 1995.

[FERRARA96] Ferrara, Joe, “DoD’s 5000 Documents: Evolution and Change in Defense Acquisition
Policy,” Acquisition Review Quarterly, Journal of the Defense Acquisition University, Defense Systems
Management College Press, Fort Belvoir, Virginia, Fall 1996.

[FONTANA97] Fontana, James C., “Modular Contracting May Send the Wrong Signals,” Washington
Technology, 9 January 1997.

[GORE93] Gore, Vice President Al, Creating a Government That Works Better and Costs Less, Report of
the National Performance Review, Office of the Vice President, Washington, D.C., 7 September 1993.

[GUIDE95] Guide to FAR Changes Pursuant to FASA and Other Acquisition Reforms (Federal Acquisition
Circulars 90-26 Through 90-33), Prepared by the Federal Acquisition Institute (FAI), the Acquisition
Reform Communication Center (ARCC), and the Defense Acquisition University (DAU), 18 October
1995.

[HINCHMAN97] Hinchman, James F., Managing for Results: The Statutory Framework for Improving
Federal Management and Effectiveness, GAO/T-GGD-AIMD-97-144, Testimony Before the U.S. Senate,
U.S. General Accounting Office, Washington, D.C., 24 June 1997.

[HINTON98] Hinton, Jr., Henry L. Best Practices: Successful Application to Weapon Acquisitions Requires,
Changes in DOD’s Environment, GAO/NSIAD-98-56, General Accounting Office, Washington, D.C.,
24 March 1998.

www.gao.gov/special.pubs/gg96118.pdf
www.access.gpo.gov
www.govexec.com/procure/articles/0198mark.html
www.defenselink.mil/pubs/qdr/
www.access.gpo.gov
www.access.gpo.gov
www.wtonline.com/archive/1997_january_9/tech_business/infotechbody.html
www.npr.gov/library/nprreport/annrprt/redtape93/index.html
www.npr.gov
www.access.gpo.gov
www.access.gpo.gov

3-38

Chapter 3: Statutory Framework GSAM Version 3.0

[KAMINSKI94] Kaminski, Paul, as quoted by Andrea Garcia, “Dr. Kaminski Delivers Keynote Address:
Transforming the Way We Buy Goods and Services,” Program Manager: Journal of the Defense Systems
Management College, Fort Belvoir, Virginia, January-February 1995.

[OSBORNE92] Osborne, David, and Ted Gaebler, Reinventing Government, Addison-Wesley Publishing
Company, Inc., New York, 1992.

[OSD97] OSD Memorandum: Requirements for Compliance with Reform Legislation for Information
Technology (IT) Acquisitions (Including National Security Systems), Office of the Secretary of Defense
(OSD), The Pentagon, Washington, D.C., 1 May 1997.

[QDR97] Report of the Quadrennial Defense Review, U.S. Department of Defense, The Pentagon,
Washington, DC, May 1997.

[STEVENS98] L. Nye, Regulatory Management: Implementation of Selected OMB Responsibilities Under
the Paperwork Reduction Act, GAO/GGD-98-120, Director, General Government Division, Federal
Management and Workforce Issues, United States General Accounting Office, Washington, D.C, 9 July
1998

www.c3i.osd.mil
www.dtic.mil/pubs/qdr/
www.access.gpo.gov

Part 1: Acquistion GSAM Version 3.0

Chapter 4

DoD Software
Acquisition
Environment

4 - 2

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

Contents
4.1 DoD Acquisition Revolution.. 4-4

4.1.1 Acquisition Reform Vision... 4-5
4.1.2 Acquisition Reform Mission .. 4-5
4.1.3 Acquisition Reform Goals ... 4-6

4.1.3.1 Reduced Cycle Times .. 4-6
4.1.3.2 Cost Savings ... 4-7
4.1.3.3 Program Stability... 4-8
4.1.3.4 Technology Insertion ... 4-9
4.1.3.5 Advanced Concept Technology Demonstrations (ACTDs) 4-9
4.1.3.6 DoD Acquisition Reinvention Impact Center............................... 4-9
4.1.3.7 Achieving NPR Acquisition Reinvention Impact Center (RIC)
 Goals by Year 2000... 4-9

4.2 Acquisition Reform Best Practices Initiatives ..4-11
4.2.1 Commercial Best Practices .. 4-12
4.2.2 Contracting Best Practices ... 4-12
4.2.3 Management Best Practices ... 4-13
4.2.4 Performance-Based Business Environment 4-13
4.2.5 Defense Reform Initiative .. 4-14
4.2.6 Software Acquisition Best Practices Initiative 4-15
4.2.7 Software Program Managers Network (SPMN) 4-16
4.2.8 Information Technology Management Reform Initiatives 4-16
4.2.9 Single Process Initiative .. 4-17

4.2.9.1 USD Memorandum: Single Process Initiative 4-18
4.2.9.2 Adoption of Common Practices at Defense Contractor
 Facilities .. 4-19
4.2.9.3 Prime/Subcontractor Relationship in the SPI 4-20
4.2.9.4 Single Process Initiative and New Contracts 4-20
4.2.9.5 Review Approval of Single Process Initiative (SPI) 4-20
4.2.9.6 Subcontractor Single Process Initiative (SPI) 4-20
4.2.9.7 The Single Process Initiative — A Long Term Perspective 4-21

4.3 DoDD 5000.1/DoD 5000.2-R ... 4-21
4.3.1 Milestone Decision Authority (MDA) .. 4-22
4.3.2 Elimination of the MAISRC .. 4-23
4.3.3 Software-Intensive Systems ... 4-23
4.3.4 Software Engineering .. 4-23
4.3.5 Information Security.. 4-24

4 - 3

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

4.3.6 C4I Support Plan .. 4-24
4.3.7 Results-Oriented Acquisition Management 4-25
4.3.8 Linking Acquisition Programs to Strategic Goals 4-25
4.3.9 Nontraditional Acquisition... 4-25
4.3.10 Acquisition System Reengineering ... 4-25

4.4 Acquisition Reform: Challenge and Opportunity 4-26
4.4.1 Challenges .. 4-26
4.4.2 Opportunities .. 4-27

4.4.2.1 Anderson and Rebentisch Study ... 4-27
4.4.2.2 Coopers & Lybrand Study .. 4-29

4.4.2.3 Defense Acquisition Pilot Programs .. 4-31
4.4.2.4 Acquisition Reforms Save Money and Improves Service 4-32

4.5 References .. 4-33

4 - 4

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

4.1 DoD Acquisition Revolution

“Radical ideas, nontraditional approaches, and the sparks that fly as they beat against the status
quo and are exposed to light and to each other are the stuff of progress.” — VADM Robert F.
Dunn (USN Retired) [DUNN98]

In A Mandate for Change, Secretary of Defense William J. Perry described the need for greater
efficiency in Defense acquisition.

“DoD has been able to develop and acquire the best weapons and support systems in the world.
DoD and contractor personnel accomplished this feat not because of the [acquisition] system, but
in spite of it. And they did so at a price…the nation can no longer afford to pay.” [PERRY94]

To survive in the global marketplace, private sector organizations must constantly modernize
and upgrade their management practices by increasing productivity and reducing costs. While
maintaining military superiority, DoD must streamline operations to increase efficiency and lower
costs. The bottom line is we have to improve the way we equip the warfighter — in the trenches,
in the cockpit, and on the bridge — with the software systems they need, that work, are affordable,
and delivered on time. [BROWN95]

The Federal reinvention crusade has been centered on the results-oriented, performance-based
paradigm employed by leading organizations worldwide. This groundswell movement is
manifested in DoD’s self-proclaimed “Acquisition Revolution,” which promises to bring profound
changes to an outdated, burdensome Defense procurement system. The Acquisition Revolution
foundations for success are illustrated in Figure 4-1.

National Performance Review / Blair House Papers

DoD Acquisition Enterprise Metrics

DoD Acquisition
? Goals
? Measures

Reinvention Center
? Delivering Great Service
? Fostering Partnership
? Internal Reinvention

Management
Reform

Memoranda

RIC
Goals MRM

Defense
Reform Initiatives

Department
of

Defense

? Government Performance Results Act
? Federal Acquisition Reform Act
? Federal Acquisition Streamlining Act

Quarterly RIC Reports
to USD (A&T)

and
Semi-Annual Reports

to Vice President

Figure 4-1. Acquisition Revolution Foundations for Success

According to Undersecretary of Defense Jacques S. Gansler, (acquisition and technology),
“Acquisition reform is not a slogan. It is a fundamental transformation in our organization,
structure, policies and processes — one which our acquisition work force welcomes and which

www.acq.osd.mil/ar/doc/mand24.pdf

4 - 5

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

we all will work hard to achieve.” Gansler explains that DoD acquisition reform has the full
authority of Congress and the administration. It is a direct response to the major legislative
initiatives discussed in Chapter 3 , Statutory Framework Governing Software Acquisition.

4.1.1 Acquisition Reform Vision

“DoD will be recognized as the World’s smartest, most efficient, and most responsive buyer of
best-value goods and services that meet our warfighters’ needs from a globally competitive national
industrial base.” — DoD Acquisition Reform Vision

Section 912 of the National Defense Authorization Act for FY98 directed the Secretary of Defense
to submit a plan to Congress to streamline the Defense acquisition organization, workforce, and
infrastructure. In his response, called the “ Section 912 Report,” Cohen stated his vision for the
acquisition workforce.

“My vision of the acquisition workforce 10 years from now is one that is smaller and in fewer
organizations; is focused on managing suppliers, rather than supplies; and is focused on the total
cost of ownership to provide and support high quality goods and services required by our warfighting
men and women. It will be a workforce that is engaged primarily in working with the Services to:

• Determine affordability of requirements;
• Helping to establish and execute budgets;
• Working to reduce cycle times;
• Establishing contractual vehicles that are easily accessed by our customers within DoD;
• Overseeing contracts to make sure the work gets done on time, within tough performance

parameters, and, of course, within budget; and,
• All the while, ensuring the public’s trust and confidence.” [COHEN981]

4.1.2 Acquisition Reform Mission

Gansler explains our Acquisition Reform Mission as follows:

“We must capitalize on the lessons we have learned from successful commercial restructuring to
adopt modern business practices, consolidate and streamline, embrace competitive market
strategies, and eliminate or reduce excess support structures.” [GANSLER982]

The DoD acquisition reform mission statement is as follows:

 “Adapting the best practices of world class customers and suppliers;
• Continuously improving the acquisition process to ensure it remains flexible, agile, and, to the
maximum extent possible, based on best practices;
• Providing incentives for acquisition personnel to innovate and manage risk rather than avoid
it; and
• Taking maximum advantage of emerging technologies that enable business process reengineering
and enterprise integration.” — DoD’s Acquisition Reform Mission

www.acq.osd.mil/ar/mission.htm
www.acq.osd.mil/ar/912crpt.htm
www.acq.osd.mil/ar/mission.htm

4 - 6

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

4.1.3 Acquisition Reform Goals

According to Gansler, acquisition reform “goals are clear: to do the job better, faster and cheaper.
We are transforming the way we do business — cutting costs and infrastructure — to free up
funds for modernization.” [GANSLER981] Thus, the goal of acquisition reform is to reengineer
the acquisition system to be more effective, efficient, and timely in acquiring the best value
goods and services to support DoD’s mission to protect National Security. According to the
Federal Acquisition Streamlining Act (FASA), major DoD acquisition reform goals are:

• Reduced cycle times,
• Cost savings,
• Program stability, and
• Technology insertion.

4.1.3.1 Reduced Cycle Times

The 21st Century threat demands our acquisition system field software-intensive systems and
support products within reduced cycle time. To be competitive, world class U.S. companies have
consistently demonstrated that time is the critical variable to success. The most successful
companies develop and deploy in shorter cycle times, meet faster support response time
requirements, meet unanticipated surge requirements, and perform at much higher levels than
their competitors. Faster, better performance also reduces costs.

For weapon system acquisitions, DoD averages 13 to 15 years from conception to initial
production. With post-Cold War budget cuts, these cycle times are often even longer. This costs
more and prevents the expeditious deployment of needed software-intensive systems to support
the warfighter. As illustrated in Figure 4-2, short-term annual budget cuts create program instability
and often result in long term cost increases. Accelerating the time to equip and sustain the
warfighter improves force readiness dramatically — and saves money.

Short-Term
Reduction

Program
Instability

Long-Term
Cost

Increases

Figure 4-2. Short-Term Budget Cuts Increase Cost and Length of Program

“It’s not the big companies that eat the small: It’s the fast that eat the slow.” — Kim Sheridan
[SHERIDAN96]

To shorten cycle times unneeded tasks must be identified and removed. Possible examples of
unneeded tasks are audits, handoffs, and signature approvals. Merely performing the same process
steps faster —automating existing processes, increasing employee overtime or extending shifts

4 - 7

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

— does not reduce cost or improve quality. These actions drive up over-head, add cost, and do
little to improve software quality. Only those process improvement methodologies that positively
impact time, cost, and quality should be used.

Critical path items must be evaluated and tradeoffs made that best meet user needs. If a solution
achieves quality at a higher cost, it may not be a competitive solution (it may require additional
funding, more inspections, longer cycle time, etc.). Alternatively, if one arbitrarily reduces cycle
time (i.e., stops inspections without improving the process) then poor quality results. Both
situations increase cost and/or diminish customer confidence. The proper process improvement
methodology favorably effects speed, cost, and quality and addresses all aspects of software
development: These include:

• Software development team skills;
• Standardization;
• Engineering process;
• Simplicity of design;
• Reusability;
• Reuse of existing designs, architectures, engineering processes, test sets, documentation,

and plans;
• User involvement and teaming at the earliest point of system development; and
• Combining tasks and removal of handoffs.

This methodology was applied to the GBU-23 Bunker Buster program during Desert Storm. The
Bunker Buster was conceived, developed, tested, and deployed in 28 days and was said to have
played a significant role in ending the war. Time is a precious commodity and has value. Applying
the correct process improvement methodology to cycle time, cost, and quality is key to user
satisfaction and success. The bottom line is — blinding speed equals competitive advantage.
[CLUBB96]

4.1.3.2 Cost Savings

The Report of the Quadrennial Defense Review states that, with no additional congressional
funding, DoD must find other sources for monies to pay for needed force modernization. According
to the Revolution in Business Affairs (RBA), acquisition reform cost savings are a major source
of modernization revenues. These savings are to accrue by adopting the business best practices
employed by leading private sector organizations. These include “reengineering” or “reinventing”
acquisition processes (e.g., streamlining, reorganizing, downsizing, consolidating, automating,
and using commercial best practices).

“Efficient business practices and reduced overhead will not only free up resources, they will also
contribute directly to the transformation of the Department’s support structure.” — Deputy Secretary
of Defense John J. Hamre [HAMRE98]

www.defenselink.mil/pubs/qdr/

4 - 8

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

4.1.3.3 Program Stability

In Chapter 2, Software Acquisition Success: Exception or Rule?, we learned that the main causes
of software-intensive system acquisition program instability include:

• Creeping requirements,
• Software size/complexity growth,
• Inadequate estimates, and
• Technology-driven solutions.

These factors result in technical risk and lead to funding shortfalls caused by costly rework,
blown schedules, and busted budgets. According to Daniel P. Czelusniak [director, Acquisition
Program Integration, Office of the Deputy Undersecretary of Defense] technical risk and
uncertainty in DoD modernization programs results in 2% to 4% cost growth across all Major
Defense Acquisition Program (MDAP). Czelusniak warns that if we do not achieve the program
stability goal, the cost and savings benefits gained through acquisition reform will be negated.

Major Defense Acquisition Program (MDAP) instability impacts acquisition funding throughout
the Program Objective Memorandum (POM) cycle. During the execution year, poor management
and workarounds make problems fester. During the budget year, risks may be recognized but
funds are not available to fix problems and modernization efforts suffer. In the out years, optimistic
estimates or ill-defined/ignored risks result in inadequate program funding. As illustrated in
Figure 4-3, stabilizing mechanisms are pilot programs to weed out acquisition risks and establishing
management reserves of funds for each stage of the budget cycle. Program stability translates
into reduced cost and shorter cycle times. [CZELUSNIAK97]

Figure 4-3. MDAP Program Stabilizing Mechanisms [CZELUSNIAK97]

4 - 9

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

4.1.3.4 Technology Insertion

According to the FASA (with 1994 as the baseline), acquisition reform initiatives must achieve
the goal of a 50% reduction in the average length of time for technology insertion. This will be
achieved by:

• Using commercially available technologies;
• Encouraging tradeoffs between cost, schedule, and performance at various development stages;

and
• Expanding the use of Advanced Concept Technology Demonstrations (ACTDs).

4.1.3.5 Advanced Concept Technology Demonstrations (ACTDs)

According to John M. Bachkosky, Deputy Under Secretary of Defense, the Advanced Concept
Technology Demonstration (ACTD) program was initiated in 1994 to permit early, inexpensive
evaluation of mature, yet advanced, software-intensive technologies. Performed before formal
acquisition, military users assess military utility, develop tactics, and concept of operations to
realize the potential of new and emerging technologies — from both Defense and commercial
sources. ACTDs are not acquisition programs, nor are they a means to circumvent the formal
acquisition process. Rather, they provide a way to prepare for acquisitions based on user
assessments of the military utility and value of the new capability.

Based on user acceptance, ACTDs allow for informed acquisition decisions and reduce the time
to transition software-intensive technologies to the warfighter. An important precursor to the
formal (DoD 5000) acquisition process, ACTDs focus on critical military needs, early, continuous
warfighter involvement, and inexpensive military utility evaluations. With unprecedented global
proliferation of technology, the life of advanced software-intensive systems is measured in months
rather than years. ACTD programs work closely with the warfighter to ensure meaningful, credible
evaluations, and with the acquisition community to ensure smooth, rapid transitions.
[BACHKOSKY97]

4.1.3.6 DoD Acquisition Reinvention Impact Center

A key National Performance Review initiative was the creation of agency “reinvention labs.”
According to Vice President Al Gore, the objectives of the lab effort are

“...to pick a few places where we can immediately unshackle our workers so they can reengineer
their work processes to fully accomplish their missions — places where we can fully delegate
authority and responsibility, replace regulations with incentives, and measure our success by
customer satisfaction.” [GORE93]

4.1.3.7 Achieving NPR Acquisition Reinvention Impact Center (RIC) Goals by
Year 2000

SECDEF Memorandum: Achieving National Performance Review Defense Acquisition
Reinvention Impact Center Goals by Year 2000, 22 November 1997, outlined 12 acquisition
goals the DoD Acquisition Reinvention Impact Center (RIC) will achieve under the leadership

www.npr.gov/
www.acq.osd.mil/ar/doc/ric.pdf
www.acq.osd.mil/nprric/ric.htm

4 - 1 0

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

of the Under Secretary of Defense (Acquisition and Technology). According to SECDEF Cohen,
RIC goals address three main areas contained in the Blair House Papers and serve as input to
DoD’s performance plan required under the Government Performance and Results Act (GPRA),
listed below.

NOTE: The Blair House Papers contain instructions and rules for government reinvention.
Vice President Gore presented these “reinvention marching orders” to the President’s
Cabinet at Blair House on 11 January 1997.

• Delivering Great Service
? Reduce Cycle Time
? Responsive Logistics
? Purchase Cards
? Continuing Education/Training

• Foster Partnership
? Increase Procurement
? Surplus Property and Housing Privatization
? Decrease Paper Transactions
? Environmental

• Internal Reinvention
? Streamline Workforce
? Life Cycle Costs Accounting
? Reduce Inventory
? Minimize Cost Growth

These goals are consistent with DoD’s vision, strategy, and plan outlined in the Report of the
Quadrennial Defense Review. The goals impacting the acquisition of major software-intensive
systems include the following:

• GOAL #1.Deliver new major defense systems to the users in 25% less time. The key measure
for this goal is the average elapsed time from program start to initial operational capability
(IOC) (measured in months) for all MDAPs for a given calendar year.

• GOAL #5.With no top-line budget change, increase annual defense procurement spending
to at least $54 billion, with a goal of $60 billion in 2001. Since 1988, DoD’s emphasis has
been on operations and support accounts at the expense of weapons modernization accounts.
Weapons have aged to the point where replacement is necessary. Current procurement accounts
fall short of assuring proper modernization for future combat forces. This goal recognizes the
constrained budget environment by raising the amount available for procurement without
affecting the top-line budget. The key metrics for this goal are the procurement account and
DoD total obligation authority (TOA).

• GOAL #7.Decrease paper transactions by 50% through electronic commerce (EC) and
electronic data interchange (EDI). This goal reflects the commitment to employ EC to reduce
cycle time, improve data accuracy and availability, reduce costs, and present a single “ face”
to industry. The primary metric for this goal is the number of paper transactions as a percent
of total transactions in contracting, data deliverables, government acceptance (DD 250)
disbursement, and payment areas.

www.whitehouse.gov/WH/NEW/html/book.pdf
www.dtic.mil/pubs/qdr/

4 - 1 1

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

• GOAL #9. Eliminate layers of management through streamlined processes while reducing
the DoD acquisition workforce by 15%. Management restructuring and acquisition reform
initiatives have streamlined management tasks, thus enabling the reduction of manpower at
the staff levels and in acquisition offices. Successful implementation of Integrated Product
Teams (IPTs) has improved communications and reduced the need for oversight program
reviews and program activity evaluations. The key metric for this goal includes the number
of personnel in the acquisition workforce and in management.

• GOAL #10. Establish a cost accounting system that provides visibility into weapon system
life cycle costs through activity-based costing and management. The system must deliver
timely, integrated data for management purposes to: (1) permit understanding of total weapon
costs; (2) provide a basis for estimating costs of future systems; and (3) provide input to other
life cycle cost management tools. The lack of a robust and/or widespread cost accounting
system is the single largest impediment to controlling and managing life cycle costs (LCC).
The primary purpose of this goal is to improve the visibility into Total Cost of Ownership
(TCO).

• GOAL #12. Minimize cost growth in Major Defense Acquisition Programs (MDAPs) to no
greater than 1% annually. Keeping cost growth down in MDAP programs frees up more
resources for force modernization. The metric for this goal is to track the rate of cost change
in MDAP programs.

4.2 Acquisition Reform Best Practices Initiatives

Since the National Performance Review, the Defense acquisition system has been turned upside
down, inside out, reinvented, reengineered, realigned, reorganized, and reinvigorated. Thus, the
list of acquisition and management reform initiatives is formidable. While the reforms are intended
to simplify the procedures for buying commercial services and products, the new software
acquisition environment requires better business planning and knowledge of how to implement
results-oriented management.

DoD is reengineering its acquisition processes to provide the warfighter with best-value goods
and services. For example, the acquisition workforce has been cut by over 42% from its 1989
peak, with planned future reductions. To accelerate attainment of the acquisition reform vision,
SECDEF Cohen explains that there are significant new reform initiatives in the following five
categories:

1. Research, development, and test restructuring;
2. Sustainment restructuring;
3. Increased acquisition workforce education, and training;
4. Integrated, paper-less operations; and
5. Future focus areas (i.e., a price-based acquisition and full integration of test and evaluation

activities into the acquisition process). [COHEN98 2]

www.npr.gov/

4 - 1 2

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

Current reform initiatives affecting the acquisition of major software-intensive systems include:

• Commercial Best Practices
• Contracting Best Practices
• Management Best Practices
• Performance Based Business Environment
• Defense Reform Initiative
• Software Acquisition Best Practices Initiative
• Software Program Managers Network
• Information Technology Management Reform Initiatives
• Single Process Initiative

4.2.1 Commercial Best Practices

“Over the past decade, the American commercial sector has reorganized, restructured, and adopted
revolutionary new business and management practices in order to ensure its competitive edge in
the rapidly changing global marketplace. It has worked. Now the Department must adopt and
adapt the lessons of the private sector if our armed forces are to maintain their competitive edge
in the rapidly changing global security arena.” — SECDEF William S. Cohen [COHEN97]

The DoD Acquisition Revolution is founded on the adaptation of standard commercial, industrial
practices. Commercial practices enable suppliers to conduct business efficiently with the
Government in a manner similar to that used with their private-sector customers. This includes a
broad range of potential activities that can adapt to commercial practice. These include regulatory
and statutory streamlining, to eliminate unique Government requirements and practices such as
government-unique contracting policies and practices, government-unique specifications and
standards, and reliance on cost analysis rather than price analysis. Standard commercial, industrial
practices include, but are not limited to:

• Contracting policies and practices;
• Performance and commercial specifications and standards;
• Budget policies;
• Establishing fair and reasonable prices without cost data;
• Maintenance of long-term relationships with quality suppliers; and
• Acquisition of commercial and non-developmental items (including components).

[HINTON98]

4.2.2 Contracting Best Practices

“Competition is the driving force in the American economy. It forces organizations to improve
quality, reduce costs and focus on customers’ needs. Continuously spurred by these forces, American
firms are now global leaders in innovation, cost performance and technological development.
Competition offers the same benefits to DoD and plays a vital role in our reform effort.” —
Deputy Secretary John Hamre [HAMRE98]

4 - 1 3

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

DoDD 5000.2-R [discussed below] states that program managers must avoid imposing
government-unique requirements on contractors that significantly increase industry compliance
costs. The use of best practices is to be addressed at each acquisition milestone review. Examples
of contracting best practices include:

• Commercial specifications and standards
• Commercial-of-the-shelf (COTS) and non-developmental items (NDI)
• Best value evaluation and award criteria
• Open systems
• Past performance
• Performance-based service contracting
• Performance-based specifications
• Software capability evaluations (SCEs)
• Paperless contracting

4.2.3 Management Best Practices

Management best practices employed by world-class U.S. companies are being used to attain the
acquisition reform goals of program stability, reduced cycle times, cost savings, and technology
insertion. Examples of management best practices designed to accomplish these goals include:

• Cost as An Independent Variable (CAIV).
• Integrated product design and development (IPDD)
• Integrated product teams (IPTs).
• Simulation Based Acquisition (SBA)
• Total Cost of Ownership
• Earned Value Management System (EMVS)

4.2.4 Performance-Based Business Environment

“There comes a moment in time when a door opens and lets the future in.” — Graham Green
[GREEN98]

According to Lt. Col. Dennis Drayer (USAF), the Performance-Based Business Environment
(PBBE) is a quality, business-like environment that simplifies and takes advantage of the basic
acquisition and sustainment tools used to enhance the products we provide to the warfighter. The
PBBE complies with the performance-based paradigm embraced by the Congress and mandated
by the acquisition and management reform legislation [discussed in Chapter 3, Statutory
Framework Governing Software Acquisition]. Software-intensive program managers must develop
reformed program strategies, establish metrics, and report progress toward meeting mission goals.
The following are guiding tenets of PBBE:

4 - 1 4

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

• Dual-use products and processes
• World-class processes
• Commercial state-of-the-art technology
• Integrate commercial and military development
• Better, faster, cheaper, smoother
• Integrate commercial efficiencies

DoD acquisition teams establish performance-based environments, primarily through contractual
arrangements with excellent suppliers. The Government, as an informed products and services
buyer, defines what it needs in performance terms (i.e., what the product is expected to do) along
with ways to verify that performance. Likewise, essential technical and management processes
(specified in terms of expected results rather than “ how to” process descriptions) also promote
the performance-based environment. With product specifications and key process expectations
defined in terms of desired performance, industry can use innovative and efficient ways to produce
desired products. This is achieved through:

• Contractor-developed or -controlled key management processes;
• Longer contractor involvement in system sustainment; and
• Less government oversight.

Such an environment encourages prime contractors to promote good systems and software
engineering and similar business relationships throughout the supplier base. Acquisition teams
can expect resulting efficiencies to flow back up through lower prices, shorter cycle times, and
improved product quality. The objectives of the PBBE are to:

• Convey product definition and key process expectations to industry in performance terms;
• Promote life-cycle systems and software engineering and management practices, including

integrated product and process development (IPPD) and support;
• Increase the emphasis on past performance;
• Motivate process efficiency and effectiveness up and down the supplier base;
• Simplify acquisition and support methods; and
• Encourage life-cycle risk management versus risk avoidance. [DRAYER98]

4.2.5 Defense Reform Initiative

The Defense Reform Initiative (DRI) was a follow–on to the Quadrennial Defense Review (QDR)
and reflects the results of the QDR process. It reflects the insights of successful business leaders
who restructured and downsized their corporations in a rapidly changing marketplace. Throughout
the process, the Defense Reform Task Force adopted the motto of one leading corporation:
“Strength with Speed.” They learned that winning in the new era depends as much on the ability
to respond quickly to new threats and opportunities as on the ability to overpower competitors
head-on. The collective experience shared by leading corporate executives interviewed by the
team was distilled in a common set of reform principles.

www.defenselink.mil/pubs/dodreform/fullreport.pdf

4 - 1 5

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

• Focus the enterprise on a unifying vision,
• Commit the leadership team to change,
• Focus on core competencies,
• Streamline organizations for agility,
• Invest in people,
• Exploit information technology, and
• Break down barriers between organizations.

These principles helped shape the Defense Reform Initiative, which mandates change in four
major areas.

1. Reengineer. Adopt modern business practices to achieve world-class standards of performance.
2. Consolidate. Streamline organizations to remove redundancy and maximize synergy.
3. Compete. Apply market mechanisms to improve quality, reduce costs, and respond to customer

needs.
4. Eliminate. Reduce excess support structures to free resources and focus on core competencies.

Vice President Al Gore praised the Defense Reform Initiative at a Pentagon meeting, He explained
that,

“Big, all-powerful, all-knowing corporate headquarters operations are a thing of the past. Today’s
world needs fast-moving, fast-thinking, fully empowered front-line workers and front-line fighters.
Information technology is changing everything from the way we buy equipment to the way we
fight. It is the key to America’s future strength as a Defense leader, just as it is the key to America’s
future as a business leader. Government should emulate the best in business, learn from them, and
adopt their best business practices.” [GORE98]

4.2.6 Software Acquisition Best Practices Initiative

Under Secretary of Defense (USD) Memorandum: Software Acquisition Best Practices Initiative
was signed on 8 July 1994. Its objective is to:

“Provide an effective framework for managing the acquisition of large-scale software development
and maintenance programs that are an essential part of our increasingly complex weapon systems.”
— Jennifer Jones [JONES94]

There are many effective practices for managing software in industry and Government. However,
their use and understanding are not widespread within DoD software-intensive acquisition
programs. These best practices directly address the underlying cost and schedule drivers that
cause software to be delivered over budget, late, and with diminished performance capability.
The goals of this initiative include:

www.dtic.mil/c3i/softini.html

4 - 1 6

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

• Focusing the DoD acquisition community on effective, high-leverage software acquisition
management practices;

• Enabling program managers to focus their software management efforts on producing quality
software;

• Enabling program managers to exercise flexibility in implementing best practices within
disparate corporate and program cultures; and

• Providing program managers and staff with the training and tools necessary to effectively use
and achieve the benefits of these practices. [JONES94]

The Software Best Practices Initiative represents the collective efforts of nearly 200 software
development and maintenance expert practitioners, industry leaders, software visionaries, and
methodologists from commercial and government worlds.

4.2.7 Software Program Managers Network (SPMN)

The Software Program Managers Network (SPMN) is a technology transfer organization funded
by Congress to provide direct support to DoD software-intensive programs. It involves project
offices from all services and OSD agencies and is a fundamental mechanism for improving the
acquisition of large-scale software systems. The SPMN identifies best practices for major software-
intensive system development and sustainment programs, then transfers those best practices and
lessons learned to individual programs throughout the Department. Best practices (either
management or technical) are those that consistently demonstrate significantly high bottom-line
improvements [return on investment (ROI)] in one or more of the following.

• Productivity,
• Development and/or sustainment cost,
• Schedule,
• Quality,
• User satisfaction, and
• Cost and schedule predictability.

ATTENTION! Is your program experiencing any of the problems listed in Chapter 2,
Software Acquisition Success: Exception or Rule? If yes, contact the Software Program
Managers Network! A Focus Team of software experts will discretely come to your
program and help get it back on track. Free of charge!

4.2.8 Information Technology Management Reform Initiatives

The Clinger-Cohen Act mandates that DoD improve day-to-day mission processes and properly
uses information technology to support those improvements. This legislation brings DoD
acquisitions together by providing a closer link between the acquisition of weapon systems,
Command, Control, Computers, Communications, Intelligence, Surveillance, and Reconnaissance
(C4ISR) systems, and DoD information activities.

www.spmn.com/

4 - 1 7

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

Software-intensive technologies must be fielded in an orderly, fast, and efficient way. DoD must
use streamlined acquisition processes, commercial off-the-shelf products and services, and
outsourcing, as appropriate, to take advantage of leading industry capabilities. The information
system investment portfolio concept emphasizes the need to do a better job of prioritizing
information system capital investments and being accountable for results.

Keeping the workforce (military and civilian) trained in new software-intensive technologies
and improved processes is critical to achieving acquisition reform savings. In addition, this is all
in vain if our information is not protected. The Department must implement management best
practices that speed up development and acquisition programs, lower costs, and provide the best
possible support to the warfighter.

4.2.9 Single Process Initiative

The 1994 SECDEF William S. Perry plan, Mandate for Change, explained that the pace of
commercial technology advancement in many sectors far exceeds Government sponsored
technology efforts. Commercial technology advancements are outpacing DoD-sponsored efforts
in key technology sectors critical to military superiority (e.g., software, hardware, integrated
circuits, communications, and advanced materials). DoD-unique laws and regulations are imposed
on contractors, which place a premium on doing business with the Department. These non-
value-added requirements include:

• Government cost accounting standards [e.g., material management systems, price and cost
analyses procedures, Cost/Schedule Control System Criteria (C/SCSC)];

• The requirement to provide product cost data;
• Record keeping and reporting requirements;
• Audit and oversight requirements;
• Access to competitively sensitive financial data;
• Socioeconomic and mandatory source requirements;
• Requirements for rights in technical data;
• Security requirements; and
• DoD-unique product and process specifications and standards.

www.acq.osd.mil/ar/doc/mand24.pdf

4 - 1 8

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

Figure 4-4. Defense-Unique Requirements Often Add 30% or More to the
Price of Open Market Items

4.2.9.1 USD Memorandum: Single Process Initiative

USD Memorandum: Single Process Initiative, 8 December 1995, provides guidance for making
block changes to existing contracts to unify the management and manufacturing requirements of
contracts on a facility-wide basis. Current contractors are encouraged to prepare and submit
concept papers describing practices that permit uniform, efficient facility-wide management and
manufacturing systems and a method for moving to such systems. Contractor recommendations
should be accompanied by a cost-benefit analysis adequate to determine the rough order of
magnitude of the costs and benefits to the contractor of the proposed system changes (including
any impact on the cost of performance of existing contracts).

The Commander, Defense Contract Management Command (DCMC), is the focal point for
implementing this initiative and the contract block change process, illustrated in Figure
4-5. DCMC approves all requests for certified cost or pricing data in contractor SPI
proposals unless such data are required by law. The block change process is built on
existing structures within the components and OSD and is designed to create a sense of
urgency in the approval process for streamlining the use of commercial specifications,
standards or other processes on existing processes.

Ajax, Inc.

Defense
Production Facility

Ajax, Inc.

Commercial
Production Facility

• 8 - 10 Years to Field
• Competitive Price +
 30%

• 8 - 10 Years to Field
• Competitive Price +
 30%

• 3 - 4 Years to Market
• Competitive Price

• 3 - 4 Years to Market
• Competitive Price

www.acq.osd.mil/ar/doc/8dec.pdf

4 - 1 9

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

Figure 4-5. Block Change Process Overview

SPI goals are to ensure that contractors use best practices and advanced technologies to:

• Meet warfighter needs;
• Provide best value goods and services from a globally competitive national industrial base;
• Reduce manufacturing and management costs and eliminate unnecessary direct and indirect

cost drivers;
• Facilitate lean Defense industrial base reengineering;
• Incorporate military specifications and standards reform in existing contracts and

reprocurements;
• Improve cost, schedule, performance, and affordability;
• Allow transition to a Performance-Based Business Environment;
• Support civil-military integration (eliminate the distinction between doing business with the

Government and commercial buyers);
• Improve processes for environmental health and safety; and
• Reduce the need for oversight.

4.2.9.2 Adoption of Common Practices at Defense Contractor Facilities

DCMC Memorandum: Adoption of Common Practices at Defense Contractor Facilities,11 Dec
1995, explains that the adoption of common processes by contractors en lieu of multiple, unique
DoD standards and specifications is one of the cornerstones of acquisition reform. It established:

Early
Customer /

Industry
Interface
Concept

Paper

Contractor
Submits

Block
Change

Proposal

ACO Facilities
Review & Gathers

Positions From
Key Customers

Agreement
of Key

Customers

CAE / DAE
Empowered

Rep Resolves

PMs / PCOs
Review

Agreement

Notify
Remaining

PMs / PCOs

Agreement

CAE / DAE
Empowered

Rep Resolves

ACO
Executes

Block
Change

Mod

Contractor
Implementation

Government
Implementation

No

Yes

(30 Days)

(14 Days)

No

Yes

Proposal
Development

30 Days

Approval
60 Days

Contract
Modification

30 Days

www.safaq.hq.af.mil/acq-ref/spi/drewes.pdf

4 - 2 0

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

• Management Council. The Management Council is comprised of representatives from
DCMC, the Defense Contracts Audit Agency (DCAA), the contractor, and key DoD
stakeholders. The council performs SPI proposal reviews and approvals and ensures
contractor proposed changes are technically acceptable and brings contractor and
customers together.

• Component Team Leaders from each Service establish that contractor proposed process
changes are technically acceptable.

• Administrative Contracting Officer (ACO) negotiates block changes that modify contracts to
use common manufacturing and management process.

4.2.9.3 Prime/Subcontractor Relationship in the SPI

USD Memorandum: Prime and Subcontractor Relationships in the Single Process Initiative
(SPI), 3 September 1996, states that the SPI applies to prime contractors who are also
subcontractors to other prime contractors. The review of the impact of the changes on their
subcontracts and prime contracts will occur concurrently with the normal block change review.

4.2.9.4 Single Process Initiative and New Contracts

USD Memorandum: Single Process Initiative and New Contracts was signed 30 April 1997.
Some DoD organizations are issuing solicitations that include military or Federal specifications
for which the Government has agreed to accept alternative single processes. In a few instances,
companies that have implemented the SPI indicate that they have been considered nonresponsive
when requesting to substitute an accepted single process for a solicitation specification. When
contractors propose Management Council-accepted single processes as substitutes for solicitation
specifications, those single processes shall be accepted.

4.2.9.5 Review Approval of Single Process Initiative (SPI)

USD Memorandum: Review and Approval of Single Process Initiative, 1 May 1997, explains
that the DoD Inspector General is concerned that Administrative Contracting Officers (ACOs)
are inhibited from obtaining necessary technical or cost data from contractors by rigid interpretation
of the 120-day goal for implementing SPI concepts. ACOs are to understand that the 120-day
goal is achievable and they should adhere to it except where technical or cost benefit assessments
cannot be adequately performed within that timeframe.

4.2.9.6 Subcontractor Single Process Initiative (SPI)

USD Memorandum: Subcontractor Single Process Initiative (SPI), 16 May 1997 encourages
subcontractors to submit SPI proposals to their prime contractors if processes flowed-down or
imposed by the prime are inconsistent with SPI processes accepted by the Government for use at
the subcontractor’s facility. Prime contractors should allow the subcontractor to substitute
Government-accepted equivalent processes. Management Councils at prime and subcontractor
facilities will facilitate and enable substitution of accepted subcontractor SPI processes.

www.acq.osd.mil/ar/spi2.pdf
www.safaq.hq.af.mil/acq_ref/spi/usdatarev.pdf
www.acq.osd.mil/ar/doc/prime.pdf
www.acq.osd.mil/ar/doc/spi516.pdf

4 - 2 1

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

4.2.9.7 The Single Process Initiative — A Long Term Perspective

USD Memorandum: The Single Process Initiative — A Long Term Perspective, 3 June 1998,
explains that the SPI has expedited the transition of existing contracts to common best processes
by facilitating industry consolidation and plant modernization, and encouraging innovation and
subcontractor reform. While at least 140 facilities have transitioned to the ISO 9000 quality
standard, we have along way to go. Through the SPI initiative, emphasis must also be placed on
integrating both prime contractors and suppliers into a Performance Based Business Environment
(PBBE).

According to Lt. Gen. Drewes (DCMC), the three most frequently proposed SPI process changes
are in the areas of quality programs; manufacturing processes, such as plating, encapsulation,
and electrostatic protection; and business practices, including certification requirements,
subcontracting authorization, and work measurement, as illustrated in Figure 4-6.
[DREWES97]

Quality Program

Manufacturing

Business Practices

Configuration

Subcontract Issues

Military Soldering

Property

Calibration

Material Review

Test Requirements

Software

Cost Data Reporting

0 20 40 60 80 100 120

Figure 4-6. Most Frequently Requested Process Changes [DREWES97]

4.3 DoDD 5000.1/DoD 5000.2-R

DoD 5000.1, Defense Acquisition Directive and defense acquisition regulation, DoD 5000.2-R,
Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated
Information Systems (MAIS), are DoD’s update to its acquisition policies to accomplish several
objectives, including compliance with the Federal Acquisition Streamlining Act (FASA), Paper
Reduction Act (PRA), and the Cohen Act..

The most important item in the current revision applies to software-intensive systems. With the
Cohen Act’s repeal of the Brooks Act, acquisition policy for MDAPs (embedded weapon systems)
and MAIS has been combined into one guidance document. Several separate AIS policy documents
in the 7920 and 8120 directive and instruction series were cancelled. While the revised DoDD
5000.1 specifies guiding principles for all DoD acquisition programs, the new regulation

www.acq.osd.mil/af/doc/spi603.pdf
www.acq.osd.mil/api/asm/50001.pdf
www.acq.osd.mil/api/asm/50002c3.pdf

4 - 2 2

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

5000.2-R applies specifically to major programs. The intent of this change is to
decentralize acquisition practice and allow Component Acquisition Executives more
autonomy in managing the programs for which they are accountable.

4.3.1 Milestone Decision Authority (MDA)

MDAPs (ACAT I) are subject to Milestone Decision Authority (MDA) review by the DAB under
the responsibility of the USD (A&T). The Program Manager (PM) is in charge of the program
and Integrated Product Teams (IPTs) are empowered to help the PM resolve issues before DAB
reviews, thus streamlining the review process. By combining all acquisition programs under the
5000-series, on joint ACAT I and ACT IA programs, program management requirements have
been cut in half. Figure 4-7 shows that on joint programs only one of each of the following
need be prepared:

• One quality assurance program;
• One program change control program;
• One integrated test program; and
• One set of documentation and reports to include:
• One joint program Operational Requirements Document (ORD),
• One Test and Evaluation Master Plan (TEMP),
• One Acquisition Program Baseline (APB),
• One Defense Acquisition Executive Summary (DAES),
• One Quarterly Report for ACAT IA programs, and
• One Selected Acquisition Report (SAR) for ACAT I programs.

Figure 4-7. DoD 5000-2R MDAP and MAIS Review and Reporting Structure

4 - 2 3

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

4.3.2 Elimination of the MAISRC

OSD Memorandum: Elimination of the Major Automated Information System Review Council
(MAISRC), 28 July 1998, states that since 15 March 1996, oversight of Major Automated
Information System (MAIS) acquisition programs (ACAT IA programs) has been largely conducted
through the integrated product team (IPT) process. With the success of acquisition reform and
the IPT process, and the related emphasis on teamwork, tailoring, and empowerment, it is rarely
necessary to hold a formal meeting of the MAISRC. As part of DoD streamlining initiatives, the
MAISRC is disestablished. The MAISRC Overarching IPT (OIPT) has been redesignated the
Information Technology OIPT.

ASD(C3I), the DoD CIO, continues to be the MDA for ACAT IA programs. When issues regarding
ACAT IA programs cannot be resolved by the IPT process, the DoD CIO or his designee will
convene a special review to resolve issues.

4.3.3 Software-Intensive Systems

DoD 5000.1 recognizes that software is a critical element in DoD systems. It states that it is
critical that software developers have:

• A successful past performance record,
• Experience in the software domain or product line,
• A mature software development process, and
• Evidence of use and adequate training in software methodologies, tools, and environments.

4.3.4 Software Engineering

DoD 5000.2R requires that all software developments must be managed and engineered using
commercial best processes and practices to reduce cost, schedule, and performance risks. As
required by the Cohen Act, software-intensive systems must be designed and developed based
on systems engineering principles, which include:

• Architecture. Software system architectures are developed that support open system concepts;
exploit commercial off-the-shelf (COTS) computer products; and provide for incremental
improvements based on modular, reusable, extensible software.

• Reuse. Software reuse opportunities are identified and exploited (Government and industry)
before beginning a new software development.

• Programming languages. Programming languages are selected in the context of the systems
and software engineering factors that influence overall life-cycle costs, risks, and potential
for interoperability [see ASD(C3I) Memorandum, Use of the Ada Programming Language,
29 April 1997.

• Standard data. DoD standard data is used [see DoDD 8320.1].

4 - 2 4

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

• Successful contractors. Contractors are selected with:
? Domain experience in developing comparable software systems;
? Successful past performance record; and
? Demonstrable software development capability and a mature process.

• Measurement. Contractors are selected with a mature measurement process for planning,
tracking assessing, and improving the software development process and software product(s).

• Risk management. Information system operational risks have been assessed [see DoDD S-
3600.1].

• Year 2000. All software is Year 2000 compliant.

4.3.5 Information Security

In compliance with PRA and Cohen Act provisions, AIS systems must be managed and engineered
using best known processes and practices to reduce security risks, including the risks of timely
accreditation. Information assurance requirements must be included in program and systems
design activities to ensure availability, integrity, authentication, confidentiality, and non-repudiation
of critical program technology and information. This includes providing for the restoration of
information systems by incorporating protection, detection, and reaction capabilities. Information
assurance requirements are to be established and maintained throughout the acquisition lifecycle
for all ACAT IA programs (and others as applicable). All AISs must meet security requirements
in accordance with DoDD 5200.28 and be accredited by the Designated Approving Authority
before processing classified or sensitive unclassified data. Exceptions to the DoDD 5200.28
requirement to use trusted computer products, listed on the Endorsed Products List, will be
granted only by the DoD CIO [ASD(C3I)].

4.3.6 C4I Support Plan

DoD recognizes that 60% to 80% of a software-intensive system’s life cycle cost is incurred
during post-deployment software support (PDSS). To implement Total Ownership Cost (TOC)
initiatives, for C4I systems and all weapons systems/programs that interface with C4I systems,
DoD 5000.2R requires that a support plan be prepared. The C4I Support Plan includes:

• System description,
• Employment concept,
• Operational support requirements (including C4I, testing, and training),
• Interoperability and connectivity characteristics, and
• Management and scheduling.

An evaluation of compatibility, interoperability, integration, and intelligence support for targeting
requirements must also be performed for all major weapons systems and programs. C4ISR (C4I
surveillance and reconnaissance) requirements must be reviewed and updated at every milestone
decision and whenever the concept of operations or intelligence requirements change.

4 - 2 5

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

4.3.7 Results-Oriented Acquisition Management

Even before the FASA and Cohen Act, 10 U.S.C. 2435 required that DoD establish GPRA cost,
schedule, and performance goals in an Acquisition Program Baseline (APB) document for each
MDAP.

DoD’s implementation of FASA, Title V performance-based management provisions are reflected
in DoD 5000-2R by emphasizing the determination of producibility early in the development
cycle. The policy states that producibility is key to managing risk and that existing development
processes must be capitalized on when possible. It also states that production should not be
approved until the design has been stabilized, development processes have been proven, and
facilities, equipment, [and people] are in place. [HINTON98]

4.3.8 Linking Acquisition Programs to Strategic Goals

To comply with the GPRA, the Mission Need Statement (MNS) must be linked with the mission
described in the DoD Strategic Plan (the QDR). This emphasizes the interrelationships among
defining requirements, managing system development, and making funding decisions. The main
objective is to translate users’ needs into products with affordability as a key discriminator.

4.3.9 Nontraditional Acquisition

DoDD 5000.1 encompasses several guiding principles that reflect how a reinvented defense
acquisition system is responding to larger changes in the global threat environment. For example,
the new policy stresses the importance of nontraditional acquisition:

“Demonstrations based on mature technologies may lead to more rapid fielding. Where appropriate,
managers in the acquisition community shall make use of non-traditional acquisition techniques,
such as Advanced Concept Technology Demonstrations (ACTDs), rapid prototyping, evolutionary
and incremental acquisition, and flexible technology insertion.” [DoD 5000.2R Para 2.7]

Other nontraditional policy principles include modeling and simulation, innovative practices,
modular contracting for MAIS acquisitions, and Cost As an Independent Variable (CAIV). Moving
away from the historical report-based interaction model, DoD 5000.2-R explicitly relies on
Integrated Product Teams (IPTs) to break down the barriers between different organizations and
acquisition disciplines. IPTs enable integrated solutions to management problems.

4.3.10 Acquisition System Reengineering

With the 5000-series, DoD consolidated an acquisition policy system that had grown out of
control, by “ deconstructing” and consolidating it into a minimal set of mandatory principles and
procedures to empower managers with the greatest possible discretion. Thus, the regulation
states that it is not be supplemented by any DoD Component documents. It directs DoD officials
to keep to a minimum service-specific directives, regulations, policy memoranda, or

web7.whs.osd.mil/html/50002r.htm
web7.whs.osd.mil/pdf/directives/d50001p.pdf

4 - 2 6

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

regulations to implement the mandatory procedures. It also seeks to separate mandatory
policies and procedures from discretionary practices. The intent is to empower acquisition
managers with the freedom to exercise sound judgment when structuring and managing
defense acquisition programs. For example,

“The Department encourages PMs to continually search for innovative practices that reduce
cycle time, reduce cost, and encourage teamwork.” [DoDD 5000.1, para 2.h.]

This revision has responded to the perception that the past 5000-series documents were unwieldy
and too complex. To make them user-friendly, the current documents are incorporated into the
Defense Acquisition Deskbook, the universal electronic and hard copy repository of all DoD
mandatory and discretionary guidance. [FERRARA96]

4.4 Acquisition Reform: Challenge and
Opportunity

“There is no single instant fix that the DoD can rely on to meet our national security needs. [Joint
Chiefs of Staff Chairman Army Gen.] Omar Bradley once said that ‘Drawing a plan is 10% of the
job; seeing that plan through is the other 90%,’ So, too, with…re-engineering, we need to see our
plans through — over the long haul. It is easy to talk about why; harder to talk about how; even
harder to do — it’s impossible to do without incentives and ownership being passed down to the
stakeholders. It means your plans will need to contain the right incentives, ones designed so
organizations will have the motivation to implement your plans.”— Paul P. Kaminski
[KAMINSKI96]

The acquisition reform train has left the station. It is moving forward at full speed. There will be
mountains that challenge us in reaching our goals. There will also be valleys that give us the
opportunity to improve our methods and smooth out the journey. Reaching our destination is an
important mission for the acquisition corps. The warfighter and the nation are counting on our
success. Our aging arsenal and technology infrastructure cry out to cut costs, shorten cycle times,
improve software quality, and bring on the most advanced technology money can buy. Learn
from these challenges and build on the opportunities!

4.4.1 Challenges

Too many have been satisfied to let things flow along as they have in the past and not rock the
boat. Improvement includes more that having better ideas and methods. It also requires
overcoming the inertia of the system in place. As we discussed in Chapter 2, Software Acquisition
Success: Exception or Rule?, we not only have areas of failure, there are numerous obstacles
which tend to keep us from changing. With so many areas that need improvement, it might seem
overwhelming to the point of paralysis. We need to remember that challenge is the catalyst of
growth, and that so many areas in need of improvement provide opportunities for almost everyone
to make a difference in the total outcome.

www.acq.osd.mil/ar/deskbook.htm

4 - 2 7

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

4.4.2 Opportunities

According to Derek Vander Schaffer, former DoD Deputy Inspector General,

“DoD has either been trying or having someone else try to reform the acquisition process for as
long as I can remember. This time there appears to be some real progress... [the Deputy Under
Secretary of Defense for Acquisition Reform and staff] have advanced the acquisition reform ball
further in the last two and a half years than it has been advanced in the last 20 years by all kinds
of special commissions.” [VANDER SCHAFFER96]

Clearly, there is much more that can and should be done. This is not an attempt to wring out the
last few percentage points of improvement in software acquisition processes. We still find
ourselves relatively near the beginning, with opportunities for improvement all around us in
every area. What is required are acquisition managers and team members who are determined to
step beyond the status quo to make their projects perform better than previous efforts.

There are many things we already excel at [see Chapter 2, Software Acquisition Success: Exception
or Rule?]. Searching our successes for lessons on what we do right can give us insight to meet
our challenges and create more successes. The engine of change is moving and we have an
opportunity like never before to implement real improvements.

4.4.2.1 Anderson and Rebentisch Study

Anderson and Rebentisch conducted a survey of program representatives from 37 acquisition
programs that DoD and the Defense industry regarded as pioneers in incorporating commercial
best practices into their acquisition strategies. These programs spanned all the Services — Army,
Air Force, Navy, Marine Corps, and Coast Guard. From this group, 23 programs yielded sufficient
data for detailed research and study purposes. Included in the 23-program sample were seven
aircraft programs, five ship programs, four munitions programs, and seven other major software-
intensive acquisition programs. Overall, they found commercial practices yielded strong benefits
for cost, schedule, and quality with few, if any, reported compromises to life-cycle support and
life-cycle costs. These commercial best practices included the following eight.

• Past performance. Previous performance on government contracts is used as a source
evaluation factor. A 1995 change to the Federal Acquisition Regulation (FAR) mandated past
performance for all contracts over $1 million.

• Best value. Contract award is based on a range of evaluation factors besides the lowest price,
such as quality, life-cycle support, life-cycle costs, and other relevant factors.

• Commercial warranties. The acceptance and use of standard commercial product warrantees
or the purchase of extended product warranties, rather than special, government-unique
warrantee requirements.

• Government/contractor cooperation and relationship. A cooperative, mutually beneficial
relationship between the Government and its contractors characterized by reduced government
oversight, long-term partnerships, and contractor or industry participation in program integrated
Product Teams (IPT).

4 - 2 8

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

• Performance specifications. Government requirements are defined in terms of
performance. Contractors have more flexibility to reduce costs and enhance support.
The ultimate responsibility for performance is shifted to the contractor.

• Commercial specifications and standards. The same design, production, management, and
accounting practices are required in government contracts as are currently used in the
commercial marketplace. In 1994, the Secretary of Defense mandated this practice.

• Streamlined contract administration. Government acquisition processes are simplified by
streamlining internal policies and reducing contract data deliverables (CDRL). For instance:
one program consolidated 23 management documents into only five; several programs reaped
substantial efficiencies by using the Internet for electronic data interchange.

• Commercial-off-the-shelf and non-developmental items (COTS/NDI). Recent FAR, Part
12 procedures simplified the COTS/NDI acquisition process. [ANDERSON98]

Figure 4-8 illustrates the frequency with which the eight commercial practices are being
used by the respondent programs. Recent acquisition reforms (e.g., military specifications
and standards reform, the use of performance specifications, and contract streamlining)
figure prominently in the practices cited. Interestingly, a large number of program
representatives considered developing a close working relationship between the
Government and contractor as an important commercial practice.

Commercial Specs & Stds

Performance Specifications

Streamlined Contract Administration

Govt /Contractor Co-op Relationship

COTS/NDI

Commercial Warrantee

Best Value

Past Performance

0 2 4 6 8 10 12 14 16 18 20

Figure 4-8. Frequency of Commercial Best Practice Used on 23 DoD Programs
[ANDERSON98]

Anderson and Rebentisch found that improvements in cost and schedule performance attributed
to the use of commercial practices varied substantially, depending upon the specific
practice used. As illustrated in Figure 4-9, the practice of government/contractor
cooperation was the leader for cost reductions, yet its impact diminished significantly for
schedule reductions.

4 - 2 9

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

Figure 4-9. Cost and Schedule Reduction Results of Most Frequently Cited
Commercial Practices [ANDERSON98]

Three practices reflected negligible performance impact, but Anderson and Rebentisch thought
their benefits may be demonstrated during other phases of the system’s life cycle such as source
selection or sustainment. They include best value, past performance, and commercial warranty.

Representatives from the 23-program sample confirmed that the use of commercial best practices
had yielded valuable program benefits. Their use resulted in direct program savings totaling
almost $4 billion. That equates to average savings of 4.3% per program. [ANDERSON98] In
other words, a few percentage points improvement across the board can save billions which can
then be used to improve other areas.

4.4.2.2 Coopers & Lybrand Study

The 1997 DoD-sponsored Coopers & Lybrand study, Acquisition Reform Implementation: An
Industry Survey, was an assessment of how well DoD is doing in implementing acquisition
reform, at the contract level. It found that significant acquisition reform has been achieved over
the past four years. However, implementation is uneven and inconsistent across and within the
military services and buying commands. Continued commitment to training is vital with special
emphasis in:

• Market research/exemptions to certified cost or pricing,
• Parametric estimating,
• Commercial product definition and pricing,
• Integrated product team practices, and
• Performance-based business environment.

Regarding industry awareness of individual change elements associated with DoD’s acquisition
reform effort, there is a moderate level of awareness that averaged 2.6 on a 0=low, 4=high point
scale. The survey results show a moderate level of implementation of acquisition reform

Govt/Contractor Co-op Relationship

COTS/NDI

Streamlined Contract Administration

Commercial Specs & Stds

Performance Specifications

Best Value

Past Performance

Commercial Warrantee

0% 10% 20% 30% 40% 50% 60%

www.acq.osd.mil/ar/clreport.htm

4 - 3 0

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

based on responses across all interviews conducted that averaged 2.9 on the same scale.
The Coopers & Lybrand study identified snapshots of successes to include:

• Streamlined RFPs. 40% positive reduction in page volume between the RFP for the previous
buy and the post-reform RFP.

• Open systems. Positive impact on cost — new functionality at no cost increase.
• Contractor configuration control. Cost reduced 15%; simplifies design process, permits

manufacturing technique changes to reduce complexity, mean-time-been-failure (MTBF)
increased from 10 to 120 hours.

• Simulation testing. Contract costs reduced 60% to 65% by using simulation instead of
engineering tests.

The Coopers & Lybrand study snapshots of opportunity include:

• Specifications and standards. Call outs in RFPs were significantly reduced but reappeared
in other documents as references and requirements.

• Simulation testing. Testing community is blocking simulation instead of testing — rice bowl
issue.

• Reduced Truth in Negotiations Act (TINA) sweeps. There is little evidence that government
principle contracting officers (PCOs) are willing to agree to cut-off dates to reduce TINA
sweeps.

• Commercial quality programs. Conversion to ISO 9000 resulted in an increase in quality
audits and more written procedures than MIL-Q-9858A.

Recommendations from industry for effecting greater reform in the DoD acquisition process
applicable to major software-intensive systems include:

• Alpha contracting. Improve quality and consistency of one pass contracting.
• Truth in Negotiations Act (TINA)-related exemptions/provisions. Increase the use of TINA-

related exemptions and provision in the FASA. For example:
? Commercial exemptions to certified cost or pricing data,
? Alternative pricing mechanisms (price analysis, market research, etc.),
? Parametric estimating, and
? Cut-off dates to reduce the cost “sweeps” inherent in maintaining complete, accurate,

and current cost packages.
• Commercial pricing. Provide education and training to government contracting personnel

related to commercial pricing principles and techniques.
• Single Process Initiative. Continue application of the SPI with emphasis on facilitating the

prime-subcontractor change process.
• Electronic commerce/electronic data inter-change (EC/EDI). Accelerate the use of EC/

EDI in the acquisition process.
• Performance-based requirements. Increase emphasis/ understanding of the Performance-

Based Business Environment.
• Integrated Product Teams (IPTs). Improve the effectiveness of IPTs by empowering

members to act limiting value-added government personnel.

4 - 3 1

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

• Logistics support. Integrate life cycle support considerations into future acquisition
reform strategies.

• Contractor oversight. Align field level staffing of contractor oversight consistent with risk-
based management.

• Program stability. Foster initiatives to improve program stability. [COOPERS97]

4.4.2.3 Defense Acquisition Pilot Programs

Title V of the FASA requires the Secretary of Defense to propose one or more of the Defense
Acquisition Pilot Programs (DAPPs) outlined in the Act to implement the concepts of mission-
oriented, results-based program management. DoD is tracking the effects of FASA acquisition
reform initiatives on seven pilot programs, which were afforded early statutory and regulatory
relief to set the example for acquisition reform. The seven pilot programs include:

• Fire Support Combined Arms Tactical Trainer (FSCATT),
• Joint Direct Attack Munition (JDAM),
• Joint Primary Aircraft Training System (JPATS),
• Commercial Derivative Aircraft (CDA),
• Commercial Derivative Engine (CDE),
• Global Grid,
• Defense Personnel Support Center (DPSC). [NPR-DoD93]

According to the 1997 Report: Celebrating Success: Forging the Future, since their designation
as DAPPs, the pilot programs have successfully implemented numerous innovative acquisition
techniques including:

• Specification/standards streamlining. Reduced the number of unique Mil-Specs and Mil-
Stds by 80% to 100%.

• Commercial style milestone billing. In conjunction with a fixed-price EMD, reduced
administrative effort associated with progress payments and ensured demonstration of technical
progress.

• Earned value management. Reduced contractor/government management burdens associated
with cost/schedule reporting and provided enhanced insight into program progress.

• Reduced oversight. Using integrated product teams (IPTs) and electronic data interchange
(EDI), improved management decisions.

• Commercial practices. Included long-term contracts, commercial logistic support, commercial
R&D, and electronic commerce.

• Rolling down-select. Evaluated competing Dem/Val contractors through actual
contractor performance with feedback and exchange. The approach reduced RFP costs
by 70% and Bid and Proposal (B&P) costs by 50%. [DAPP97]

These techniques resulted in acquisition improvements including faster cycle times (time to first
delivery), reduced contract costs, and more efficient program staffing compared to traditional
programs, as illustrated in Table 4-2.

www.acq.osd.mil/ar/ppcg.htm

4 - 3 2

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

Table 4-2. DAPPs Improvements in Acquisition Efficiencies [DAPP97]

4.4.2.4 Acquisition Reforms Save Money and Improves Service

On 18 March 1998, Undersecretary of Defense Jacques S. Gansler (acquisition and technology),
gave a speech before the Acquisition and Technology Subcommittee, Senate Armed Services
Committee “Acquisition Reforms Save Money and Improve Service.” In it, he cited two particular
examples of acquisition reform results.

TRW now produces military-unique computer circuit boards for the Air Force’s F-22 Raptor
fighter aircraft and the Army’s Comanche helicopter on the same production line as its high-
volume commercial electronics products. This has resulted in 30% to 50% savings and a product
that exceeds DoD requirements.

The Defense Logistics Agency has used commercial buying practices and purchased high-quality
commercial items (instead of military-standard items) which, from a sample of more than $190
million worth of items, resulted in savings of more than 20%. The logistics response time
differential, due to using commercial practices, improved by 50% and, when prime vendor
practices were used, improved by 95%.

“Under acquisition reform, the culture changes from distrust and oversight to accountability,
trust, and process controls. Government must rely on the contractor’s software engineering process
to ensure a quality product and it must understand the execution of that process. Both sides must
accept some risks and adopt a paradigm of greater reliance on the contractor’s commitment to
deliver quality products and services.” — G.W. Pechin and S.K. Gupta [PECHIN97]

Program Cycle Time Contract Cost Program Staffing

JDAM 35% 50% (AUPP) 30%

FSCATT 33% 13.5% 27%

JPATS 0% 49% 47%

CDE 60% 4% 42%

www.defenselink.mil/speeches/1998/di1326.html

4 - 3 3

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

4.5 References

[ANDERSON98] Anderson, Lt. Cmdr. Michael H. (USCG) and Eric Rebentisch, “Commercial Practices
— Dilemma or Opportunity: Risks — Yes, But Ultimately, Substantial Reward,” Program Manager,
Defense Systems Management College, Fort Belvoir, Virginia, March-April 1998.

[BACHKOSKY97] Bachkosky, John M., The Contribution of ACTDs to Acquisition Reform: Rapidly
Moving New Capabilities from the Developer to the User, Special Issue, Program Manager, Defense
Systems Management College, Fort Belvoir, Virginia, January-February 1997.

[BROWN95] Brown, Lori Hylton, Christopher Johnson, and William Warlick, Global Competitiveness of
the U.S. Computer Software and Service Industries, U.S. International Trade Commission, June 1995.

[CLUBB96] Clubb, G. Dean, “Blinding Speed Equals Competitive Advantage,” Acquisition Review
Quarterly, Fall 1996.

[COHEN97] Cohen, SECDEF William S., “The Secretary’s Message,” Quadrennial Defense Review, .S.
Department of Defense, The Pentagon, Washington, DC, August 1997.

[COHEN981] Cohen, SECDEF William S., New Defense Strategy: Shpe, Respond, Prepare, Prepared
statement of Secretary of Defense William S. Cohen to the Senate Armed Services Cmmittee, Volume
13 Number 13, 3 February 1998.

[COHEN982] Cohen, SECDEF William S., Secretary of Defense Report to Congress: Actions to Accelerate
the Movement to the New Workforce Vision (Section 916 Report), U.S. Department of Defense, The
Pentagon, Washington, D.C., 1 April 1998.

[COOPERS97] Coopers & Lybrand, Acquisition Reform Implementation: An Industry Survey, Report
prepared for the DoD Service Executives, October 1997.

[CZELUSNIAK97] Czelusniak, Daniel P., “Acquisition Program Stability,” briefing prepared by the director,
Acquisition Program Integration, Office of the Deputy Undersecretary of Defense (acquisition and
technology), director, Acquisition Program Integration, Office of the Deputy Undersecretary of Defense
(acquisition and technology), 1997.

[DAPP97] 1997 Report: Celebrating Success: Forging the Future, Defense Acquisition Pilot Programs,
Pilot Program Consulting Group on Metrics (PPGM), Office of the Under Secretary of Defense
(Acquisition Reform), 1997.

[DRAYER98] Drayer, Lt. Col. Dennis (USAF), “Performanced-Based Business Environment: PBBE — A
Business Vision We Can Live With,” Program Manager, Defense Systems Management College, Fort
Belvoir, Virginia, January-February 1998.

[DREWES97] Drewes, Lt. Gen. Robert W., (USAF), “SPI—Progress Made and Lessons Learned: The
Expedited Process is Working!“ Special Issue, Program Manager, Defense Systems Management
College, Fort Belvoir, Virginia, January-February 1997.

[DUNN98] Dunn, VADM Robert F. (USN Retired), as quoted in “The Sea Services,” U.S. Naval Institute
Proceedings, U.S. Naval Institute, Annapolis, Maryland, Volume 124/10/1/1,148, October 1998.

[FERRARA96] Ferrara, Joe, “DoD’s 5000 Documents: Evolution and Change in Defense Acquisition Policy,”
Acquisition Review Quarterly, Journal of the Defense Acquisition University , Defense Systems
Management College Press, Fort Belvoir, Virginia, Fall 1996.

[GANSLER981] Gansler, Jacques S., Acquisition Reforms Save Money and Improve Service, Prepared
statement of Jacques S. Gansler, Undersecretary of Defense for Acquisition and Technology, to the
Acquisition and Technology Subcommittee, Senate Armed Services Committee, Defense Issues, Volume
13, Number 26, U.S. Department of Defense, The Pentagon, 18 March 1998.

[GANSLER982] Gansler, Jacques S., Statement by the Under Secretary of Defense (Acquisition and
Technology) to the Subcommittee on Acquisition and Technology, Committee on Armed Services,
U.S. Senate, Washington, D.C., 18 March 1998

www.dsmc.dsm.mil/pubs/pdf/pmpdf98/andersma.pdf
www.dsmc.dsm.mil/pubs/pdf/pmpdf98/andersma.pdf
www.dsmc.dsm.mil/pubs/pdf/pmpdf97/bachsky.pdf
www.dsmc.dsm.mil/pubs/pdf/pmpdf97/bachsky.pdf
www.defenselink.mil/speeches/1998/di1313.html
www.acq.osd.mil/ar/912crpt.htm
www.acq.osd.mil/ar/912crpt.htm
www.acq.osd.mil/ar/clreport.htm
www.dsmc.dsm.mil/pubs/pdf/pmpdf98/dray-jf.pdf
www.dsmc.dsm.mil/pubs/pdf/pmpdf97/drewes.pdf
www.defenselink.mil/speeches/1998/di1326.html

4-34

Chapter 4: DoD Software Acquisition Environment GSAM Version 3.0

[GORE93] Gore, Vice President Al, Letter to the heads of each Federal Department and Agency, Office of
the Vice President, Washington, D.C., 1 April 1993.

[GORE98] Gore, Vice President Al, American Forces Press Service, as quoted in Linda D. Kozaryn, “Gore
Lauds DoD Reforms,” Program Manager, Defense Systems Management College, Fort Belvoir, Virginia,
January – February 1998.

[GREEN98] Green, Graham, as quoted by Lt. Col. Dennis Drayer (USAF), “Performanced-Based Business
Environment: PBBE — A Business Vision We Can Live With,” Program Manager, Defense Systems
Management College, Fort Belvoir, Virginia, January-February 1998.

[HAMRE98] Hamre, John J., “Improved Business Practices Will Improve Military Effectiveness,” Statement
to the House National Security Committee, Defense Issues, Volume 13 Number 15, The Pentagon,
Washington, D.C., 11 March, 1998.

[HINTON98] Hinton, Jr., Henry L., Best Practices: Successful Application to Weapon Acquisitions Requires,
Changes in DoD’s Environment, GAO/NSIAD-98-56, General Accounting Office, National Security
and International Affairs Division, Washington, D.C., March 24, 1998.

[JONES94] Jones, Jennifer, “DoD Moves Toward ‘Best Practices’ Panel to Steer Toward Successful
Approaches to Projects,” Federal Computer Week, September 26, 1994.

[KAMINSKI96] Kaminski, Paul G., “Lean Logistics: Better, Faster, Cheaper,” Defense Issues, Volume 11,
Number 99, Remarks of the Undersecretary of Defense (acquisition and technology) presented to the
DoD Logistics Offsite Conference, Leesburg, Virginia, 24 October 1996.

 [OSD97] OSD Memorandum: Requirements for Compliance with Reform Legislation for Information
Technology (IT) Acquisitions, (Including National Security Systems), Office of the Secretary of Defense,
The Pentagon, Washington, D.C., 1 May 1997.

[PECHIN97] Pechin, G.W., and S.K. Gupta, “Acquisition Reform is a Cultural Change,” 1997 Acquisition
Research Symposium Proceedings; Acquisition Reform: Sustaining the Momentum — Full Speed
Ahead! National Contract Management Association and Defense Systems Management College, Fort
Belvoir, Virginia, 1997.

[PERRY94] Perry, SECDEF William ?, Acquisition Reform: A Mandate for Change, Plan provided by
Secretary of Defense Perry to the House Armed Services Committee and the Governmental Affairs
Committee, February 1994.

[SHERIDAN96] Sheridan, Kim, as quoted by G. Dean Clubb, “Blinding Speed Equals Competitive
Advantage,” Acquisition Review Quarterly, Fall 1996.

 [VANDER SCHAFFER96] Vander Schaffer, Derek, as quoted by Lt. Col. Charles L. Beck, et al,), Model
for Change: Making Acquisition Reform Work, Report of the Military Research Fellows, Defense
Systems Management College, Fort Belvoir, Virginia, 1996-1997.

www.dsmc.dsm.mil/pubs/pdf/pmpdf98/gore-jf.pdf
www.dsmc.dsm.mil/pubs/pdf/pmpdf98/gore-jf.pdf
www.dsmc.dsm.mil/pubs/pdf/pmpdf98/dray-jf.pdf
www.dsmc.dsm.mil/pubs/pdf/pmpdf98/dray-jf.pdf
www.access.gpo.gov/
www.defenselink.mil/pubs/di96/di1199.html
www.dtic.mil/c3i/c3ia/itmemo.html
www.dsmc.dsm.mil/pubs/mfrpts/res97.pdf
www.dsmc.dsm.mil/pubs/mfrpts/res97.pdf

Part 1: Acquistion GSAM Version 3.0

Chapter 5

System Life Cycle
and Methodologies

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5-2

Contents

5.1 Life Cycle Process and Decision Making .. 5-4
5.1.1 System-of-Systems View .. 5-4

5.2 DoD Decision Support Systems ... 5-5
5.2.1 Requirements Generation System ... 5-6
5.2.2 Acquisition Management System.. 5-7
5.2.3 Planning, Programming, & Budgeting System (PPBS) 5-7

5.3 Life Cycle Phases, Decisions, and Activities ... 5-8
5.3.1 Pre-Phase 0: Mission Need Determination.. 5-10

5.3.1.1 Mission Need Documentation .. 5-11
5.3.1.2 Mission Need Validation .. 5-12
5.3.1.3 Milestone 0 Decision: Approval to Conduct Concept Studies 5-12

5.3.2 Phase 0: Concept Exploration and Definition 5-13
5.3.2.1 Milestone I Decision: Approval to Begin a New Acquisition 5-15

5.3.3 Phase I: Program Definition and Risk Reduction 5-15
5.3.3.1 Milestone II Decision: Engineering & Manufacturing
 Development/Software Engineering & Development 5-17

5.3.3.1.1 Milestone II Decision: Low Rate Initial Production
 Decision... 5-18

5.3.4 Phase II: Engineering Manufacturing & Development/Software
Engineering & Development ... 5-19
5.3.4.1 Phase II: Software Engineering and Development Activities 5-21
5.3.4.2 Low Rate Initial Production (LRIP) .. 5-21
5.3.4.3 Milestone III Decision: Production or Fielding/Deployment
 Approval .. 5-22

5.3.5 Phase III: Production, Fielding/ Deployment, and Operational
 Support .. 5-24

5.3.5.1 Operational Support ... 5-25
5.3.5.2 Modifications ... 5-25

5.4 Life Cycle Compliance with Statutory and Regulatory Requirements .. 5-26
5.5 Life Cycle Management ... 5-31

5.5.1 Performance-Based Life Cycle Management 5-31
5.5.1.1 Performance-Based Systems Definition 5-31

5.5.1.1.1 Category 1: System Performance Requirements
 Definition ... 5-31
5.5.1.1.2 Category 2: System Design... 5-32

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5-3

5.5.1.1.3 Category 3: Software Engineering and Development
 Definition (for software-intensive systems)...................... 5-32

5.5.1.2 Performance-Based Systems Engineering 5-32
5.5.1.2.1 Statistical Process Control (SPC).. 5-33

5.5.1.3 Performance-Based Management Benefits 5-33
5.5.2 Modeling & Simulation-Based Life Cycle Management 5-33

5.5.2.1 M&S-Based Pre-Phase 0: Mission Area Analysis 5-34
5.5.2.2 M&S-Based Phase 0: Concept Exploration and Definition 5-35
5.5.2.3 M&S-Based Phase I: Program Definition and Risk Reduction 5-36
5.5.2.4 M&S-Based Phase II: EMD/Software Engineering and
 Development ... 5-37
5.5.2.5 M&S-Based Phase III: Production, Fielding/Deployment, and
 Operational Support ... 5-38

5.6 Life Cycle Management Methodologies .. 5-38
5.6.1 Evolutionary Method .. 5-40

5.6.1.1 Evolutionary Model Benefits .. 5-44
5.6.1.2 Cautions About the Evolutionary Method 5-45
5.6.1.3 GCCS Evolutionary Life Cycle Process 5-46

5.6.2 Incremental Method ... 5-51
5.6.2.1 Incremental Method Benefits .. 5-54
5.6.2.2 Cautions About the Incremental Method..................................... 5-54

5.6.3 Spiral Method .. 5-55
5.6.3.1 Ada Spiral Model Environment .. 5-56

5.6.4 Choosing Among Evolutionary, Incremental, and Spiral Models 5-57
5.6.5 Waterfall Model Method .. 5-58
5.6.6 Fast Track Methods.. 5-59

5.6.6.1 Concurrency ... 5-60
5.7 System Life Cycle and Your Program ... 5-60
5.8 References .. 5-62

5-4

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.1 Life Cycle Process and Decision Making

Making decisions without full knowledge of the situation may at times be a necessity of battle,
but it can prove costly in terms of quality, safety, and performance when procuring weapons to go
to war. The Office of Management and Budget Circular A-109, published in 1976, provides
direction for the acquisition process and defines a decision mechanism based on quantitative
assessments, reviews, and audits of the life cycle process. It established policies, methods,
procedures, a life cycle, and milestone decision process to increase effectiveness in decision
making for all major system acquisitions. For weapon systems, C2, and AIS programs, Milestone
Decisions mark the completion of one phase of the life cycle and entry into the next. Peer reviews,
completion of measured process activities, the production of defined work products, audits, and
other evaluation procedures throughout each phase support exit and entry criteria for the milestone
decisions.

5.1.1 System-of-Systems View

To understand the system life cycle and its acquisition phases, it is important to realize how they
relate to the systems and software engineering processes [discussed in Chapter 9, Engineering
Software-Intensive Systems]. Because software must always interface with the other elements
that make up the total system, a system-of-systems view is critical. For example, AIS systems
often interface with hundreds of other independent AIS or C2 systems. Likewise, embedded
avionics software often interfaces with a multitude of internal/external sensors and flight control
systems. Given the relationships and interdependencies among all system components, it is vital
to maintain a big picture, systems-view, as expressed by Field Marshall Viscount Montgomery.

“It is absolutely vital that a senior commander should keep himself from becoming immersed in
details...In battle a commander has got to think how he will defeat the enemy. If he gets involved
in details he cannot do this since he will lose sight of the essentials which really matter; he will
then be led off on side issues which will have little influence on the battle. No commander whose
daily life is spent in the consideration of details…can make a sound plan of battle on a high level
or conduct large-scale operations efficiently.” [MONTGOMERY58]

To optimize total system performance and minimize Total Cost of Ownership, acquisition managers
must employ a total system approach. According to DoDD 5000.1, a total system includes the
following subsystems, as illustrated in Figure 5-1.

• The prime mission equipment (i.e., hardware, software, and documentation);
• The people who operate and maintain the system;
• System security procedures and practices;
• Operational procedures (tactics), practices (doctrine), limitations (rules of engagement), and

characteristics (mission);
• Performance capabilities required respond to operational environment unique effects (e.g.,

nuclear, biological and chemical (NBC) or information warfare);
• Deployment procedures and requirements;
• Compatibility, interoperability, and integration capabilities with other systems;

www.acq.osd.mil/api/asm/50001.pdf

5-5

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

• Operational and support infrastructure (including command, control, communications,
computers and intelligence (C4I));

• Training and training devices;
• Any required operational data; and
• The system’s potential impact on the environment and environmental compliance.

SYSTEM

Prime Mission
Equipment

People,
Operations &
Maintenance

System
Security

Operational
Procedures,

Etc.

Performance
Capabilities

Deployment
Procedures &
Requirements

Compatibility,
Interoperability
& Integration...

Operational
Support

Infrastructure

Training &
Training
Devices

Training &
Training
Devices

Operational
Data

Environmental
Impact &

Compliance

Figure 5-1. System of Systems

The life cycle phases for software-intensive weapon systems and Major Automated Information
Systems (MAIS) domains are similar. For both domains, software is always on the critical path
(whether it is developed independently, concurrently, and/or purchased separately).

For all systems, it is important to consider how the software will work within the system. This
can only be accomplished with a comprehensive, robust system architecture (or blueprint).
[Architecture is discussed in Chapter 11, Understanding Software Development.] The system
architecture is the definition of hardware and software components and their interfaces that
establish a framework for the system’s development. Well-constructed interfaces are necessary
to achieve cohesive, interoperable components early in the acquisition cycle. Proper hardware
and software integration is only assured through carefully defined interface requirements, prudently
planned prototype demonstrations, and system/subsystem tests and evaluations. Such techniques
improve accuracy, currency, and quality of decision-critical information. Interfaces are of three
types:

1. Software-to-software,
2. Software-to-hardware, and
3. Hardware-to-human.

5.2 DoD Decision Support Systems

The acquisition life cycle is an integral part of DoD’s three main decision support systems,
illustrated in Figure 5-2.

5-6

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-2. DoD Decision Support Systems [PIPLANI94]

The policies stated in the DoDD 5000.1, Defense Acquisition, and DoD 5000.2-R, Mandatory
Procedures for Major Defense Acquisition Programs, forge a close relationship among these
three systems, which operate continuously and concurrently to assist the SECDEF and other
senior DoD officials in making critical national security, acquisition, and budgeting decisions.
Early in the acquisition life cycle, the Milestone Decision Authority (MDA) [discussed in Chapter
4, DoD Software Acquisition Environment] establishes tailored Milestone Decision criteria for
ACAT I and ACAT IA programs. In compliance with the Government Performance and Results
Act (GPRA), and DoD’s Strategic Plan [the Quadrennial Defense Review (QDR), discussed in
Chapter 3, Statutory Framework Governing Software Acquisition] the MDA determines whether
a major acquisition program is progressing satisfactorily at each milestone decision/program
review. [DoD 5000.2-R]

5.2.1 Requirements Generation System

The Requirements Generation System, governed by CJCS Instruction 3170.01, Requirements
Generation System, produces decision-critical information on projected mission needs requiring
joint Major Defense Acquisition Programs (MDAPs) and MAISs to support the warfighter.
Complementary guidance for MAIS functional areas is provided in DoD 8000.1, Defense
Information Management Program. Requirements generation is a continuing process of assessing
the capabilities of the current force structure to meet projected threats. It takes into account
opportunities for technological advancement, cost savings, and changes in national policy or
doctrine. Support plans are also addressed during requirements generation. They focus on issues
of interoperability, system-of-systems initiatives, MAIS, and Operational Requirements Document
(ORD) (discussed below) compliance. Figure 5-3 illustrates this process.

Acquisition
Management

System

Planning,
Programming,
& Budgeting

System

Requirements
Generation

System

www.acq.osd.mil/api/asm/50001.pdf
www.acq.osd.mil/api/asm/50002c3.pdf
www.dtic.mil/docterine/jel/cjsd/cjcsi3170_01.pdf
web7.whs.osd.mil/pdf/d80001p.pdf

5-7

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-3. Requirements Generation System [PIPLANI94]

5.2.2 Acquisition Management System

The acquisition management system, governed by DoD Directive 5000.1, provides a streamlined,
event-driven management structure that emphasizes risk management and affordability. It explicitly
links milestone decisions to demonstrated accomplishments. The activities that are managed by
this system are illustrated in Figure 5-4.

Threat
Future

Mission
Area

Analysis

Seek Non-Materiel
Solutions

Seek Materiel
Solutions

Technological
Advancement

Analysis

Cost
Reduction
Analysis

Current
Force

Changes
in Policy
/ Doctrine

Recommendations
Identify

Deficiencies

Implementation

Figure 5-4. Acquisition Management Activities [ANDERSON98]

5.2.3 Planning, Programming, & Budgeting System (PPBS)

The Planning, Programming, and Budgeting System (PBBS) provides the basis for making
informed affordability assessments and resource allocation decisions on defense acquisition
programs. It is governed by DoDD 7045.14, The Planning, Programming, and Budgeting System
(PPBS), and is discussed in Chapter 7, Acquisition Planning.

web7.whs.osd.mil/pdf/d705414p.pdf

5-8

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.3 Life Cycle Phases, Decisions, and Activities

DoD’s system acquisition process was designed to manage a program through sequential phases.
Each phase is followed by a major Milestone Decision in which decision-makers approve/
disapprove the acquisition strategy and its evolution into the next phase based on program progress
reported by the Program Manager (PM). DoD 5000.2-R divides the life cycle into the following
phases and milestone decision points, as illustrated in Figure 5-5.

1. Concept exploration;
2. Program definition and risk reduction;
3. Engineering and manufacturing development (EMD) which includes software engineering

and development for software-intensive systems, and
4. Production, fielding/deployment, and operational support. [ANDERSON98]

Concept
Exploration

PHASE 0

Program
Definition

& Risk
Reduction

PHASE I

Engineering &
Manufacturing
Development

(EMD)

PHASE II

Production,
Deployment, &

Operational
Support

PHASE III

Milestone I

New Acquisition
Program
Approval

Milestone 0

Concept Studies
Approval

Milestone II

EMD Approval

Milestone III

Production or
Deployment

Approval

Science &
Technology

Determination
of Mission

Need

Demilitari
-zation &
Disposal

SYSTEM LIFE CYCLE

Figure 5-5. System Life Cycle [ANDERSON98]

At each Milestone Decision, assessments on program status and the plans for the next phase and
the remainder of the program are made. The risks associated with the program and the adequacy
of risk management planning are explicitly addressed, as illustrated in Figure 5-6. [See Chapter
6, Risk Management.] Additionally, program-specific results required in the next phase, called
exit criteria, are established and approved. [ANDERSON98] Figure 5-7 summarizes DoD 5000.2R
life cycle phases, Milestone Decisions, and activities discussed below.

5-9

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-6. Risk Management and the Life Cycle Process [ANDERSON98]

PHASE MILESTONE PHASE PHASEMILESTONE

Where Are We?

Baseline
- Cost
- Schedule
- Performance

Execution Status

Where Are We Going?

Program Plans
Exit Criteria

What Risks Exist?

Cost
Schedule
Performance

Where Are We?

Refined Baseline
- Cost
- Schedule
- Performance

Execution Status

Where Are We Going?

Program Plans
Exit Criteria

What Risks Exist?

Cost
Schedule
Performance

Risk
Management

Figure 5-7. Summary of Life Cycle Phases and Acquisition Milestones Decisions for
ACAT I and ACAT IA Programs [HINTON98]

5-10

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

ACAT I and ACAT IA Programs. For automated information systems (AIS) programs, the
MDA should determine the appropriate acquisition phase for AISs designated to evolve to
migration systems. AISs, designated as migration systems by an OSD Principal Staff Assistant
(PSA), often require validation or revalidation of previous milestone decisions at the appropriate
acquisition review.

5.3.1 Pre-Phase 0: Mission Need Determination

All DoD acquisition programs are based on identified, documented, and validated mission needs.
Mission needs result from ongoing assessments of current and projected Defense capabilities.
The mission need determination process is shown in the top half of Figure 5-8. Mission needs are
identified to accomplish the following:.

• Establish a new operational capability;
• To improve an existing capability; or
• To exploit an opportunity to reduce costs or enhance performance. [DoD 5000.2-R]

Pre-Phase 0 activities and documentation for ACAT I programs are summarized in Figure 5-8.

NOTE: The activities and documentation are the same for ACAT IA programs except the
memo goes to ASD (C3I) and instead of the Defense Acquisition Board (DAB) it is the
Information Technology Overarching Integrated Product Team (IT OIPT).

Perform
Mission Need

Analysis

Threat

Policy

Technology

Budget

Capability

Strategy

Doctrine

Determine
Need

Mission Area
Analysis

Notify User

Draft
MNS

Mission
Need

Opportunity
or

Defficiency

Solution

DoD
Component

DoD
Component Non-

materiel

Materiel
Coordinate
Draft MNS

DoD
Component

Validate
MNS

Validate
MNS

Memo to USD (A&T)

Notify User

DAB Milestone 0

Fund Study &
POM

Designate Lead Service

Notify User

Prepare Documents

DEFINITION DOCUMENTATION

VALIDATION APPROVAL

DoD
Component

JROC

JROC

DoD
Component

Disapproved

Approved

ACAT I MNS DAB

Acquisition
Decision

Memo

ACAT
I

Less
Than
ACAT

I

Disapproved

JROC

Approved CINC MNS
- No Service Sponsor

DoD Component Head

JROC

ADM

Lead Service

Approved MNS With Service Sponsor

Lead
Service

Acquisition
Executive

Figure 5-8. Summary of Pre-Phase 0 Activities [CJCSI 3170.01]

5-11

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.3.1.1 Mission Need Documentation

During this Pre-Milestone 0 Phase, the need for an acquisition program is studied and recorded
in the following documents.

• Mission Area Assessment (MAA). The MAA identifies mission needs using a strategy-to-
task process, which links the need for military capabilities to the strategy provided by the
Chairman of the Joint Chiefs of Staff (CJCS).

• Mission Need Analysis (MNA). The ability to accomplish the tasks from the strategy-to-task
process using current and programmed systems is evaluated in the MNA. This process is
called “task-to-need.”

• Mission Area Plan (MAP). The products of MAAs and MNAs are used to develop a MAP, a
strategic planning document covering approximately 25 years. It records the proposed plan
for correcting identified mission deficiencies. It expresses nonmateriel solutions, including
changes in force structure, system modifications or upgrades, science and technology
applications, and new acquisition programs.

• Mission Need Statement (MNS). Upgrade, modification, and new acquisition programs are
established when nonmateriel solutions will not adequately fulfill an identified mission
deficiency. The MNS is a brief statement that identifies and documents mission deficiencies
that require materiel and/or software solutions:
− To define an operational need,
− To officially validate an operational need, and
− To furnish implementation and support to OT&E activities.

• ACAT IA MNS. For command, control, communications, and intelligence (C3I) systems,
the Mission Need Statement (MNS) is submitted for validation and approval in accordance
with DoDD 4630.5, Compatibility, Interoperability, and Integration of Command, Control,
Communications, and Intelligence (C3I) Systems. In the case of automated information system
(AIS) migration systems, the complete MNS is validated and approved at Milestone 0 and
updated (if appropriate) at the time the AIS is designated a migration system. [ANDERSON98]

• Operational Requirements Document (ORD). Once an acquisition program is approved,
operational requirements for selected concept(s) progressively evolve. Broad operational
capability needs identified in the MNS become system-specific performance requirements
documented in the ORD, as illustrated in Figure 5-9 The ORD is prepared along with life
cycle cost estimates, logistic support analysis, and producibility engineering assessments.
The ORD is solution-oriented and becomes the basis for the following:
− Program direction.
− Program baselines.

• Integrated Master Plan (IMP). The IMP is an event-based program plan that documents all
the tasks required to deliver a high quality product and facilitate success throughout the
product’s life cycle. [Cost, schedule (specific dates), and non-essential tasks are not included
in this plan.]

• Integrated Master Schedule (IMS). The IMS begins as an IMP with dates — the starting
points are the events, accomplishments, and criteria that make up the plan. Under acquisition
reform initiatives, the dates in the IMP usually are not made contractually binding to allow
flexibility in taking advantage of event-driven scheduling.

web7.whs.osd.mil/pdf3/d463005(11-12-92)/d46305.pdf

5-12

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

• Test and Evaluation Master Plan (TEMP). The TEMP describes the program’s overall test
and evaluation strategy. It is prepared as early as possible in the acquisition process (normally
prior to Milestone I). It is designed to identify and integrate objectives, responsibilities,
resources, and schedule for all test and evaluation to be accomplished prior to key decision
milestones.

• Capstone Requirements Document (CRD). The CRD contains performance-based
requirements to facilitate development of individual ORDs by providing a common framework
and operational concept to guide their development.

Very Broad
Needs
(MNS)

System-Specific
Requirements

(ORD)

Performance
Objectives (ORD/

CRD)

Figure 5-9. Evolution of Acquisition System Requirements Documents [CJCS3170.10]

5.3.1.2 Mission Need Validation

Nonmaterial solutions to mission needs (such as changes in doctrine or tactics) are analyzed
first. If a nonmaterial solution is not feasible, all considerations are documented, and a
determination is made as to whether the potential materiel solution could result in an ACAT I or
ACAT IA program.

• ACAT I Programs. If the potential materiel solution results in a new ACAT I program, the
Joint Requirements Oversight Council (JROC) reviews the documented mission need,
determines its validity, and establishes joint potential. The mission need validation process
for ACAT I programs is summarized in Figure 5-8. [NOTE: The process is the same for
ACAT IA, except that the memo goes to ASD(C3I).]

• ACAT IA Programs. If the potential solution results in a new ACAT IA, the appropriate OSD
PSA or the JROC reviews the documented need, determines its validity, establishes joint
potential, and confirms that the requirements [defined in DoD 8000.1] have been met. [DoDD
5000.1]

5.3.1.3 Milestone 0 Decision: Approval to Conduct Concept Studies

The Concept Studies Approval (Milestone 0 Decision) is made when the Milestone Decision
Authority (MDA) determines the following:

web7.whs.osd.mil/pdf/d80001p.pdf

5-13

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

• The MNS is validated,
• The need cannot be satisfied by a nonmateriel solution,
• The need is sufficiently important to warrant funding study efforts to explore and define

alternative concepts;
• Command, control, communications, computers, intelligence, surveillance, and

reconnaissance (C4ISR) support requirements can be met; and
• For an ACAT IA program, an Analysis of Alternatives (AOA) has been considered. [DoD

5000.2-R]

• Analysis of Alternatives (AOA). An evaluation of the advantages and disadvantages of
alternatives being considered to satisfy a requirement, to include the sensitivity of each
alternative to possible changes in key assumptions or variables. The analysis aids decision-
makers in judging whether or not any of the alternatives offer sufficient benefit to be worth
the cost.

[NOTE: A favorable Milestone 0 Decision does not mean a new acquisition program has
been initiated.]

• ACAT 1 Programs. After the JROC validates the mission need for an ACAT I program,
USD(A&T) convenes a Milestone 0 Defense Acquisition Board (DAB) to review the MNS,
identify possible materiel alternatives, and authorize concept studies, if necessary.

• ACAT IA Programs. The JROC (or cognizant OSD PSA), validates the mission need and
acquisition process integrity in compliance with DoDD 8000.1. ASD(C3I) convenes a
Milestone 0 Information Technology Overarching Integrated Product Team (IT OIPT). For
C3I systems, the MNS should be submitted for validation and approval in accordance with
DoDD 4630.5. In the case of AIS migration systems, the complete MNS is validated and
approved at Milestone 0 and updated, if appropriate.

5.3.2 Phase 0: Concept Exploration and Definition

Following a successful Milestone 0 Decision, Concept Exploration and Definition involves a
series of studies to define and evaluate the feasibility of alternative concepts and their relative
merits (i.e., advantages, disadvantages, degree of risk, etc.). The most promising system concepts
are defined in terms of the following initial, broad objectives:

• Cost
• Schedule
• Performance
• Software requirements
• Tradeoff opportunities
• Overall acquisition strategy
• Test and evaluation strategy
• Readiness objectives

5-14

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

These concepts are often explored through competitive, parallel, short-term contracts, which
provide the basis for assessing the merits of alternative concepts at the Milestone I Decision.
[DoD 5000.2-R]

NOTE - A list of recommended items to include in a draft ORD is found in Volume 2,
Appendix T, Automated Information Systems (AIS) Operational Requirements Documents
(ORDs) Recommendations.

A product of this phase is the selection of a proposed Acquisition Strategy [discussed in Chapter
7, Acquisition Planning]. Demonstration program(s) are designed, coded, tested, and implemented
to provide basic (or elementary) capabilities across the full range of requirements. During Phase
0, the following activities are normally performed:

PHASE 0 ACTIVITIES ACAT I ACAT IA

1. A validated assessment of the military threat is created. X

2. Potential environmental consequences are identified. X

3. Major technology and industrial capability issues are analyzed. X

4. Cooperative opportunities are identified. X

5. Compliance with international arms control agreements is
assured.

X

6. Technology and technical risk is considered. X X

7. Advantages and disadvantages of alternative concepts are
assessed.

X X

8. An Acquisition Strategy is identified. X X

9. Cost, schedule, and performance for approval are defined. X X

10. Program-specific objectives for the next phase are defined. X X

11. A proposed oversight and review strategy to include a
description of mandatory program information and when this
information needs to be submitted for the next milestone
decision is developed.

X X

12. System requirements in terms of measures of effectiveness
(MOE), measures of performance (MOP), and C4ISR support
requirements are defined.

X X

Table 5-1. Phase 0 Activities for ACAT I and ACAT IA Programs

Rapid prototyping should be used to support analyses performed during this and the next phase
(and throughout the life cycle, as appropriate). Rapid prototyping can also be used to develop a
subset of functional capabilities to be released to a limited user community for shakedown.
Rapid prototyping is approved at the milestone decision point before its use. Rapid prototyping,
modeling, and simulation are discussed in Chapter 11, Understanding Software Development.

5-15

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.3.2.1 Milestone I Decision: Approval to Begin a New Acquisition

The purpose of the Milestone I Decision is to determine whether the results of Phase 0 warrant
establishing a new acquisition program and to approve entry into Phase I, Program Definition
and Risk Reduction. At Milestone I Decision, the MDA normally considers the following.

MILESTONE I CONSIDERATIONS ACAT I ACAT IA

Threat assessment. X

1. Environmental consequences X

2. Hierarchy of materiel alternatives X

3. Acquisition Strategy X X

4. Phase 0 exit criteria status and Phase I exit criteria
plans

X X

5. Acquisition Program Baseline (APB) (CAIV-based
objectives)

X X

6. AOA and concept studies supporting the need for a new
program

X X

7. Adequacy of resources (manpower and funding) X X

8. Affordability assessment X X

9. Updated C4ISR support requirements. [DoD 5000.2-R] X X

Table 5-2. Milestone I Decision Approval for ACAT I and ACAT IA Programs

5.3.3 Phase I: Program Definition and Risk Reduction

This phase [formerly Demonstration/Validation (Dem/Val)] follows a successful Milestone I
Decision to proceed. One or more concepts, design approaches, and/or parallel technologies are
pursued (as warranted) and advantage/disadvantage assessments of alternative concepts are
refined. Prototyping, demonstrations, and early operational assessments are analyzed to reduce
risk so that technology, production, and support risks are well in hand before the next milestone
decision. The following are also analyzed:

• Cost drivers,
• Life cycle cost estimates,
• Cost-performance tradeoffs,
• Interoperability, and
• Alternative acquisition strategies are considered to include evolutionary and incremental

software development. [DoD 5000.2-R]

An important aspect of this phase is the early integration of supportability considerations into
the system design concept. As illustrated in Figure 5-10, the decisions made during this phase
impact approximately 60% of total life cycle costs. As shown in Figure 5-11, much of these costs
are incurred during the operations and support phase.

5-16

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-10. Effect of Early Decisions on Life Cycle Cost [DSMC90]

Figure 5-11. Nominal Cost Distribution of a Typical DoD ACAT 1/ACAT IA Program
[DSMC90]

5-17

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Prototyping, testing, and early user involvement in operational assessments of critical components
cannot be overemphasized as risk and cost reduction methods. As a function of risk, the costs of
alternative design approach(es) must be evaluated against performance capabilities. [See Chapter
6, Risk Management.] The ORD, TEMP, and Acquisition Strategy are updated to reflect the work
performed during Phase I. During Phase I, the following activities are normally performed:

PHASE I ACTIVITIES ACAT I ACAT IA

1. Assessment of the military threat is updated. X

2. Acquisition Strategy & low rate initial production (LRIP) quantities
refined.

X

3. Industrial capability to support the program is assessed. X

4. Potential environmental impacts are assessed. X

5. Cooperative opportunities are identified. X

6. Compliance with international arms control agreements is assured. X

7. Technology and technical risks are considered. X X

8. Cost objectives and affordability assessment are refined. X X

9. Major cost, schedule, and performance tradeoff opportunities are
identified.

X X

10. Test and evaluation strategy and appropriate testing requirements
identified.

X X

11. Proposed cost, schedule, and performance objectives and
thresholds for approval are identified.

X X

12. That adequate resources have been programmed to support
production, deployment, and support is verified.

X X

13. A proposed oversight and review strategy to include a description of
mandatory program information and when this information needs to
be submitted for the next milestone is developed.

X X

14. CAIV objectives are refined. X X

15. Major technology and industrial capability issues are analyzed. X X

16. Independent Cost Estimate (ICE) and Manpower Estimate (ME)
developed.

X X

17. C4ISR support requirements are refined. [DoDD 5000.2R] X X

Table 5-3. Phase I Activities for ACAT I and ACAT IA Programs

5.3.3.1 Milestone II Decision: Engineering & Manufacturing Development/
Software Engineering & Development

At the Milestone II Decision, Engineering & Manufacturing Development (EMD)/Software
Engineering & Development (for software-intensive programs), the MDA rigorously assesses
the affordability of the program and establishes a development APB. Defense Planning Guidance,
long-range modernization and investment plans, and DoD Component planning documents form
the basis for this decision. Because there is a significant resource commitment associated with

5-18

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

this decision, program risks and risk management plans are rigorously analyzed. The development
APB involves effective interaction among the Requirements Generation, Acquisition Management,
and PPBS systems. The Milestone II Acquisition Decision Memorandum (ADM) states the
following:

• Approval of entry into Phase II, the proposed (or modified) APB, and the Acquisition Strategy,
• Life-cycle cost objectives and exit criteria have been established, and
• LRIP quantities have been identified (if appropriate for ACAT I).

The LRIP strategy, required information, and the following are normally considered by the MDA
at this milestone.

MILESTONE II DECISION CONSIDERATIONS ACAT I ACAT IA

1. Validated threat assessment X

2. Waiver from full-up, system-level live fire T&E (LFT&E) X

3. Potential environmental consequences X

4. LRIP quantities X

5. Acquisition Strategy X X

6. APB (including CAIV-based objectives) X X

7. Status of Phase I exit criteria status and Phase II exit
criteria plans

X X

8. Prototyping/demonstration results X X

9. Adequacy of resources (manpower and funding) X X

10. ICE and Manpower Estimate X X

11. Updated C4ISR support requirement X X

Table 5-4. Milestone II Decision Approval for ACAT I and ACAT IA Programs

With the Milestone II Decision, the affordability of the program is assessed and a decision is
made on whether the activities of this Phase I warrant continuation to the next phase. A
Development Baseline is established reflecting cost, schedule, and performance requirements.
[DoD 5000.2-R]

5.3.3.1.1 Milestone II Decision: Low Rate Initial Production Decision

A favorable LRIP Decision only authorizes the program manager (PM) to commence LRIP. The
PM is authorized to commence full-rate production with further approval of the MDA.

5-19

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.3.4 Phase II: Engineering Manufacturing & Development/

Software Engineering & Development

Following a successful Milestone II Decision, Engineering & Manufacturing Development (EMD)/
Software Engineering & Development (for software-intensive programs), actual product
development and/or manufacturing begins. Note that this phase may be repeated if the life cycle
methods are incremental or evolutionary [discussed below]. Effective risk management is
especially critical during this phase. To assist in managing risk, resources are only committed
commensurate with the reduction and closure of risk elements. Configuration management control
is established for the design, engineering, and management processes. Development and test
activities focus on high-risk areas, address the operational environment, and are phased to support
internal decision making and the Milestone III Decision review. The primary objectives of this
phase include:

• Translating the most promising design approach into a stable, interoperable, producible,
supportable, and cost-effective design;

• Validating the development process; and
• Demonstrating system capabilities through testing (i.e., verifying the fulfillment of

requirements). [DoD 5000.2-R]

When possible, developmental testing supports and provides data for operational assessment
before initial operational test and evaluation by the operational test activity. Cost of an Independent
Variable (CAIV) analyses from earlier phases are refined and continued through the Critical
Design Review (CDR). System-specific performance requirements are developed for contract
specifications in coordination with the user (or the user’s representative).

Planning for Phase III addresses design stability, development, industrial base capacity,
configuration management control, deployment, and support (including, as appropriate, the
transition from interim contract to in-house support). Developmental test and evaluation (DT&E)
(testing to development specification) is performed. This supports and provides data for an
operational assessment prior to operational test and evaluation (OT&E) (testing to operational
requirements), also performed during Phase I.

Program budget status is periodically reviewed by both the PBBS and acquisition management
systems during this phase. Changes to the program that result in the actual or projected breach of
an established program baseline parameter are identified. Such changes may require a formal
notification to the MDA. During Phase II the following activities are normally performed:

5-20

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Table 5-5. Phase II Activities for ACAT I and ACAT IA Programs

PHASE II ACTIVITIES ACAT I ACAT IA

1. Update assessment of the military threat is X

2. An updated test program with required lethality and survivability
testing is developed

X

3. Potential environmental impacts are assessed X

4. Cooperative opportunities are identified X

5. Compliance with international arms control agreements is assured X

6. Design stability is achieved X X

7. Technology and technical risk are considered X X

8. Software design, coding, integration, and testing is performed X X

9. Initial operational test and evaluation (IOT&E) results that realistically
portray operational performance are produced

X X

10. Technological and industrial capability to support the program is
assessed

X X

11. The Acquisition Strategy to include the support concept is refined X X

12. The program cost estimate, independent cost estimate, cost
objectives and Manpower Estimate are refined

X X

13. An updated affordability assessment is developed X X

14. Proposed cost, schedule, and performance objectives and thresholds
for approval are identified

X X

15. That adequate resources have been programmed to support
production, deployment, and support is verified

X X

16. A proposed oversight and review strategy to include a description of
mandatory information and when this information must be submitted
for the next milestone is developed

X X

17. CAIV objectives are refined X X

18. C4ISR support requirements are updated X X

5-21

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.3.4.1 Phase II: Software Engineering and Development Activities

For all major software development programs, the following activities should occur:

PHASE II SOFTWARE ENGINEERING & DEVELOPMENT ACAT I ACAT IA

1. Plans are made for the development and use of reusable software
assets.

X X

2. Security specifications are based on identified security requirements
and the consideration of potential threats and vulnerabilities.

X X

3. DoD-approved software metrics are used to provide a quantitative
framework from which to evaluate and control software development or
integration.

• A common core set of software management metrics are developed
early in the development cycle and approved at Milestone II.

X X

4. ACAT IA performance objectives and measures are established and
supported by program evaluations and cost/benefit analyses that are
refined in later phases and prepared, in accordance with DoDI 7041.3,
Economic Analysis and Program Evaluation for Resource Management.

X X

5. Standards planning, including identification of information technology
standards profiles, is accomplished in accordance with the Technical
Architecture Framework for Information Management (TAFIM).

X X

6. The AIS human computer interface is developed in accordance with the
Human Computer Interface Style Guide.

X X

7. DoD standard data elements are designed, development, registered,
and implemented in accordance with DoDD 8320.1, DoD Data
Administration.

X X

8. Government-off-the-shelf (GOTS), commercial-off-the-shelf (COTS), or
nondevelopmental item (NDI) products are certified as meeting
appropriate standards.

X X

9. C3I systems are reviewed for compliance with compatibility and
interoperability policy in accordance with DoDD 4630.5.
[ANDERSON98]

X X

Table 5-6. Activities for Phase II Software Engineering and Development

5.3.4.2 Low Rate Initial Production (LRIP)

Low Rate Initial Production (LRIP) (for ACAT I programs) occurs during EMD. Design fixes or
upgrades based on test results are incorporated into the initial assets. The objective of LRIP is to
produce the minimum number of systems necessary to:

• Provide production configured or representative articles for operational tests,
• Establish an initial system production base; and
• Upon successful completion of operational testing, permit an orderly increase in the system

production rate sufficient to lead to full-rate production.

5-22

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

At the LRIP decision, the MDA normally considers the following:

Table 5-7. LRIP Design Considerations [ANDERSON98]

NOTE - LRIP is not applicable to ACAT IA programs; however, They may employ a
limited deployment phase. [DoD 5000.2-R]

5.3.4.3 Milestone III Decision: Production or Fielding/Deployment Approval

The purpose of the Milestone III Decision is to authorize the transition into production for an
ACAT I program, or deployment for an ACAT IA program. It represents a commitment to build,
deploy, and support the system. Particular attention is placed on assessing DOT&E and OT&E
results. The most economic production rate that can be sustained (given affordability constraints)
is established. Planning is performed for a possible transition to contingency support or
reconstitution. Establishing the production APB requires effective interaction among the three
major decision support systems. This is particularly critical for establishing economic production
rates.

Criteria are established for determining when the operational capability is attained and that planning
for deployment and support is complete and adequate. The completion of engineering drawings,
the system and software architecture, and their release to engineering organizations signify that
program managers are confident that they are mature and perform adequately. These documents
reflect the results of prototyping and testing, describe the hardware and software, and define
engineering processes. The Critical Design Review (CDR) is a major event that represents a
point of departure from detailed design to system development.

The risks of proceeding with CDR and the rest of development as planned are increased without
a mature design. Thus before production begins, the process of discovery, the accumulation of
knowledge, and the elimination of risks or unknowns must be complete. Because system
development must be a clearly defined, stable, statistically controlled process, the Milestone III
Decision must be based on achieving the following criteria.

LRIP DECISION CONSIDERATIONS ACAT I ACAT IA

1. Acquisition Strategy X

2. APB X

3. Phase II exit criteria X

4. Threat assessment X

5. Test results X

6. Initial production experience X

7. Environmental consequences X

8. CAIV progress X

9. Adequacy of resources (manpower and funding) X

10. Updated C4ISR support requirements X

11. ICE and Manpower Estimate X

5-23

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

• The technological solution is mature and fulfills all system requirements;
• The design performs as expected; and
• The system can be developed on time and at a reasonable cost.

Be advised, if an acquisition program cannot meet these criteria, it possesses an unacceptable
level of cost, schedule, and technical risk. Immature or undeveloped software-intensive solutions
must be managed separately until they can meet these criteria before proceeding to the next life
cycle phase. [HINTON98] See discussion on Advanced Concept Technology Demonstrations
(ACTDs) in Chapter 4, DoD Software Acquisition Environment. In addition, frequently changing
designs lead to unstable development processes. Late design changes cause serious development
problems that necessitate costly process changes. Unstable designs force developers to perform
problem workarounds, which lead to labor inefficiencies and result in high scrap and rework
rates. According to Watts Humphrey,

“As long as programmers are writing code, they are making design decisions, just at a more
detailed level. Many of these details will impact the usability and performance of the system, just
not at a high enough level for the people who wrote the requirements to be aware of them. The field
users of such systems, however, will almost always find that systems developed blindly from
requirements documents are inconvenient and unwieldy in operational use. Truly superior usability
can only be obtained when the developers have an in-depth knowledge of actual field conditions.
While suppliers should start from official requirements, these must be recognized as a starting
point and that much more detailed knowledge is required before the system can actually be built.
The key is to make the supplier responsible for devising, defining, and using a process that uncovers
true operational requirements.” [HUMPHREY95]

The Milestone III ADM approves entry into Phase III (Production, Fielding/Deployment, and
Operational Support), approves the proposed or modified Acquisition strategy and production
APB, and establishes exit criteria. At the Milestone III Decision, the MDA normally considers
the following:

5-24

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Table 5-8. Milestone III Decision Approval for ACAT I and ACAT IA Programs
[ANDERSON98]

Once a Milestone III Decision has been approved, a Production Baseline is established that
reflects the cost, schedule, and performance assessment requirements for the next phase.

5.3.5 Phase III: Production, Fielding/ Deployment, and

Operational Support

Following a successful Milestone III Decision, system performance and quality are monitored by
FOT&Es. Cost, schedule, and performance are reviewed and compared to the Production Baseline.
User feedback and field experience results (including operational readiness rates) are continuously
monitored. Support plans are implemented to ensure sufficient support resources are acquired
and deployed with the system. The objective of this phase is to achieve an operational capability
that satisfies mission needs. This includes:

• Assessing the ability of the system to perform as intended,
• Identifying and incorporating minor engineering change proposals into production lots to

meet required capabilities; and
• Identifying the need for major upgrades or modifications.

Deficiencies encountered in DT&E and initial operational test and evaluation (IOT&E) are resolved
and fixes verified. During fielding/deployment and throughout operational support, opportunities
for system improvements through upgrades, enhancements, and modifications are continuously
assessed. System performance and quality is monitored by follow-on OT&E (FOT&E). Program
budget status is periodically reviewed by the PPBS and Acquisition Management Systems. The
results of field experience (including operational readiness rates) are continuously monitored,

MILESTONE III DECISION CONSIDERATIONS ACAT I ACAT IA

1. Threat assessment X

2. Initial production experience X

3. Environmental consequences X

4. Acquisition Strategy X X

5. APB (including CAIV-based objectives) X X

6. Phase II exit criteria X X

7. Test results X X

8. Provisions for evaluating post-deployment performance [compliance
with GPRA, Cohen Act (ACAT IA only), and PRA] (see Table 5-10
below)

X X

9. Adequacy of resources (manpower and funding) X X

10. ICE and ME

11. Updated C4ISR support requirements X X

5-25

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

particularly during the early stages of deployment. Support plans are implemented to ensure
support resources are acquired and deployed with the system. During Phase III the following are
normally performed:

PHASE III ACTIVITIES ACAT I ACAT IA

1. The military threat assessment is updated and validated X

2. Full rate production experience is used to verify development
processes, confirm the design stability and producibility, and develop
realistic development cost estimates.

X

3. The configuration management program is developed X X

4. Life cycle cost estimates are updated X X

5. Operational and support plans, to include transition from contractor to
in-house support (if appropriate) are executed

X X

6. Operational and support problems are identified X X

7. System deficiencies discovered during DOT&E and FOT&E are
verified and resolved (as appropriate)

X X

8. C4ISR support requirements are updated X X

Table 5-9. Phase III Activities for ACAT I and ACAT IA Programs [ANDERSON98]

NOTE - The production requirement of this phase does not apply to ACAT IA acquisition
programs or software-intensive systems with no developmental hardware components.
[DoD 5000.2-R]

5.3.5.1 Operational Support

The objective of this activity is to implement a support program that meets performance and
sustainment threshold values in the most cost effective manner. An FOT&E program assesses
performance, quality, compatibility, and interoperability, and identifies operational deficiencies.
Operational support plans are implemented to include the transition from contractor to organic
support, as appropriate.

This phase overlaps Phase III and begins after initial systems, increments, or capabilities have
been fielded. It is marked by the declaration of an operational capability or the transition of
management responsibility from the developer to the maintainer. Operational support continues
until the system is retired from the inventory or a decision is made to commit to a major upgrade
or modification (which causes the program to re-enter Phase I, II, or III, as appropriate). Quality,
safety, performance, and technological obsolescence are corrected as identified. Post deployment
supportability/readiness reviews are periodically conducted to resolve operational and
supportability issues. [DoD 5000.2-R]

5.3.5.2 Modifications

The objective of this activity is to undertake modifications and updates to extend the system’s
useful life; however, the proliferation of system configurations must be minimized. For
management purposes, any system modification of sufficient cost and complexity that qualifies

5-26

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

as an ACAT I or ACAT IA program is considered a separate acquisition effort. System modifications
that do not meet the ACAT I or IA thresholds are considered part of the program being modified,
unless the system is no longer in production. In that case, the modification is considered a separate
acquisition effort. [DoD 5000.2-R]

5.4 Life Cycle Compliance with Statutory and
Regulatory Requirements

In the past several years, Congress has enacted legislation intended to improve the management
and performance of Federal Agencies. These laws [discussed in Chapter 3, Statutory Framework
Governing Software Acquisition] include the Cohen Act GPRA, and the PRA. Further guidance
from the OMB places added emphasis on managing investments, to include weapon systems.
DoD programs must also comply with other statutory and DoD regulatory acquisition requirements.
These requirements are applied (as appropriate) to each increment of incremental and evolutionary
programs (discussed below) at the following life cycle milestone decisions, as illustrated in Figure
5-12.

• Pre Milestone 0. Some requirements (those that address the need for information systems
and the processes they support) are the responsibility of the user or the functional proponent.
Responsibility for ensuring compliance with these requirements before MDA Milestone 0
approval belongs to the appropriate user or functional proponent in coordination with the
JROC process, the Component, or the PSA.

• Milestones 0 through III. Many of these requirements are similar to those discussed above
and are appropriate for MDA review at each major milestone. For software-intensive NSS
programs subject to DAB review, the DoD CIO provides the MDA with an assessment of
compliance with regulatory requirements. This is accomplished through the DAB IPT process.

• Post Milestone III. Milestone III ADMs include post-deployment performance evaluations
and compliance with other performance measurement guidance, as appropriate. The ADM
ensures that the user or functional proponent performs post-deployment evaluations and
provides the results to the DoD CIO. [KAMINSKI97]

5-27

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-12. Milestone Review Process for Compliance with Statutory and other
Regulatory Requirements

Table 5-10 correlates GPRA, PRA, and Cohen Act requirements with the other statutory and
DoD regulatory acquisition requirements. To ensure program success, Integrated Product Team
(IPT) members should consider these requirements as programs progress through the acquisition
process. To the maximum extent possible, these requirements should be addressed by incorporating
them into existing acquisition processes, procedures, and documents. [*The document is explicitly
approved by the official indicated.] [KAMINSKI97]

5-
28

C
h

ap
te

r
5:

 S
ys

te
m

 L
if

e
C

yc
le

 &
 M

et
h

od
ol

og
ie

s

G
S

A
M

 V
er

si
on

 3
.0

T
ab

le
 5

-1
0.

 A
C

A
T

 I
A

 P
ro

g
ra

m
 R

eq
u

ir
em

en
ts

 [
K

A
M

IN
SK

I9
7]

5-
29

C
h

ap
te

r
5:

 S
ys

te
m

 L
if

e
C

yc
le

 &
 M

et
h

od
ol

og
ie

s

G
S

A
M

 V
er

si
on

 3
.0

T
ab

le
 5

-1
0

, c
on

ti
n

u
ed

.
A

C
A

T
 I

A
 P

ro
g

ra
m

 R
eq

u
ir

em
en

ts
 [

K
A

M
IN

SK
I9

7]

5-
30

C
h

ap
te

r
5:

 S
ys

te
m

 L
if

e
C

yc
le

 &
 M

et
h

od
ol

og
ie

s

G
S

A
M

 V
er

si
on

 3
.0

T
ab

le
 5

-1
0

, c
on

ti
n

u
ed

.
A

C
A

T
 I

A
 P

ro
g

ra
m

 R
eq

u
ir

em
en

ts
 [

K
A

M
IN

SK
I9

7]

5-31

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.5 Life Cycle Management

Performance-based and modeling & simulation-based acquisition management should be folded
into your life cycle management methodology and process. They are proven risk reduction methods,
which are firmly endorsed by the Congress and the DoD.

5.5.1 Performance-Based Life Cycle Management

Performance-based life cycle management is the application of the performance-based paradigm
[discussed in Chapter 3, Statutory Framework Governing Software Acquistion] to the DoD 5000-
series life cycle process. According to Lt. Col. Dennis Drayer (USAF), DoD acquisition practices
have produced the best military systems in the world. However, our requirements allocation
process is often flawed. Requirements are flowed down without allocation at lower levels, resulting
in incomplete requirements definition at the user/maintainer level. Testing often dominates the
design evolution process and program and product teams fail to identify and control critical
system features and processes. In many cases, the causes for a system’s behavior are not understood
or controlled as the design evolves. The result is design by trial and error. [DRAYER98]
Performance-based life cycle management attacks these shortcomings. As you learned in Chapter
3, Statutory Framework Governing Software Acquisition, Performance-based management
includes the following key steps:

• Define clear missions and desired outcomes,
• Measure performance to gauge progress, and
• Use performance information as a basis for decision-making. [BOWSHER96]

5.5.1.1 Performance-Based Systems Definition

Design is often a point solution that does not tolerate normal variations, which makes it hard to
transition from the laboratory to development. Incorporating changes or adding new technology
is often difficult. Such conditions limit the ability to apply innovative concepts (such as competitive
sourcing through open system architectures and migration to common processes). Drayer explains
that a good performance-based system definition must include three information categories:

• Category 1: System Performance Definition
• Category 2: System Design
• Category 3: Software Engineering and Development Definition (for Software-Intensive

Systems)

5.5.1.1.1 Category 1: System Performance Requirements Definition

Derived operational requirements are translated into specific technical engineering language
stated in performance terms, which provides the basis for a design solution and design qualification.
Similar to traditional development specifications, in a disciplined systems engineering process
the contractor develops and verifies this data as top-level requirements filter down.

5-32

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

The Government conveys its needs through high-level specifications, limiting military-unique
specifications and standards. Although the prime contract may include some requirements
allocation items, most are under contractor control. The aim of the system definition process is to
decrease the amount of deliverable technical data. Based on technical and capability risk
assessments, the DoD program team decides to include or exclude contractually required data.
[DRAYER98]

5.5.1.1.2 Category 2: System Design

Engineering and development environments are linked by translating Category 1 requirements
into the system design. Design-specific performance requirements define key system engineering
design and development characteristics and enable efficient technology insertion at a minimum
requalification cost.

The system design defines how the user implements a given function. This avoids high, non-
recurring costs that result from growing designs to meet new requirements, technology insertion/
obsolescence, and service-life extension. In developing the system definition, key interface
requirements are specified that drive interoperability with other platforms and systems/subsystems
(such as armament and C3I systems).

System acceptance criteria are defined for functional and physical attributes measured by the
developer and used for system acceptance. Where interchangeability and interoperability issues
are complex (such as in avionics and electronics design), it is important that the Program Manager
capture as installed/ as integrated characteristics within the subsystem design, as well as total
weapon system (or AIS) designs.

5.5.1.1.3 Category 3: Software Engineering and Development Definition (for software-
intensive systems)

This includes everything the build package needs to develop the system as defined by Category 2
requirements (including detailed software development process capability requirements). The
detailed system definition includes development-level information (in contractor format) applicable
to the as built condition and industry-wide software engineering standards, which form the basis
for system quality assurance. The data required to develop the system efficiently drive the level
of detail — not the Government’s intent to control the developer’s process.

5.5.1.2 Performance-Based Systems Engineering

The performance-based approach for maintaining system integrity draws upon lessons learned
without dictating a solution. For example, past methods for defining critical flight safety
components and systems imposed prescriptive military specifications and standards. This did
not always capture the critical information needed to develop and sustain the system. The thorough
definition of what is used to develop and support the system over its life cycle results in a robust
system engineering process. Rather than prescribing a new, rigid format, this method is flexible
and carefully tailored to the contractor’s specific engineering and technical processes. The system
description quantifies required performance parameters and defines system characteristics, key
processes, critical interfaces, and system acceptance criteria. [DRAYER98]

5-33

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.5.1.2.1 Statistical Process Control (SPC)

Performance-based system acceptance uses statistical process control (SPC) rather than extensive
testing and inspections. All key processes must be under statistical control when production
begins. An SPC program is established that monitors processes to ensure they consistently produce
output that is within the quality standards and tolerances set for the overall system. Statistics
concerning the quality of each process output are analyzed, and when the output is out of tolerance,
process owners search for causes.

Once a process is producing consistently high-quality output, the process is considered to be in
statistical control, and inspections are reduced. The knowledge gained using SPC is significant
in transitioning from development to production because it helps ensure that cost, schedule,
quality, and reliability targets satisfy user requirements. The ability to establish SPC for key
processes before production begins is the culmination of all the practices employed to identify
and reduce risk. The criteria established throughout the system development process forces
Program Managers to prove that the system design is capable and producible early in the process.
[HINTON98]

5.5.1.3 Performance-Based Management Benefits

Performance-based requirements identify safety critical components, define special development
requirements or tolerances, and quantify critical software functions or life cycle management
requirements. Because system integrity can be maintained, this management method offers
considerable cost savings. Combined with a rigorous systems engineering approach to system
design and development, the performance-based life cycle method provides the following benefits:

• Acquisition operations are more efficient;
• Performance and quality requirements are fulfilled at minimum cost;
• Robust design solutions are facilitated that tolerate development variations; and
• Technology insertion is accommodated in a cost-effective manner. [DRAYER98]

5.5.2 Modeling & Simulation-Based Life Cycle Management

“Simulation and modeling technology can be applied to every major DoD weapon development
program to reduce design and production cost, improve performance, improve diagnostics and
maintenance, assist in better and faster training of personnel, and improved command and control
on the battlefield.” — Colleen Preston (Deputy Under Secretary of Defense Acquisition Reform)
[PRESTON94]

Modeling & simulation (M&S) is a powerful tool for helping acquisition Program Managers to
optimize their processes. DoDD 5000-1 states that simulations/models (sim/mods) are to be
used to reduce the time, resources, and acquisition process risks and increase systems quality.
Representations of proposed systems (virtual prototypes) should be embedded in realistic, synthetic
environments to support various acquisition life cycle phases. Sim/mods can be used from
requirements determination to initial concept exploration, manufacturing, new system testing,
and related training.

5-34

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

M&S are often viewed as a potential solution to DoD’s many acquisition problems. It can be
used to prove concepts through simple chalkboard mathematical calculations to full-scale system
replicas that operate in controlled environments. Sim/mods are tools that minimize acquisition
costs, schedule, performance, and supportability risks, as illustrated in Figure 5-13.

Figure 5-13. Risk-Based Management of Systems Acquisition Life Cycle Process
[PIPLANI94]

M&S can be used to support in each phase of the acquisition life cycle. M&S is the application of
those tools to support decisions. An efficient and effective source of valuable information for
new defense system development and evaluation. When used in a well-defined, integrated manner,
M&S reduces the expenditure of resources, accelerates understanding through early insight,
shortens cycle times, and improves system quality.

The full potential of M&S-based life cycle management is realized through Integrated Product
and Process Development (IPPD) and IPTs. Their effectiveness is improved by implementing
state-of-the-art M&S for planning, design, analysis, management, and testing throughout the
acquisition process.

5.5.2.1 M&S-Based Pre-Phase 0: Mission Area Analysis

The modeling and simulation (M&S) tools used during this phase provide insight into operational
risk and are used to identify nonmaterial or materiel approaches to mitigate risks. Suites of sim/
mods, along with supporting data (including threat, environment, tactics, doctrine, etc.), are
used to perform MAAs. In accordance with DoDI 5000.2-R, M&S are to be used to analyze
tactics and concept of operation changes with existing baseline systems before new systems
evaluations. Campaign/theater level sim/mods, used in conjunction with the results of lower
level sim/mods, produce data for identifying warfighting needs documented in the MNS.
[PIPLANI94]

5-35

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.5.2.2 M&S-Based Phase 0: Concept Exploration and Definition

The same sim/mods used to define requirements are employed to examine the capabilities of
specific materiel solutions. Initial program planning and key program documents are developed.
M&S data ensure consistency among planning and other program documents. M&S supports the
implementation of the Cost as an Independent Variable (CAIV), early risk reduction, the
establishment of consistent measures of effectiveness (MOEs), and measures of performance
(MOPs). Engineering sim/mods project performance and requirements tradeoffs. Engagement
and mission/battle level sim/mods determine mission effectiveness, support cost/performance
tradeoffs, and ORD development. Theater and campaign level sim/mods evaluate conflict
outcomes in support of the same documents. Human interactive sim/mods are used to develop
tactics. Virtual sim/mods evaluate concepts, technologies, and tactics in realistic synthetic
environments.

The TEMP identifies M&S resources required to support development and operational testing.
How sim/mods will be used across all IPPD functional disciplines is determined as the appropriate
plans (e.g., integrated logistics support plan, systems engineering management plan, etc.) are
developed. As illustrated in Figure 5-14, M&S aids in establishing and maintaining consistent
relationships among MOEs, MOPs, and program documentation. [PIPLANI94]

Figure 5-14. M&S Provides Consistency among Acquisition Program Documents,
Needs, and Measures [PIPLANI94]

5-36

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

During this phase, the groundwork is established for continued M&S life cycle application. This
includes sim/mod use/reuse, integration and interoperability, and common databases. Sim/mod
development planning also addresses future compatibility with synthetic battlefields through
Distributed Interactive Simulation (DIS) communication standards and eventual transition of
developed sim/mods to the training environment. The main objective of this phase is to allow
later builds of already developed sim/mods. This reduces duplication and provides consistency
throughout the life cycle phases and among the documents and activities within a given phase.
[PIPLANI94]

5.5.2.3 M&S-Based Phase I: Program Definition and Risk Reduction

During this phase, system definition and alternative concept assessments are refined. Critical
technologies are demonstrated and prototyping is conducted. M&S applications include hardware/
software-in-the-loop (HWIL/SWIL), computer-aided design/manufacturing (CAD/CAM),
engineering and mission level sim/mods for interoperability analyses, and continued theater/
campaign level support to cost/performance studies and the ORD.

Human-in-the-loop sim/mods are used to evaluate the developing human-machine interface.
Virtual prototyping can include actual prototype hardware and software, with the possible linking
of sim/mods to a virtual battlefield. These sim/mods are be used to support early operational
assessments (EOA), and to assist the source selection process. M&S continues to support risk
reduction with added emphasis on technical solutions and system integration. Figure 5-15
illustrates how M&S is used for requirements definition.

Figure 5-15. M&S in Requirements Definition [PIPLANI94]

5-37

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.5.2.4 M&S-Based Phase II: EMD/Software Engineering and Development

M&S supports the transition from design to initial production and testing. Engineering level
models are used for performance analysis, test planning, and test support. As illustrated in Figure
5-16, the M&S model-test-model process is used to optimize testing resources and further refine
hardware and software components. Theater, campaign, battle, and mission sim/mods are updated
with the latest parameters and continue to support high-level conflict resolution and MOE
consistency.

MODELING & SIMULATION
(Pre-Test)

SYSTEM
DEVELOPMENT

TEST
(Live Simulation)

MODELING & SIMULATION
(Post-Test)

ID Critical Tests
Develop Test Scenario
Define Instrumentation
Plan Data Analysis
Predict Test Results
Mission Rehearsals
Hardware Software

Checkouts Instrument System
Conduct Live Tests
Collect & Process Data

for Test Results and
M&S Validation

Analyze Data & Compare
With Predictions

Extract and Extrapolate
MOPs & MOEs

Validate / Update M&S

Requirements Verification /
Updates

Design Updates

Figure 5-16. Model-Test-Model Development Process [PIPLANI94]

Virtual factories are used to define production schedules and physical configuration. Virtual sim/
mods are used to develop user-training systems and to conduct test rehearsals. Combinations of
engineering, engagement, mission, campaign, and HWIL sim/mods augment developmental and
operational testing commensurate with the level of verification, validation, and accreditation
(VV&A) performed. M&S serves as a tool for continued risk reduction through detailed design
development and test planning. Figure 5-17 illustrates the simulation-based design process.

5-38

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-17. Virtual M&S Design in the System Life Cycle [PIPLANI94]

5.5.2.5 M&S-Based Phase III: Production, Fielding/Deployment, and
Operational Support

In this phase, M&S supports continued testing, design changes and enhancements, training,
logistics, maintenance, and system updates. The model-test-model process continues to refine
sim/mods and improve systems. Actual data are applied to all levels of M&S for continued
validation. High level sim/mods are used for training commanders and battle staffs. Virtual sim/
mods are employed as for operational crew training, tactics development, and new threat
evaluations.

Throughout all life cycle phases, M&S tools are used, refined, and shared to set and achieve
challenging cost objectives, reduce program risk, and conserve program assets. Total acquisition
cost and cycle times can be reduced. M&S tools can be reused by users for training. Other
acquisition domains can build upon existing sim/mods for interoperability. VV&A can be reapplied
to mitigate M&S costs.

5.6 Life Cycle Management Methodologies

A methodology refers to the standards and procedures that affect the planning, analysis, design,
development, implementation, operation, support, and disposal of a software-intensive system.
Thus, we use the term software life cycle management methodology, rather than software
development methodology, to avoid a perception that the methodology only focuses on the design
and build stages. Derived from historical program experience, methodologies provide insight
into the use of candidate solutions based on program character, acceptable level of risk, and
system constraints.

5-39

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Methodologies present a conceptualization of the life cycle process that can be used as a
communication tool among all system stakeholders. Specifically, they aid in defining the sequence
of major life cycle activities, provide a better understanding of required activities, and serve as a
starting point for management decision-making. Remember that software development
methodologies used for weapon systems must integrate with, and be consistent with, the weapon
system and systems engineering development methodologies used for the total system. The
following selected software life cycle management methodologies will be discussed:

• Evolutionary,
• Incremental,
• Spiral,
• Modeling and simulation-based,
• Waterfall, and
• Other methods chosen for their applicability to your program’s development or support

environment. [PASSMORE94]

Fast-track methods speed up (or bypass) one or more life cycle phases or development processes.
An organization can use an existing methodology or develop its own. The focus, names of
components, and division of activities vary among methodologies. A methodology should be
selected based on the nature of your program, software domain, the methods and tools used, and
the controls and deliverables required. [PRESSMAN92] Most life cycle management
methodologies include at least the following:

• Phases. The methodology divides the life cycle into phases, noting which activities fall in
each, and includes a process for determining when each system component can move to the
next phase.

• Milestones. The methodology defines event-driven milestones in each phase — rather than
schedule- or cost-driven. Each milestone specifies appropriate deliverables (e.g., a written
report, briefing, test result, portion of code or functionality, analysis or design data, etc.). The
methodology also includes program office approval criteria for completion of one phase and
movement to the next.

• Content of deliverables. The methodology defines (either by topic or outline) what each
milestone deliverable should include.

• Evaluation criteria for deliverables. The methodology defines which criteria a deliverable
must meet to satisfy a milestone for formal Government acceptance. These are also defined
as exit criteria for completion of one phase and passage to the next. The methodology and
criteria are specified in the Software Development Plan (SDP).

During software development, errors/defects are discovered, opportunities are revealed, changes
are superimposed, and even changes are changed. Unless carefully controlled, the ensuing
complexity makes software evolution error-prone, time consuming, and expensive. The use of
life cycle management methodologies has proven extremely effective in controlling change and
managing development process complexity.

BE AWARE! For any life cycle methodology to be effective, it must be customized to
your specific program goals.

5-40

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

As useful as they are, life cycle methodologies have their limitations in that they can hide important
process detail critical to program success. Life cycle management methods are often too abstract
to convey the details of architecture, concept of operations, process steps, data flows, development
activities, engineering roles, program constraints, etc. Program management CASE (Computer
Assisted Software Engineering) tools address many of these issues. They can enhance many
facets of the life cycle process, such as data modeling and normalization, graphical support for
design modeling, and code testing. They also support program management, planning, estimation
and control, as well as configuration management. [PASSMORE94]

While CASE tools make the program management task easier, do not forget what their name
implies. They are tools. They cannot tell you what software system to build, what the system
must do, or how it should be designed. This process must evolve from user needs and reflect
improvements in development methods, techniques, standards, and available software engineering
technology.

Choosing an appropriate life cycle methodology is not always an easy task. The selected
methodology must be adapted and evolved, the same as the technical activities it ties together.
Understanding the software process and making tradeoffs among life cycle components is crucially
important for producing high quality software, on time, within budget. The methods presented
here have unique advantages and limitations that must be considered. For AIS developments,
either incremental or evolutionary methods [particularly the Ada Spiral Model, discussed below]
provide effective risk management and earlier satisfaction of user requirements. These approaches
are also recommended for weapon systems, when appropriate.

5.6.1 Evolutionary Method

The evolutionary life cycle method is a strategy for systems where future requirement refinements
are anticipated to evolve. It is also for programs where there is a technical risk that discourages
the immediate implementation of the needed capability. This strategy develops a system in a
series of builds. It differs from the incremental approach (discussed next) by acknowledging that
user needs are not fully understood and that not all requirements can be fully defined up front.
Thus, requirements are only defined to the extent that they are known. As additional user needs
become known through feedback from previous builds, the specific requirements for each
succeeding build are defined.

The evolutionary model involves an incremental specification, design, implementation, testing,
delivery, operations, and maintenance. System capabilities are increased with the delivery of
each incremental release until the system is complete. Users have early access to system releases
and are encouraged to provide performance feedback, which is used to shape the system as it
evolves into its final form. The objective is to establish an acquisition environment sensitive and
responsive to users needs. Generic characteristics of the evolutionary model include the following:
[ANDERSON98]

NOTE: These must be tailored to the unique requirements of each acquisition program.

5-41

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

• Incremental approach. Programs are divided into phases and increments (discussed below).
Systems are developed and acquired incrementally. Each increment results in the development
of functions that progressively increase overall system capability. Each increment may involve
a cycle of system development activities from specification through design to testing, fielding,
and maintenance.

• Bounded functionality. Broad system requirements must be known prior to the start of design
and development. Despite this, there is a tacit assumption that requirements may move outside
agreed upon bounds, to a limited extent, during the course of the program.

• Requirements. A detailed set of minimal system requirements (and preferably some other
early increments) is clearly defined at program outset. Other requirements are progressively
refined during successive program phases.

• Flexible architecture. The system architecture must support the functions delivered with
each release, including those for which detailed requirements have yet to be defined. Generally
it must be:

• Flexible. Allows for changes within the existing design or implementation.
• Scalable. Allows increases in performance requirements through incremental system capacity

changes.
• Extensible and maintainable. Facilitates architecture expansion and system modifications.
• User involvement. The dedicated involvement of users in the development process allows

the continuous review of requirements. Users also contribute through their use and review of
early system releases (often in the operational environment).

• Multiple contracts. The contract for the first phase is often for a minimal system, plus additional
increments if they can be clearly specified. The capability and cost of later increments are
agreed to prior to the start of each phase. It is expected (but not assured) that the same
contractor will build successive phases.

An evolutionary acquisition strategy is effective where detailed functional requirements are difficult
to articulate at program inception, although the desired ultimate capability is generally known
and a core of initial functionality can be specified. Thus, a core capability is fielded, where the
system is designed modularly, and provisions are made for upgrades and changes. Figure 5-18
illustrates Pressman’s interpretation of the evolutionary model where a first generation spiral
evolves into an extended second generation spiral, and so on. [PRESSMAN93]

5-42

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-18. Evolutionary Life Cycle Generations [PRESSMAN93]

Evolutionary programs progress towards an ultimate capability. This strategy requires the
development of increments of software that are demonstrable to the user, who is involved
throughout the entire development process, as illustrated in Figure 5-19.

5-43

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-19. User Involvement in the Evolutionary Method

An evolutionary methodology can be employed on all types of acquisitions. However, it is mostly
used on medium to high-risk programs. While the final version of the system often takes more
time and effort to develop than other methods, additional effort and time is offset by delivery of
a higher quality product with a lower maintenance cost burden. An evolutionary life cycle method
is well suited for advanced technology solutions where requirements beyond the core capability
can generally be identified — but not specifically. This is usually the case with highly interactive
decision support systems and systems with complex human-machine interfaces. According to
Watts Humphrey,

“There is a basic principle of most systems that involve more than minor evolutionary change: the
system will change the operational environment. Since the users can only think in terms of the
environment they know, the requirements for such systems are always stated in the current
environment’s terms. These requirements are thus necessarily incomplete, inaccurate, and
misleading. The challenge for the system developer is to devise a development process that will
discover, define, and develop to real requirements. This can only be done with intimate user
involvement, and often with periodic prototype or early version field tests. Such processes always
appear to take longer but invariably end up with a better system much sooner than with any other
strategy.” [HUMPHREY95]

Acquisition programs best suited to the evolutionary method normally have some or all of the
following characteristics:

Set Objectives:
Performance
Technical
Quality

Select System
Architecture

Prepare
Evolutionary

Development Plan

"Engineer" an
Increment

Code and Test
Increment

Deliver the
Increment for User

Evaluation

Analyze Results

User
Feedback

Repeat
Until

Complete

User
Feedback

5-44

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Table 5-11. Program Characteristics Suited to Evolutionary Method

Evolutionary acquisitions are also suited to programs implementing emergent or quickly changing
COTS solutions. Additionally, because the volatile Defense environment imposes rapidly changing
operational requirements for a range of systems, the evolutionary method is applicable to many
weapons and sensor systems. [HENDERSON97]

5.6.1.1 Evolutionary Model Benefits

When used effectively, the evolutionary model can provide significant interrelated benefits.
Examples of benefits include the following:

• Improved requirements. Maximum user involvement and early build delivery, provides
mechanisms to obtained feedback from users and to easily make changes in later increments.
Mechanisms also allow for requirements tradeoff, which results in higher quality and better
validated requirements. The fielding of early releases helps users understand what is feasible
and what is not, resulting in requirements that are more realistic.

• Early operational capability. Early system releases can be used operationally, and regularly
enhanced.

• Technology insertion. By deferring design and component selection until late in the program,
incorporation of state-of-the-art hardware and software is enabled. This results in higher
performance, lower acquisition costs, and reduced Total Cost of Ownership.

• Management control and program visibility. Aspects of the evolutionary model contributing
to a high level of Government control and visibility include the following.
− Increased interaction between the Government and contractor.
− The partitioning of development into well-defined increments.
− Release of builds showing clear progress.
− Testing and validation of progressive builds by the users.
− Thus, the Government has a clearer view of progress and risks. Latent defects are discovered

sooner (which often are accidentally or deliberately obscured). The number of control
points is increased throughout the acquisition process, which provides better control of
risks. Decisions to change program direction, or even to cancel it, can be made earlier.

• Improved system quality. The continuous concentration on user requirements through user
involvement results in improved system quality. [HENDERSON97]

CHARACTERISTICS SUITED TO EVOLUTIONARY METHOD

Software-intensive programs

Programs with rapidly changing software technology

Programs where humans are an integral part of the system

Programs with a large number of diverse users

Programs developing unprecedented systems

Programs where a limited capability is needed quickly

5-45

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.6.1.2 Cautions About the Evolutionary Method

The benefits listed above are not free or automatic. Evolutionary programs are inherently intense
and difficult to manage. Drawbacks with the evolutionary model include the following

• Increased cost and schedule. The evolutionary model involves more activities, more changes,
and more interaction among participants. Therefore, the projected cost and schedule of an
evolutionary program may be higher than for an equivalent waterfall program (discussed
below). Whether the actual cost and schedule will be more depends on the probability of
success of a waterfall approach (and the subsequent need for remedial activities) and the
effectiveness of program management in each case. For a program where evolutionary is the
best acquisition strategy, the probability of success using other approaches may be quite low.

• Increased management activities and resources. An evolutionary acquisition requires close
control by both the Government and the contractor throughout the program. The Government
needs much more progress visibility, which involves more discussion, negotiations, and
planning. An evolutionary acquisition is not hands off. The intense, dynamic nature of
evolutionary programs requires higher skill levels and management experience than traditional
models.

• Impact of concurrent activities. Development, test, operations, and support occur
concurrently, which require interactions among staff members working on different activities.
This requires greater planning and coordination that often results in challenging management
problems. Software development change management can be complicated by the fielding of
multiple system releases.

• Increased configuration management. During most evolutionary stages, at least three builds
are under development. These include the most recently released build, the build currently
under development, and the build being negotiated for the next increment. High quality
configuration management is essential in this environment. The Government must take an
active role in the configuration management of requirements, because each build usually
corresponds to a different functional baseline.

• Government technical support. Many joint government/contractor decisions are based on
tradeoffs among operational, technical, and development issues. The program office must
have an understanding of requirements, technical issues, and the software development
process.

• User resources and coordination. Evolutionary acquisition requires continuous user review
and feedback. Finding the right users, ensuring their availability, and coordinating their input
is not a simple task.

• Fielded release support. Support requirements for multiple releases with different
characteristics (including operational and support staff training) is greater than for a single
delivery at the end of the program.

• Greater risks. Evolutionary acquisitions involve higher risk levels than traditional models.
These risks include the following.

• Requirements risk. There is a temptation to defer requirements definition.
• Management risk. Programs are more difficult to control and require higher systems

engineering skill levels. Maintaining a close government/industry, cooperative relationship
is more critical with evolutionary programs.

5-46

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

• Approval risk. The evolutionary phased approach is vulnerable to delays in funding approval,
which increase schedule and can be detrimental to performance and cost estimates. Such
delays can break the flow of development resulting in the loss of key engineering staff, with
associated costs in winding development down and winding up again.

• Architectural risk. The architectural design is critical to evolutionary program success. If the
initial architecture cannot accommodate later changes, the program may fail.

• Short term benefits risk. There is the risk of becoming driven by short term operational
needs rather than long-term program goals.

• Risk avoidance. There is a tendency for developers to defer the implementation of more
difficult (and more risky) features until later increments (deferring critical user involvement
and feedback). This can result in late term design changes, scrap, and rework.

• Supplier selection risk. Contractors must to be selected not only for their development ability,
but also on their willingness to work closely and cooperatively with the program office. This
may be difficult to assess.

• Exploitation risk. Evolutionary acquisitions may reduce the Government’s bargaining power,
because the initial contract may not encompass the entire task, and subsequent contracts are
unlikely to be competed. In negotiating later increments and phases, the supplier may exploit
this situation by quoting unreasonably high prices.

• Patchwork quilt effects. Poorly controlled software changes can severely reduce the software
quality. Similarly, the incremental requirements definition may result in a lack of requirements
coherency. [HENDERSON97]

5.6.1.3 GCCS Evolutionary Life Cycle Process

The Global Command and Control System (GCCS) is an important cornerstone in the midterm
implementation phase of the Command, Control, Computers, Communications and Intelligence
for the Warrior (C4IFTW) concept. C4IFTW is an initiative to address joint C4I interoperability
issues with a migration strategy to reduce the large number of C2 systems currently in use by the
Services. GCCS will provide a fused C4I picture of the battlespace by providing core planning
and assessment tools needed by joint force commanders. GCCS is a user-focused program to
deliver joint C2 capabilities through a client/server architecture that uses commercial, open systems
standards. [SHALIKASHVILI98]

spider/osfl.disa.mil

5-47

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-20. GCCS Unified C4I Battlespace Concept [SHALIKASHVILI98]

The GCCS is using an evolutionary acquisition strategy that allows the planning and
implementation flexibility needed to keep pace with changing requirements and evolving
technologies. DoD 5000.2R requirements identification, validation, priority setting, technical and
economic evaluation, risk assessment, development and operational testing, oversight, and
management processes have been tailored to the program’s evolutionary nature, as illustrated in
Figure 5-21.

www.acq.osd.mil/api/asm/50002c3.pdf

5-48

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-21. GCCS Tailored DoD 5000.2R Acquisition Process [CONDON981]

The GCCS evolutionary acquisition strategy has coined a variety of new terms to describe the
activities and procedures to implement flexible and responsive government oversight. Decision
making and documentation processes have also been tailored to insure performance objectives
and minimum acceptable requirements remain consistent with the GCCS MNS.

• Evolutionary Acquisition Phases (EAPs). EAPs are discrete time periods during which
resources are used to fulfill mission needs.

• Evolutionary Phase Implementation Plan (EPIP). EPIPs formalize GCCS during the EAP,
set forth cost, performance, schedule, test, economic, and budgetary issues, and identify
deliverable C2 capabilities. EPIP planning and execution occurs concurrently.

• Evolutionary Decision Review (EDR). EDR reviews are conducted periodically to address
multiple EPIP activities, as illustrated in Figure 5-22. Based on warfighter needs, technological
opportunities, and available resources, EDRs are scheduled to assess ongoing EAP progress
and approve the implementation of new EPIPs. Unlike traditional milestone reviews, EDRs
are conducted at the lowest possible approval authority level commensurate with the risk
inherent in the proposed EPIP, ongoing development success, and management activities.
EDR decision making lies with empowered GCCS and IT OIPT members.

5-49

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-22. GCCS Milestones and Evolutionary Acquisition Phases [CONDON982]

• Segments. Implementation activities that occur during an EAP are divided into manageable
and responsive Segments (e.g., functional applications, technical or operational capabilities).
Each Segment comprises a distinct development effort assigned to one or more GCCS
stakeholder organizations and a set of deliverables. Segments (i.e., increments) provide a
logical means for progressively translating broadly stated mission needs into well-defined
system-specific requirements. Segments will ultimately evolve into operationally effective,
suitable, and survivable systems.

The GCCS evolutionary acquisition strategy consists of a sequence of EAPs. For flexibility,
Segments defined and initiated during one EAP may continue beyond that EAP, and in some
cases, might span multiple EAPs. When this occurs, Segment progress is reviewed during EDRs
when a decision is made to continue, modify, or discontinue the Segment. This allows the GCCS
community to plan long-term activities and adjust the course of GCCS evolution over time in
response to new technological opportunities and changing requirements, as illustrated in Figure
5-23. [CONDON982]

5-50

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-23. GCCS EAP, Segments, EDR, and EPIP Process [CONDON982]

Core GCCS acquisition phases and milestones, tailored in accordance with DoD 5000.2R,
minimize the time it takes to satisfy an identified need consistent with common sense and sound
business practices. While GCCS acquisition phases and milestones are similar to those described
in DoD 5000.2R, the time elapsed between milestones is much shorter to achieve the GCCS’
planned 6-18 month implementation schedule. Figure 5-24 illustrates the GCCS evolutionary
acquisition strategy mapped to the DoD 5000.2R process.

5-51

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-24. Overlay of GCCS Evolutionary Acquisition Strategy on DoD 5000.2R
[CONDON981]

5.6.2 Incremental Method

The incremental model is characterized by acquisition, development, and deployment of an
operational capability through a series of clearly-defined, stand alone system increments. Using
this strategy, user needs are determined, the architectural design is defined, and development
occurs in a sequence of builds. The first build incorporates part of the planned capabilities. The
next build adds more capabilities and so on until the system is complete, as illustrated in Figure
5-25. An example of this method is Pre-Planned Product Improvement (P3I) [discussed in Chapter
7, Acquisition Planning].

5-52

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-25. Basic Incremental Model

In deciding which activities apply to each increment, the requirements the increment will satisfy
in the context of its hardware, software, and database components must be determined. To be
useful, an increment should conform to the following rules:

• It satisfies a subset of the requirements to be met by the complete system.
• It constitutes an entity that can be used to demonstrate that a functional subset of the

requirements has been met.
• It represents a logical design partition of one or more increments or builds.
• It provides a solid core for meeting the requirements assigned to the remaining builds.

The incremental life cycle management method lets the user implement a part of the final product.
It is characterized by a build-a-little, test-a-little approach to deliver an initial functional subset
of the final capability, as illustrated in Figure 5-26. This subset is subsequently upgraded or
augmented until the total scope of the stated user requirement is satisfied. An incremental
methodology is most appropriate for low to medium-risk programs. It is employed when user
requirements can be fully defined, or the assessment of other considerations (e.g., risks, funding,
schedule, program size, early benefit realization, etc.) indicate that a phased approach is the most
auspicious.

5-53

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-26. Example Incremental Life Cycle Method

Figure 5-27 provides an example of how the incremental method might be related to the IPT and
review process. Allowing the user to employ the partially completed system before the entire
system is integrated and tested promotes early discovery of problems and facilitates corrections.

5-54

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-27. Example of Nominal Incremental Method

B aware, while the program as a whole may be large enough to merit IT OIPT (or DAB) oversight,
incremental development and fielding decisions only address small subsets of the system. For
example, a $240 million program with IT OIPT oversight may have a Milestone II Decision that
impacts $15 million of program funds. Thus, it may be inappropriate for the MDA to make a $15
million milestone decision, although the decision to develop the subset of system functionality
is, in fact, a Milestone II Decision (for a small effort). DoD 5000.2-R describes the elements
required for a development decision (e.g., adequate cost estimate and funds, firm documentation
of operational requirements, mature acquisition strategy, etc.).

5.6.2.1 Incremental Method Benefits

The following benefits may be realized through proper use of the Incremental Method:

• Reduced risk. Risk is spread across several smaller increments instead of concentrating in
one large development;

• Stable requirements. Requirements are stabilized (through user buy-in) during the production
of a given increment by deferring nonessential changes until later increments; and

• Understandability. Understanding of the requirements for later increments becomes clearer
based on the user’s ability to gain a working knowledge of earlier increments.

5.6.2.2 Cautions About the Incremental Method

Due to their nature, evolutionary/incremental acquisitions often encounter complications.
Questions arise because each incremental build block provides only a small part of the system
capability to be acquired. In addition to normal development decision criteria, additional questions
must be answered, which include:

www.acq.osd.mil/api/asm/50002c3.pdf

5-55

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

• Is the decision to develop this functionality for this amount of money a good idea?
• Is this the time to address the functionality question (user priorities, dictates of the evolution

itself)?
• Is this a reasonable price for the functionality being added (or are we gold plating one functional

area before developing all required capabilities)?
• Will we run out of money before we complete the required system?

ATTENTION! Critical to evolutionary or incremental methods is a sound architecture,
which permits the addition of capability, core enlargement, or added increments.

5.6.3 Spiral Method

Spiral method (implemented by the Spiral Model), developed by Barry Boehm, provides a risk
reducing approach to the software life cycle. As illustrated in Figure 5-28, radial distance in the
Spiral Model is a measure of effort expended, while angular distance measures progress. It
combines the basic waterfall [discussed next] building block and evolutionary/incremental
prototype approaches to software development. The building block activities of architectural
(preliminary) design, Preliminary Design Review (PDR), detailed design, Critical Design Review
(CDR), code, unit test, integration and test, and qualification test are sequentially followed to
deliver an initial operational capability (IOC). After IOC, the product is reviewed to determine
how its operational capability can be enhanced. Support and maintenance issues are revisited
through risk analysis. The product is updated and an operational prototype(s) is demonstrated
and validated. The system then goes through an updated waterfall development process with
final delivery of a full operational capability (FOC) product.

5-56

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

Figure 5-28. Spiral Model

The spiral method emphasizes the evaluation of alternatives and risk assessments, which are
addressed more thoroughly than with other strategies. A review at the end of each phase ensures
commitment to the next phase, or if necessary, identifies the need to repeat a phase. The advantages
of the Spiral Model are its emphasis on procedures (such as risk management), and its adaptability
to different life cycle approaches. If the Spiral Model is employed with demonstrations, baselining,
and configuration management, continuous user buy-in and a disciplined process is achieved.
[BOEHM88]

5.6.3.1 Ada Spiral Model Environment

The Ada Spiral Model Environment is an adaptation of Boehm’s Spiral Model (Figure 5-28
above), which combines a model and tool environment. It uses Ada as a life cycle language and
offers the ability to have continuous touch-and-feel of the software product (as opposed to paper
reports and descriptions).

The Ada Spiral Model Environment is a performance-based process that employs a top-down
incremental approach, early continuous design, and implementation validation. The advantage
of this environment is that it builds from the top down, where each level of development is be

Risk
Analysis
Conceptual
Prototyping

Project
Definiti on

Concept of
Ope rat ion
System
Softw are
Spec.

 System /
Product

Objective s,
Altern ative s,

and
Co nstraints

Risk
Analysis

Demonstration
Prototy ping

Engineering and
Project

Plan ning

R is k
Analysis

R isk
Analy sis

R isk
Analy sis

Sof tw are
Requi re-

m ents Spec,
U pdated

Sy stem
Softw are

Specification

D esign
and

Developm ent
Transition

Planning

D esign
Object ives,

Alternati ves,
and

C onst raints

Design
Ass essment

Prototyping

Soft ware
Architecture

and
Prelim inary

SD Ds

C SCI
Integration

and
Test

Si te
Activat ion

Training
Planning

Implemen tation
Object ives,

Al ternatives ,
and

C onst raints

Op erat ional
Prototyping

Simulations, Models,
and Benchmarks

Detailed
Design

Code

Unit
Tes t

Int egra tion
and Test

Qualification
Test ing

IOC
DELIVERY

Enhanced
Operat ional

Capabili ty
Integration,

Activat ion
and
Training

Planning

Suppor t
and

Maintenance

Cons traints
and

Alt ernati ves,
O bje ctives,

Prototyping
Operational

U pdated

Updated
Detailed

D esign

C ode

U ni t
Test

Integration
and Test

F ormal
TestingUser

Acceptance
Test and
Training

FO C
DELIVERY

FCA /PCA

Produ ct
Review

Design
Revi ew

Rqmts
Review

System
Revi ew

PLA N N EXT PHASE

DETERMIN E OBJEC TIVES ,
ALTER NA TIV ES, AN D
CON TRA IN TS

EVALUA TE A LTERNA TIV ES,
I DEN TIFY A N D RESO LV E RISK S

D EVELO P N EXT LEVEL PRO DUCT

5-57

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

demonstrated. Because Ada supports partial implementation, the structure is automated, realistic,
and easily evolved. Each build and subsequent demonstrations validate the process and structure.
Each level may serve as a formal baseline that is controlled. [WOODWARD89]

5.6.4 Choosing Among Evolutionary, Incremental, and Spiral

Models

Most software-intensive acquisition programs use a combination of the evolutionary, incremental,
and spiral methods. The Spiral Model is an overlay of either incremental or evolutionary with the
addition of risk management. In the past, the Spiral Model has been difficult to implement in the
DoD acquisition environment. Predefined deliverables and schedules do not easily accommodate
repeating phases, changing deliverables, or requirement tradeoffs without difficult contract
modifications. In a commercial environment, this approach can be described as market-driven,
where time-to-market and competitive forces determine when a product must be delivered and
which features are included (which may change rapidly in light of fierce competition). In reality,
all software evolves. Commercial products are always evolving and Defense systems are
continuously enhanced, modified, or evolved to new capabilities during operations and support
(or maintenance). In selecting the appropriate strategy, the unique circumstances of individual
programs should be considered and the strategy chosen must remain consistent with DoD
acquisition policy. The following factors should be considered when defining a life cycle
management method:.

NOTE: The order of importance and weighting of factors will vary from program to
program and among commercial and military applications.

FACTORS FOR SELECTING LIFE CYCLE METHOD

1. Time to market/deployment

2. Requirements stability and understanding

3. Technology obsolescence

4. Priority of user needs

5. Expected system useful life

6. Complexity

7. Parallel hardware development

8. Interfaces to existing and future systems

9. Effort size and magnitude

Table 5-12. Factors to Consider When Selecting a Life Cycle Management Methodology
[QUANN95]

ATTENTION! Incorporating the principles of performance-based and M&S methods
into the evolutionary and/or incremental methods is highly recommended, as they are
proven techniques for delivering quality products and acquisition risk reduction.

5-58

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.6.5 Waterfall Model Method

The waterfall model was first identified in 1970 as a formal alternative to the code-and-fix software
development method prevalent at the time. [ROYCE70] The waterfall model was the first to
formalize a framework for software development phases, and placed emphasis on up front
requirements and design activities and on producing documentation during early phases. This
strategy is essentially a once-through, do-each-step-once strategy. Simplistically, waterfall steps
include the following, as illustrated in Figure 5-29.

• Determine user needs,
• Define requirements,
• Design the system,
• Implement the system,
• Test, fix, and deliver.

Figure 5-29. Waterfall Model [BRUNDICK95]

5-59

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

The major drawback to this model is its inherent sequential nature — any attempt to go back two
or more phases to correct a problem or deficiency results in major increases in cost and schedule.
While the Waterfall Model (also referred to as “Grand Design”) provided an early structured
method for the software life cycle, it is not suited for modern development techniques.

In the traditional Waterfall Model, each stage is a prerequisite for succeeding activities, making
this method a risky choice for unprecedented systems because it inhibits flexibility. With a single
pass through the process, integration problems usually surface too late. Also, a completed product
is not available until the end of the process, discouraging user involvement. Taking these factors
into account, the other life cycle methods discussed in this chapter are recommended over the
Waterfall!

CAUTION! The waterfall method is NOT recommended for major software-intensive
acquisition programs! If it must be used (due to the integration of added requirements
into the system’s overall system engineering methodology), the software management
and engineering techniques described throughout these Guidelines must be used to
reduce program risk.

5.6.6 Fast Track Methods

Although the focus of these Guidelines is on “major” software-intensive systems, a distinction
between major and non-major programs should be understood. Software-intensive programs not
considered major acquisitions and using a fast-track life cycle methodology require greater life
cycle tailoring. This may be based on a time criticality arising from a variety of reasons, such as
a national threat, technological obsolesce, or changed mission needs.

These programs are less formal and on a shortened life cycle to benefit the Government where
the primary focus is on a fast track schedule (e.g., proof-of-concept programs). Fast track or
abbreviated software-intensive programs always assume short maintenance phases where system
support is usually performed by the development contractor.

Process tailoring is necessary to meet shortened life cycle requirements. While some acquisition
and development steps must be maintained, the formality or scope of others are greatly reduced.
Innovative methods may be appropriate if agreed upon by both the Government and the contractor
before program start.

Organizations considering fast track or abbreviated programs should have demonstrated successful
experience with similar technologies and have a mature, defined software development process
to minimize risk. Fast track programs must also have a clearly defined, stable set of requirements.
Abbreviated life cycle strategies may be appropriate when a program can proceed as an Engineering
Change Proposal (ECP) to an existing contract, or where substantial familiarity exists and/or risk
at a minimum.

ATTENTION! The objective of a fast track program is not to solve world hunger, but
rather to feed a few starving beggars!

5-60

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.6.6.1 Concurrency

Concurrency is a fast track method where development and operational testing are combined
with a concurrent follow-on development and initial production phase. With this method,
government involvement is often limited. Lessons learned from the General Accounting Office
(GAO) about employing fast track methods include the following recommendations.

• Technical risk assessment. An initial, detailed assessment of the technical risks involved in
individual subsystems, as well as in the integration of those subsystems into a workable
product must be performed. Whether the technology being attempted is compatible with an
accelerated acquisition strategy must also be determined.

• Flexible acquisition strategy. Provisions must be built into the Acquisition Strategy for
adjusting schedules and other program activities if technical difficulties occur.

• Technology-based solution adjustments. Technological progress must be periodically assessed
to see if it is still compatible with the planned acceleration. If technical progress is no longer
keeping pace with the acceleration, the strategy must be adjusted to bring it in line with the
technology.

• Testing for requirement satisfaction. The Acquisition Strategy must include sufficient test
and evaluation for requirement satisfaction so decision-makers can identify any major
shortcomings in the system’s operational suitability and effectiveness. Any issues identified
during testing must be resolved before initial production is approved. [GAO86]

ATTENTION! See Chapter 10, Software Development Maturity, [for an in-depth
discussion on the importance of the contractor’s software development process,
methodologies, tools, and capabilities. The software measurement life cycle is described
in Chapter 13, Software Estimation, Measurement, and Metrics. Words to include in your
Request for Proposal (RFP) requiring that offerors provide you with adequate information
for proposal evaluation are found in Chapter 8, Contracting for Success. How to evaluate
offerors’ proposals so you select the contractor with the best process as well as product is
also found in Chapter 8.

5.7 System Life Cycle and Your Program

When accused of making snap decisions, General George S. Patton, Jr. firmly proclaimed,

“I’ve been studying the art of war for forty-odd years. When a surgeon decides in the course of an
operation to change its objective...he is not making a snap decision but one based on knowledge,
experience, and training. So am I.” [PATTON47]

The DoD acquisition life cycle process was designed so Program Managers are not forced into
making snap decisions. Acquisition life cycle management is a structured process, replete with
controls, reviews, and milestone decision points. The life cycle process is a logical flow of activity
representing an orderly progression from the identification of a mission need to final operational
deployment and support. It provides the basis for sound-decision making based on knowledge,
experience, and training.

5-61

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

As a Program Manager, you must be prepared to develop a tailored management approach that
will achieve an operational capability with the most effective use of resources and time available.
Choosing the right life cycle management methodology depends on the nature of your program’s
operational environment, stability of requirements and technology, your software domain, the
methods and tools used, and the controls and deliverables required. Whichever acquisition life
cycle method you choose, remember the goals of acquisition reform:

• Reduced cycle times,
• Program stability,
• Cost savings, and
• Technology insertion.

If appropriate, life cycle phases can be combined or omitted. Some programs [especially in the
case of AIS where technology is well-developed, purchased as COTS, or GOTS, or NDI] may
enter the life cycle midstream. Each life cycle phase must be designed to instill a level of confidence
in the solution(s) offered and to reduce the risks involved in making a decision to proceed to the
next phase. Outputs of each phase must constitute a definitive, documented baseline for entry
into subsequent phases.

5-62

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

5.8 References

[ANDERSON98] Anderson, Dave, “General Acquisition Process,” Defense Acquisition Deskbook, U.S.
Department of Defense, The Pentagon, Washington, DC, 18 December 1998.

[BOEHM88] Boehm, Barry W., “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, May 1988.

[BOWSHER96] Bowsher, Charles A., Executive Guide: Effectively Implementing the Government
Performance and Results Act, GAO/GGD-96-118, Comptroller General of the United States, United
States General Accounting Office, Washington, DC, June 1996.

[BRUNDICK95] Brundick, Bill, Editor, Parametric Cost Estimating Handbook, Naval Sea Systems
Command, Arlington, Virginia, Fall 1995.

[CONDON981] Condon, Chris, “Mapping Evolutionary Acquisition to DoD-5000.2R,” OSD/C3IA, May
1998; Defense Acquisition Deskbook, U.S. Department of Defense, The Pentagon, Washington, DC,
18 December 1998.

[CONDON982] Condon, Chris, “GCCS Evolutionary Acquisition Process,” OSD/C3IA, May 1998; Defense
Acquisition Deskbook, U.S. Department of Defense, The Pentagon, Washington, DC, 18 December
1998.

[DRAYER98] Drayer, Lt. Col. Dennis (USAF), “Performanced-Based Business Environment: PBBE — A
Business Vision We Can Live With,” Program Manager, Defense Systems Management College, Fort
Belvoir, Virginia, January-February 1998.

[DSMC90] Caro, Lt Col Isreal, et al., Mission Critical Computer Resources Management Guide, Defense
Systems Management College, Fort Belvoir, Virginia, 1990

[GAO86] General Accounting Office, “Sergeant York: Concerns About the Army’s Accelerated Acquisition
Strategy,” Report to the Chairman, Committee on Government Affairs, United States, Senate, GAO/
NSIAD-86-89, May 1986.

[HENDERSON97] Henderson, Derek E., and Andrew P. Gabb, “Using Evolutionary Acquisition for the
Procurement of Complex Systems,” DSTO Electronics and Surveillance Research Laboratory, Salisbury,
South Australia, March 1997; Defense Acquisition Deskbook, U.S. Department of Defense, The
Pentagon, Washington, DC, 18 December 1998.

[HINTON98] Hinton, Jr., Henry L. Best Practices: Successful Application to Weapon Acquisitions Requires,
Changes in DOD’s Environment, GAO/NSIAD-98-56, National Security and International Affairs
Division, United States General Accounting Office, Washington, D.C., 24 March 1998.

[HUMPHREY95] Humphrey, Watts S., personal communication to Capt. Joseph Stanko (USAF), 15
September 1995.

[KAMINSKI97] Kaminski, Paul G., John J. Hamre, and Emmet Page, Jr., OSD Memorandum: Requirements
for Compliance with Reform Legislation for Information Technology (IT) Acquisitions, (Including
National Security Systems), Office of the Secretary of Defense, The Pentagon, Washington, DC, 1 May
1997

[MONTGOMERY58] Montgomery of Alamein, Field Marshall Viscount, Bernard Law editor, The Memoirs
of Field Marshall Montgomery, The World Publishing Company, Cleveland, Ohio, 1958.

[PASSMORE94] Passmore, John M., “Life Cycle Methodology Offers Software Starting Point,” Signal,
March 1994.

[PATTON47] Patton, GEN George S. (USA), War As I Knew It, Houghton Mifflin Company, Boston,
1947.

[PIPLANI94] Piplani, COL Lalit K. (USA), Lt. Col Joseph G. Mercer (USAF), and Lt. Col. Richard O.
Roop (USAF), Systems Acquisition Manager’s Guide for the Use of Models and Simulations, Report
of the DSMC 1993-1994 Military Research Fellows, Defense Systems Management College Press,
Fort Belvoir, Virginia, September 1994.

www.deskbook.osd.mil
www.access.gpo.gov
www.deskbook.osd.mil
www.deskbook.osd.mil
www.deskbook.osd.mil
www.dsmc.dsm.mil/pubs/pdf/pmpdf98/dray-jf.pdf
www.dsmc.dsm.mil/pubs/pdf/pmpdf98/dray-jf.pdf
www.deskbook.osd.mil
www.access.gpo.gov
www.access.gpo.gov
www.dtic.mil/c3i/c3ia/itmemo.html
www.dtic.mil/c3i/c3ia/itmemo.html

5-63

Chapter 5: System Life Cycle & Methodologies GSAM Version 3.0

[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition,
McGraw-Hill, Inc., New York, 1992.

[PRESSMAN93] Pressman, Roger S., “Understanding Software Engineering Practices: Required at SEI
Level 2 Process Maturity,” Software Engineering Training Series, Software Engineering Process Group,
30 July 1993.

[PRESTON94] Preston, Colleen, Testimony to Before the United States Congress, March 1994.
[QUANN95] Quann, Eileen., personal communication to Lloyd K. Mosemann, II, September, 1995.
[ROYCE70] Royce, Winston W., “Managing the Development of Large Software Systems,” IEEE, WESCON,

1970.
[SHALIKASHVILI98] Shalikashvili, GEN. John M., C4I for the Warrior Brochure, Office of the Joint

Chiefs of Staff, The Pentagon, Washington, DC, 1998.
[WOODWARD89] Woodward, Herbert P., “Ada: A Better Mousetrap,” Defense Science, November 1989.

spider.osfl.disa.mil/fbsbook/fbsbook.html

Part 1: Acquistion GSAM Version 3.0

Chapter 6

Risk Management

Chapter 6: Risk Management GSAM Version 3.0

6-2

Contents

6.1 Risk Management: An Investment in Success .. 6-4
6.1.1 Integrated Risk Management .. 6-4
6.1.2 Risk Management Return on Investment .. 6-4
6.1.3 Risk Management Reserve of Funds... 6-6

6.2 Risk Management Fundamentals .. 6-6
6.2.1 Risk Management Team ... 6-7
6.2.2 Risk Management Process.. 6-10
6.2.3 Risk Management Planning .. 6-11

6.2.3.1 Risk Management Plan ... 6-12
6.2.3.2 Completing the Plan ... 6-13

6.2.3.2.1 Taxonomy-Based Questionnaire (TBQ) 6-17
6.2.3.3 Implementing the Plan .. 6-23

6.2.3.3.1 Risk Assessment .. 6-23
6.2.3.3.2 Risk Identification .. 6-23
6.2.3.3.3 Risk Analysis ... 6-24
6.2.3.3.4 Risk Mitigation .. 6-24
6.2.3.3.5 Risk Tracking and Control .. 6-25
6.2.3.3.6 Risk Communication .. 6-26
6.2.3.3.7 Risk Feedback .. 6-26
6.2.3.3.8 Risk Documentation ... 6-26

6.2.4 Crisis Management Plans ... 6-26
6.2.5 Crisis Recovery Procedure ... 6-27

6.3 Software Acquisition Risk Management ... 6-27
6.3.1 Risk-Based Source Selection .. 6-30

6.3.1.1 Risk-Based RFP ... 6-30
6.3.1.2 Risk-Based Proposal Evaluation ... 6-31

6.3.2 B-1B Computer Upgrade Program Software Acquisition Risk
Management ... 6-33
6.3.2.1 Identified B-1B Risks ... 6-33
6.3.2.2 Contractor Risk Management Teams .. 6-33
6.3.2.3 Integrated Risk Management Process ... 6-34
6.3.2.4 Chief Engineers Watchlist... 6-34

6.4 Software Development Risk Management .. 6-35
6.4.1 Software Development Risk Factors ... 6-36

6.4.1.1 Common Thread Risk Factors .. 6-37
6.4.2 Formal Software Risk Management Methods 6-38

Chapter 6: Risk Management GSAM Version 3.0

6-3

6.4.2.1 Software Risk Evaluation Method .. 6-39
6.4.2.2 Team Risk Management (TRM) ... 6-41

6.4.2.2.1 Team Risk Management Principles & Benefits 6-41
6.4.2.2.2 Team Risk Management Model .. 6-43

6.5 Applied Software Risk Management ... 6-44
6.6 Software Risk Management Begins with You! .. 6-44
6.7 References .. 6-46

6-4

Chapter 6: Risk Management GSAM Version 3.0

6.1 Risk Management: An Investment in Success

“Software is so vital to military systems that, without it, most could not operate at all. Its importance
to overall system performance, and the generally accepted notion that software is always inadequate,
makes software the highest risk item and must be steadfastly managed. Failure to identify and
address risk has been the downfall of many DoD acquisition programs. The system component
with the greatest inherent risk has historically been software.” — Lloyd K. Mosemann, II (Deputy
Assistant Secretary of the Air Force) [MOSEMANN95]

Software acquisition and development are two of the most risk prone challenges of this decade.
Risk factors are always present that can negatively impact the development, acquisition, or
maintenance processes. If neglected, these factors can tumble an unwitting program manager
into acquisition disaster. To triumph in software acquisitions you must actively assess, control,
and reduce software risk on a routine basis.

In Chapter 2, Software Acquisition Success: Exception or Rule?, poor management is cited as
the chief reason why software acquisitions fail. Our software acquisition, development, and
maintenance processes are too often immature, chaotic, and unpredictable. Our estimates of
software cost, schedule, size, and complexity are inadequate. Our problem solving and decision
making processes are poor because we do not plan, measure, track, or control the process and
product. Risk management addresses all these shortcomings.

All DoD acquisition program managers (PMs) are responsible for establishing and executing a
risk management program that satisfies the policies contained in DoDD 5000.1. Program-unique
requirements or circumstances must be balanced within proven risk management principles and
practices. PMs must take an active role in the risk management process and ensure it leads to a
judicious use of program resources. Past DoD practices generally treated risk management as a
systems engineering or cost-estimating technique, or possibly an independent function distinct
from other program management activities. Today, risk management is recognized as a vital
management tool that spans the entire acquisition life cycle. It addresses and interrelates the
sources of acquisition failure — cost, schedule, and performance.

6.1.1 Integrated Risk Management

This chapter addresses risk management from two perspectives — the buyer (Government) and
the supplier (software developer or maintainer). To be a successful buyer, you must have a thorough
understanding of the supplier’s risk as well as your own. Effective acquisition risk management
depends on the ability to integrate the contractor(s) risk management process with your risk
management program and the Integrated Product Team (IPT) process.

6.1.2 Risk Management Return on Investment

Risk management is Number One of all the software acquisition best practices discussed
throughout these Guidelines. Like those that follow, risk management is a necessary activity that
requires time and funding investment. Program managers often complain that they are required

www.acq.osd.mil/api/asm/50001.pdf

6-5

Chapter 6: Risk Management GSAM Version 3.0

to integrate so many best practices in their programs. But how are they to pay for them? Risk
management is one of those sticky investments that if you choose not to pay now, you will pay
much more later. Properly performed, risk management becomes a mindset, a way of life, a
management style. It is always present and plays a leading role in all decision making. Because
it was seldom performed in the past, DoD acquisition reform initiatives are highlighting its practice.
Once it becomes ingrained in our acquisition and management processes, this discussion will
only need to address the how — not the why.

Risk management saves money and improves program and product quality with a relatively low
investment. Hall explains that risk management return on investment (ROI) is calculated by
adding the savings gained by managing risks, then dividing by the cost to manage them, as
expressed in the following equation.

Risk management costs include the total investment in resources:

• Time spent in meetings,
• Cost of reporting and documenting risk information,
• Staff to develop and implement risk plans.

Risk management savings includes cost avoidance and cost reductions.

• Cost avoidance is the difference between possible cost without risk resolution and actual
cost with resolution.

• Cost reduction is the difference between planned and actual costs.

According to Hall, if savings are accrued by cost reductions, it is possible to under-run the
budget. Risk management activities can also uncover opportunities for the program to perform
better than the baseline plan. [HALL97]

According to Charette, cultivating a disciplined risk management process can result in 50% or
more in productivity gains, and greatly increase the potential for producing a quality product.
[CHARETTE89] Without effective risk management, Norman Augustine’s Law of Counter-
Productivity takes over, where “It costs a lot to build bad products.” [AUGUSTINE83]

While doing nothing to minimize risk can prove costly or disastrous for a program, the cost to
avert all risk can be exorbitantly high. The costs in time, money, and effort should be balanced to
provide minimized (acceptable) risks and not become a major drain on the project itself. This
optimum benefit point is shown in Figure 6-1.

ROI(RM) = ∑∑Savings

Cost

6-6

Chapter 6: Risk Management GSAM Version 3.0

Figure 6-1. Cost/Benefits of Effective Risk Management [CHARETTE89]

6.1.3 Risk Management Reserve of Funds

“Why is it that most projects are functionally and/or calendar late, and so few on schedule?
Consider that most projects never tried any risk management; therefore, their plans accounted
only for the work recognized as absolutely necessary to build the software. These projects maintained
no significant contingency fund for dealing with all the risks that might or might not manifest as
actual problems. Why do we need such a contingency fund? Because no project ever runs exactly
to plan!” — Tim Lister [LISTER97]

A reserve to meet the needs of contingencies must be budgeted into your program. Risk
management must be a quantifiable effort, and the ROI for should be calculated and tracked. To
justify your efforts and record your successes you must establish a database of costs to mitigate
risks versus the potential costs of not using risk management.

The FY97 Report of the Quadrennial Defense Review (QDR) explains that complex, advanced
technology acquisition programs all bear some risk of costing more than planned. When
unforeseeable growth in costs occurs, offsets from other programs must be found, which disrupts
overall DoD modernization programs. The QDR states that each military department must establish
a prudent funding reserve in its out-year plans to offset these types of cost increases and significantly
reduce the destabilizing risk factors affecting our modernization programs.

6.2 Risk Management Fundamentals

NOTE: The remainder of this chapter should be read in conjunction with “Risk
Management Guide for DoD Acquisition” published by the Defense Acquisition
Management College (DSMC) Press, Ft. Belvoire, VA. Version 2.0 is available on the
Defense Acquisition Deskbook CD or website.

COST

Cost to Avert
R isk

Expected Loss
Due to Risk

O p tim u m
B enefit

R ISK

www.defenselink.mil/pubs/qdr/
www.dsmc.dsm.mil/pubs/gdbks/risk_management.htm
www.dsmc.dsm.mil/pubs/gdbks/risk_management.htm

6-7

Chapter 6: Risk Management GSAM Version 3.0

Risk is defined as the probability of an undesirable event occurring and the impact of that event
occurring. A risks is the precursor to a problem. It is the probability that, at any given point in the
system life cycle, its planned goals will not be achieved within available resources. There is a
high probability that you will have less than a full understanding of the requirements of either the
software product or the process before development begins. You also run the risk that it will take
longer and cost more than expected. Trying to totally eliminate risk is a futile endeavor — however,
managing risk is something you can and must do. To know whether an event is truly “risky,” you
must have an understanding of the potential consequences of the occurrence/nonoccurrence of
that event. Software-intensive systems acquisitions risk failure in four ways (and combinations
thereof).

1. The product that was ordered is not the product the end user wanted.
2. The product does not meet performance requirements (operationally or logistically).
3. Actual costs are higher than budgeted.
4. Delivery of the product is too late.

Risk management is a systematic approach to identifying, analyzing, and controlling events with
a potential for causing unwanted change. It is through the risk management process that program
risks are assessed and systematically managed to an acceptable level. To be an effective manager,
you must identify and mitigate risks throughout the system life cycle. You will be hard pressed to
eliminate all risks, but should act on those risks most critical to program success to the point
where they become manageable. Implementing risk management (based on a judicious mix of
structured processes, practical methods, and common sense) gives you a greater chance to succeed
and to straighten things out while problems are still solvable.

6.2.1 Risk Management Team

It is important to form an effective government/ industry risk management team at the onset of
the acquisition. Sharing information and concerns, careful listening, and timely responses among
mutually bound partners are essential risk management activities. Industry’s belief that their
concerns about risk will be addressed by the Government is vital. Conversely, the System Program
Office’s (SPO) ability to rely on its industry partner(s) to provide quality solutions within user
requirement parameters enhances the probability for risk management success.

The SEI Team Risk Management (TRM) views the joint government/industry team approach as
a continuing process throughout the acquisition and development life cycle. The objective of
TRM is to create a non-threatening atmosphere for risk control and mitigation. With TRM, plans
are put in place to control risks while they are still manageable. Under this method, the Government
and contractor perform risk management together. The seven principles of TRM are illustrated in
Table 6-1.

www.sei.cmu.edu/pub/documents/94.reports/pdf/sr05.94.pdf

6-8

Chapter 6: Risk Management GSAM Version 3.0

Table 6-1. Principles of Team Risk Management [HIGUERA94]

Table 6-2 highlights the advantages of Team Risk Management and identifies the commitment
required by the team (customer and supplier) to achieve the advantage.

Principle Effective Risk Management Requires:
Shared Product
Vision

Sharing product vision based upon common purpose, shared
ownership, and collective commitment
Focusing on results

Teamwork Working cooperatively to achieve a common goal
Pooling talent, skills, and knowledge

Global Perspective Viewing software development within the context of the larger
systems-level definition, design, and development
Recognizing both the potential value of opportunity and the
potential impact of adverse effects

Forward-Looking
View

Thinking toward tomorrow, identifying uncertainties, anticipating
potential outcomes
Managing program resources and activities while anticipating
uncertainties

Open
Communication

Encouraging free-flowing information at and between all project
levels
Enabling formal, informal, and impromptu communication
Using consensus-based processes between customer and
supplier that value the individual voice

Integrated
management

Making risk management an integral and vital part of program
management
Adapting risk management methods and tools to a project’s
infrastructure and culture

Continuous process Sustaining constant vigilance
Identifying and managing risks routinely throughout all phases of
the project’s life cycle

6-9

Chapter 6: Risk Management GSAM Version 3.0

Table 6-2. Team Risk Management Benefits [HIGUERA94]

ATTENTION: Although it is desirable to have provisions for TRM as part of the contract,
the SEI has concentrated their work on building the team environment after contract
award and the team is in place.

Advantage Description Required Commitment
Improved
Communications

• The aspect of routine communications
includes both customer and supplier. Risks
are treated by all as depersonalized issues
that threaten the common goal of a
successful program.

• By openly sharing risks, both the customer
and supplier are able to draw on each other’s
resources in mitigating risks and enabling
rapid response to developing risks or
problems.

• Move beyond finger pointing
and resolve project risks as a
joint responsibility.

• Encourage all forms of
communications (e.g.,
telephone and electronic mail)
among all team members.

• Encourage all to explore what
could cause the program to go
off track.

• Allow for more meetings and
more travel initially.

Multiple
Perspectives

• Team members are not limited to looking for
mitigation strategies among their own limited
areas of control.

• Bringing both customer and supplier together
in mitigating risks opens doors to strategies
that both can do together, but that neither
could do alone.

• Accept the philosophy that the
team can arrive at better
solutions that any individual –
even the program manager –
can alone.

Broader Base of
Expertise

• The combination of customer and supplier
brings together a richer pool of experience in
perceiving and dealing with risks.

• The customer often brings better
perspectives on the application domain and
“what’s possible to change.”

• The supplier often brings better perspectives
on the technical domain and “what’s possible
to do.”

• Accept all the unique
perspectives that others bring
to the table.

Broad-Based
Buy-In

• Risks and mitigation strategies are
cooperatively determined by the team
(customer and suppler), so all accept the
results of the process. “Second guessing”
and criticism after the fact are eliminated.

• Over time, trust develops and expectations
are realized. This paves the way for
strengthened relationships and the power of
teamwork.

• Encourage and allow teams to
meet, discuss, and agree.

• Invest in improving meeting
skills.

• Use outside facilitation as
required.

Risk
Consolidation

• Structured methods bring together risks
identified in each organization, giving
decision makers a more global perspective
and highlighting areas of common interest
and concern.

• Accept that risk is inherent in
enterprise.

• Abandon the notion that risks
should not be discussed until a
mitigation strategy has been
identified.

6-10

Chapter 6: Risk Management GSAM Version 3.0

6.2.2 Risk Management Process

Risk management costs time and money. However, it is always less expensive to be aware of and
deal with risks than to respond to unexpected problems. It is your responsibility to put a process
in place that enables you and your team to identify, analyze, plan, track, and relentlessly control
risk. A risk that has been analyzed and resolved ahead of time is much easier with which to deal
than a problem that surfaces unexpectedly. [BLUM92]

Risk management includes continuously assessing what can go wrong in programs (what the
risks are), determining which risks are the most critical (risk assessment and prioritization), and
implementing strategies to deal with risks (risk mitigation). In addition to relative importance, it
is essential to quantify the impact of the risk if it occurs. This provides a benchmark against
which to compare the cost of mitigating the risk. Risk can be quantified in dollar or schedule
terms. If the risk occurrence would result in a $1,000,000 impact, you would probably be justified
in spending $100,000 to mitigate it. Risk management normally goes through the generic,
sequentially functions listed in Table 6-1. Risk management also occurs continuously, concurrently,
and iteratively throughout the system life cycle (e.g., planning for one risk may identify another).
[HIGUERA96] Figure 6-2 illustrates the Risk Management Process.

RISK
MANAGEMENT

Risk
Planning

Risk
Assessment

Risk
Identification

Risk
Analysis

Risk
Mitigation

Risk Tracking
& Control

Risk
Communication

Risk
Feedback

Risk
Documentation

Figure 6-2. Risk Management Process [CONROW97]

NOTE - There are other risk management processes, both formal and informal. In the
absence of one you know to be applicable and proven, we suggest this process.

6-11

Chapter 6: Risk Management GSAM Version 3.0

6.2.3 Risk Management Planning

Risk planning is the process of developing and documenting an organized, comprehensive, and
interactive strategy and methods for identifying and tracking risk areas, developing risk-mitigation
plans, performing continuous risk assessments to determine how risks have changed, and planning
adequate resources. These activities are illustrated in Figure 6-3.

RISK
MANAGEMENT

Risk
Planning

Risk
Assessment

Risk
Mitigation

Risk Tracking
& Control

Risk
Communication

Risk
Feedback

Risk
Documentation

Acquisition
Plan

Software Risk
Management Plan

Acquisition Risk
Management Plan

Software Development
Plan

Contingency Planning

Risk Aversion Plan

Crisis Management
Plan

Contingency Plan

Risk
Recovery
Procedure

Figure 6-3. Risk Management Planning

It is important to be aware of your software risk factors. It is also important to know about risk
management methods (discussed below). However, the real key to software risk management is
planning and implementing your plan. Risk management planning is an on-going effort to identify
all significant risk probabilities and to minimize their occurrence and/or impact. Planning prevents
most risks from becoming problems. If you do not know your risks and their potential impacts,
you are planning to let risks fester. Furthermore, the events used as decision points in a contracted
effort will have greater meaning if they correspond to those points when important program
uncertainties become known. Good management not only entails reasonable estimation, it means
leaving nothing to chance (or at risk) that you can control through planning. Keeping an historical
perspective on what has and has not worked for programs similar to yours is vital. East Roman
Emperor and general, Maurice, having defeated the Persians and Avars circa AD 600, said the
following.

“In battles and in every action against the enemy, the wise general, even the most courageous, will
keep in mind the possibility of failure and defeat and will plan for them as actually occurring…The
sharp general takes into account not only probable dangers, but also those which may be totally
unexpected.” [MAURICE600AD]

6-12

Chapter 6: Risk Management GSAM Version 3.0

6.2.3.1 Risk Management Plan

The Risk Management Plan (RMP) is a controlling document that states how risk analysis and
procedures will be applied to your program. It describes all aspects of the risk identification,
assessment, tracking, and control process.

The RMP consists of an integrated approach to each risk item identified. It should be based on
answering the standard questions of why, what, when, who, where, how, and how much. The
acquisition RMP must be thoroughly integrated into the Acquisition Strategy and Plan. Likewise,
the software development RMP must be integrated into the Software Development Plan (SDP).
For example , if the developer plans to buy information by building a prototype on fault-tolerant
features, that same prototype may be used to reduce latent software defects or to involve the user
in interface design. If the need for a 10-week prototype development and demonstration period
has been identified, that time must also be added to the overall development schedule to keep it
current and realistic.

The following is an outline of a typical risk management plan:

1. Scope of the document
2. Objective of the risk management program
3. Organization

3.1. Who
3.2. Responsibilities
3.3. Identify additional technical expertise needed
3.4. Reference the project’s risk management process and procedures

4. Risk Assessment
4.1. Risk Estimate of the Situation (RES)
4.2. Risk Identification

4.2.1. Reference the checklist to be used to help identify risks
4.2.2. Define the risk taxonomy to be used for this program or project

4.3. Risk Analysis
5. Risk Mitigation
6. Risk Tracking and Control

6.1. Identify risk tracking indicators and measurements
6.2. Identify the individuals or groups to receive the risk information
6.3. Determine the review and reporting schedule

7. Risk Communication
8. Risk Feedback
9. Risk Documentation

9.1. Identify documentation needs
9.2. Specify documentation format
9.3. Identify the repository for the documents

Note that the risk management plan (or any other plan, for that matter) should not contain processes
or procedures. Processes and procedures should be common elements shared among the projects
within a program and across programs. The plan should be a specific tailored implementation of
the processes and procedures for a specific project or program and should reference the generic
processes and procedures.

6-13

Chapter 6: Risk Management GSAM Version 3.0

6.2.3.2 Completing the Plan

The risk planning phase is not finished until all elements of the plan have been addressed. The
following sections contain examples of information you may want to include in your plan.

(1.0) Scope of the Document
Describe the system or subsystem being acquired or developed. Identify the organizations that
will be using the risk management plan.

(2.0) Objective
Describe the desired outcome of successful implementation of the plan.

(3.0) Organization

(3.1) Who
Identify by position who will participate in the plan. For a small project or program, one individual
working part time may be sufficient to manage the risk effort. However, for larger projects or
programs, a small staff may be required. Don’t forget to include management.

(3.2) Responsibilities
You should specify the specific responsibilities of each individual in this portion of the plan.
Some projects/programs have found it beneficial to identify a “risk officer” who has the specific
responsibility of ensuring risks are monitored, issues are identified, and mitigation strategies are
carried out.

(3.3) Identify additional technical expertise needed
Your organization may not have all the technical expertise required. If this is the case, identify
any expertise needed but not available.

(3.4) Reference the project’s risk management processes and procedures
These processes and procedures should be those used within the program or organization with
specific tailoring for the project described in this risk management plan.

(4.0) Risk assessment
Risk assessment is the process of identifying and analyzing program areas and critical technical
process risks to increase the likelihood of meeting performance, schedule, and cost objectives. It
includes the following activities:

• Risk Estimate of the Situation (RES)
• Risk Identification
• Risk Analysis

(4.1) Risk Estimate of the Situation
The initial part of risk assessment includes performing a Risk Estimate of the Situation. [NAVY95]
As outlined in the Defense Acquisition Deskbook, the RES clearly identifies four major acquisition
program elements.

www.deskbook.osd.mil

6-14

Chapter 6: Risk Management GSAM Version 3.0

• Objectives. Measurable and controllable acquisition goals.
• Strategies. Broad constraints or rules under which acquisition goals can be met.
• Actions. What happens during a given situation.
• Resources. Resources constrain acquisition objectives, strategies, and actions.

Grouping these elements together aids in determining variables in the environment (both technical
and non-technical) in which the system is to operate. Early identification of false efforts and
quick recognition of missing ones (both precursors to schedule delays and cost overruns) are
primary RES goals. The RES helps us understand how each element interacts with and affects
other elements so we can determine how they contribute to overall program success criteria.
[CHARETTE89]

(4.2) Risk Identification
Risk identification is the process of examining the program areas and each technical process to
identify and document the associated risk. One method of identifying risks is to use a checklist or
taxonomy (i.e., a division of items into ordered groups or categories) that identify potential risk
factors. Checklists or a taxonomy can be useful in ensuring risks or categories of risks are not
overlooked during risk identification.

(4.2.1) Risk Checklists
Reference the checklists to be used in identifying project risks. Table 6-3 illustrates Boehm’s
Top-Ten Risk Identification Checklist. The checklist identifies the top-ten risk factors that can
endanger a software program’s quality, cost, and schedule goals. It also provides a set of
corresponding risk management techniques proven to be successful in avoiding or resolving
each particular source of risk.

Risk Item Risk Management Techniques
Personnel shortfalls Staffing with top talent; job matching; team building; morale building; cross-

training; pre-scheduling key people
Unrealistic schedules
and budgets

Detailed, multi-source cost and schedule estimation; design-to-cost;
incremental development; software reuse; requirements scrubbing

Developing the wrong
software functions

Organizational analysis; mission analysis; operations concept formulation;
user surveys prototyping; early user’s manuals

Developing the wrong
user interface

Task analysis; prototyping; scenarios; user characterization (functionality,
style, workload)

Goldplating Requirements scrubbing; prototyping; cost/benefit analysis; design-to-cost
Continuing stream of
requirement changes

High change threshold; information hiding; incremental development (defer
changes to later increments)

Shortfalls in externally
furnished components Benchmarking; inspections; reference checking; compatibility analysis

Shortfalls in externally
performed tasks

Reference checking; pre-award audits; award-fee contacts; competitive
design or prototyping; team building

Real-time
performance shortfalls Simulation; benchmarking; modeling; prototyping; instrumentation; tuning

Straining computer
science capabilities Technical analysis; cost-benefit analysis; prototyping; reference checking

Table 6-3. Boehm’s Top-Ten Risk Identification Checklist [BOEHM91]

6-15

Chapter 6: Risk Management GSAM Version 3.0

(4.2.2) Risk Taxonomy
The Taxonomy-Based Risk Identification method identifies and clarifies technical and managerial
uncertainties and concerns. The software taxonomy is organized into three major classes which
are further divided into elements, each of which is characterized by its attributes.

• Product engineering. The technical aspects of the work to be accomplished.
• Development environment. The methods, procedures, and tools used to produce the product.
• Program constraints. The contractual, organizational, and operational factors within which

the software is developed, but which are generally outside of the direct control of local
management. [CARR93]

The taxonomy provides a basis for organizing and studying the breadth of software development
issues. As illustrated in Figure 6-4, it serves as a systematic way of eliciting and organizing risks.
It provides a consistent risk management framework. Table 6-4 shows a detailed, lower-level
risk taxonomy.

Figure 6-4. Software Risk Taxonomy Structure [CARR93]

Software Developmental
Risk

Product
Engineering

Developmental
Environment

Program
Constraints

Engineering
SpecialtiesRequirements Development

Process
Work

Environment Resources Program
Interfaces

CLASS

Stability Scale Product
ControlFormality FacilitiesSchedule

ELEMENT

ATTRIBUTE

www.sei.cmu.edu/pub/documents/93.reports/pdf/tr06.93.pdf

6-16

Chapter 6: Risk Management GSAM Version 3.0

Table 6-4. Lower Level Software Risk Taxonomy [CARR93]

Product Engineering Development Environment Program Constraints

Requirements Development Process Resources

• Schedule
• Staff
• Budget
• Facilities

• Formality
• Suitability
• Process control
• Familiarity
• Product control Contract

Development System

• Stability
• Completeness
• Clarity
• Validity
• Feasibility
• Precedent
• Scale

Design

• Type of contract
• Restrictions
• Dependencies

Program Interfaces

• Capability
• Suitability
• Usability
• Familiarity
• Reliability
• System support
• Deliverability

Management Process

• Functionality
• Difficulty
• Interfaces
• Performance
• Testability
• Hardware constraints
• Non-developmental

software
Code and Unit Test

• Customer
• Associate contractors
• Subcontractors
• Prime contractor
• Corporate management
• Vendors
• Politics

• Planning
• Program organization
• Management experience
• Program interfaces

Management Methods

• Feasibility
• Testing
• Coding
• Implementation • Monitoring

Integration and Test • Personnel management

• Quality assurance
• Configuration

management
• Environment
• Product
• System Work Environment

Engineering Specialties • Quality attitude
• Cooperation
• Communication
• Morale

• Maintainability
• Reliability
• Safety
• Security
• Human factors
• Specifications

6-17

Chapter 6: Risk Management GSAM Version 3.0

6.2.3.2.1 Taxonomy-Based Questionnaire (TBQ)

A Taxonomy-Based Questionnaire (TBQ) is a tool specifically used for identifying risks. This
tool ensures all potential risk areas are covered by asking questions at the Risk Taxonomy detailed
attribute level. The example TBQ in Figure 6-5 also contains specific cues and follow-up questions
that allow the person administering the questionnaire to probe for risks. This tool is effective
when used along with appropriate techniques for interviewing management and technical program
personnel.

A. Product Engineering
1. Requirements
a. Stability
[Are requirements changing even as the product is being
produced?]
[1] Are requirements stable?
(NO) (1.a) What is the effect on the system?

Quality
Functionality
Schedule
Integration
Design
Testing

[2] Are the external interfaces changing?

Figure 6-5. Taxonomy-Based Questionnaire (TBQ) Example [SISTI94]

The TBQ produces better results when administered by an independent team and when the
respondents are in peer group sessions. The TBQ field test process consists of four distinct
activities, as illustrated in Figure 6-6.

Figure 6-6. TBQ Risk Identification Process [CARR93]

Management
Commitment

Management
Commitment

Identification
Conclusion

Risk
Identification

Briefing Risk Interview
Session

www.sei.cmu.edu/pub/documents/93.reports/pdf/tr06.93.pdf

6-18

Chapter 6: Risk Management GSAM Version 3.0

More information regarding the risk taxonomy and a taxonomy-based questionnaire is available
from the sources cited in the figures. Note that the foregoing checklists and taxonomy were
focused largely on the developer. The program office must not forget to identify and manage
risks that are solely theirs. Such risks include:

• Making sure the requirements put on contract meet the end user needs.
• Allocating sufficient schedule to properly develop the product and not surcoming to pressure

to put “rubber on the ramp.”
• Recognizing what a dollar will really buy.
• Selecting a supplier who has the capability to deliver what is ordered.
• Not expecting technology advancement to solve problems.
• Being prepared to deal with shifting political winds as leadership and administrations change

and the perceived value of the product being developed fluctuates.
• Being prepared to deal with changes in program office staffing as personnel are reassigned.
• Assuring that final testing is done against the requirements document, not the wants/desires

of the project office or end user at test time.
• Having the fortitude to tell end users and congressional staffers that changes in requirements

may necessitate replanning and renegotiating the project and/or contract. This is especially
true late in the project’s lifecycle.

A historical review of any recent major weapon system acquisition should reaffirm the need to
address the issues listed above.

(4.3) Risk Analysis

Risk analysis is the process of examining each identified risk area to refine the description of the
risk, isolating the cause, and determining the effects. Risk impact is defined in terms of its
probability of occurrences, its consequences, and its relationship to other risk areas or processes.

Risks are assigned a level of magnitude (risk assessment) based on the risk rating scheme identified
in the risk management plan. The scheme used for Table 6-4 below has three magnitudes: high,
moderate, and low. However, a scheme with magnitudes such as critical, high, moderate, low,
and no concern could be devised. The level at which a particular risk is assessed depends on the
separate assessments of its severity of impact (consequences) and its probability of occurrence
(likelihood).

Severity of impact is the effect of the particular risk on software performance, support, cost, and/
or schedule. Each assessed risk is assigned a severity level based on the following individual
factors or combinations of factors: technical performance, schedule, cost, and impact on other
teams. Each factor is characterized by categories of severity of impact. For example, the technical
performance factor is characterized by the following severity categories: Unacceptable, Acceptable
but with no remaining margin, Acceptable with significant reduction in margin, acceptable with
some reduction in margin, or minimal or no impact.

Probability of occurrence is the likelihood of the risk occurring. Each risk is assigned to a
probability level: near certainty, highly likely, likely, unlikely, or remote. Table 6-5 illustrates
how the overall magnitude or risk assessment is determined from the likelihood and consequence
criteria.

6-19

Chapter 6: Risk Management GSAM Version 3.0

Figure 6-7. Risk Analysis Process [DAU98]

Your risk plan should include the risk probability/severity matrix to be used in classifying the
risks identified for your program/project.

(5.0) Risk Mitigation

“If the art of war consisted merely in not taking risk, glory would be at the mercy of very mediocre
talent.” [NAPOLEON55]

Risk mitigation is the process that identifies, evaluates, selects, and implements options in order
to set risk at acceptable levels given program constraints and objectives. This includes the specifics
on what should be done, when it should be accomplished, who is responsible, and associated
cost. The most appropriate strategy is selected from these handling options. Risk handling is an
all encompassing term whereas risk mitigation and risk control are subsets of risk handling.

“A risk-averse culture inhibits risk management more than does the lack of a management
infrastructure or a repeatable method. Such a culture generally rewards crisis management and
punishes those who identify why the project might not succeed. A risk-averse culture relies on
heroics to complete a project. When executive management effectively shoots the messenger who
bears news of a potential risk, risk management at the project level is doomed to failure.” —
Marvin J. Carr (Software Engineering Institute) [CARR97]

Level What is the Likelihood
The Risk Will Happen?

a Minimal/Remote
b Small/Unlikely
c Acceptable/Likely
d Large/Highly Likely
e Signi ficant/Near Certainty

e Y Y R R R
d G Y Y R R
c G Y Y R R
b G G G Y R
a G G G G Y

1 2 3 4 5

RISK RATING

R HIGH - Significant impact on
cost, schedule, performance.
Significant action required.
High priority management
attention required.

Y Moderate - Some impact.
Special action may be
required. Additional
management attention may
be needed.

G LOW - Minimum Impact.
Normal oversight needed to
ensure risk remains low.

ASSESSMENT GUIDE

Consequence

Level Technical Performance and/
or

Schedule and/
or

Cost and/
or

Impact on Other
Teams

1 Minimal or No Impact Minimal or No Impact Minimal or No Impact None

2 Acceptable with Some
Reduction in Margin

Additional Resources Required;
Able to Meet Need Dates

<5% Some Impact

3 Acceptable with
Significant Reduction in
Margin

Minor Slip in Key Milestone; Not
Able to Meet Need Dates

5-7% Moderate Impact

4 Acceptable, No
Remaining Margin

Major Slip in Key Milestone or
Critical Path Impacted

>7-10% Major Impact

5 Unacceptable Can't Achieve Key Team or Major
Program Milestone

>10% Unacceptable

6-20

Chapter 6: Risk Management GSAM Version 3.0

You must assess, rate, and decide on the possible consequences of action or inaction. You must
also decide if the benefits of acting on a risk merit the expense in time and money expended. All
risk handling actions (or inactions) should be documented with supporting rationale. You should
also employ risk management in concert with metrics and process improvement used to measure,
track, and improve the progress of your program and the development process.

“There is always hazard in military movements, but we must decide between the possible loss of
inaction and the risk of action.” — General Robert E. Lee [LEE33]

Risk mitigation (i.e., handling) techniques include:

• Risk avoidance. You can avoid the risk of one alternative approach by choosing another with
lower risk. This conscious choice avoids the potentially higher risk; however, it really results
in risk reduction — not complete risk elimination. While a conscious decision to ignore (or
assume) a high risk may be a creditable option, an unconscious decision to avoid risk is not.
Be warned that:

“Software development’s risky nature is easy enough to acknowledge in the abstract, but sadly,
harder to acknowledge in real-world situations. Our culture has evolved such that owning up to
risks is often confused with defeatism. Thus, a manager faced with a nearly impossible schedule
may deliberately ignore risks to project a confident, “can-do” attitude.” — Barry W. Boehm and
Tom DeMarco [BOEHM97]

• Risk control. You can control risk (the most common form of risk mitigation) by continually
monitoring and correcting risky conditions. This involves the use of reviews, inspections,
risk reduction milestones, development of fallback positions, and similar management
techniques. Controlling risk involves developing a risk reduction plan, then tracking to that
plan.

• Risk assumption. You can assume risk by making a conscious decision to accept the
consequences should the event occur. Some amount of risk assumption always occurs in
software acquisition programs. It is up to you to determine the appropriate level of risk that
can be assumed as each situation warrants.

• Risk transference. You can transfer risk when there is an opportunity to reduce risk by
sharing it. This concept is frequently used with contractors where, for instance, contract type,
performance incentives (including award fees), and/or warranties are risk sharing contractual
mechanisms. Although many of these techniques only share cost risk, risk transfer is often
beneficial to the Government and the developer.

• Pecuniary. You can use the pecuniary means of risk aversion by setting aside a contingency
fund of project resources (dollars, schedule, personnel, etc.) to be used if risks occur. This
involves making a conscious decision to accept the consequences should the event occur.
Some amount of risk assumption always occurs in software acquisition programs. It is up to
you to determine the appropriate level of risk that can be assumed and the contingency fund
required as each situation warrants.

6-21

Chapter 6: Risk Management GSAM Version 3.0

(6.0) Risk Tracking and Control
Risk tracking is the process of systematically tracking and evaluating how your risk-handling
actions compare with established risk management metrics. It also involves developing further
risk-handling options, as appropriate.

• Risk element tracking involves the identification of your program’s highest-risk issues and
tracking progress towards resolving those issues through progress reports. The major benefits
of risk element tracking are similar to those of cost/schedule/performance tracking, with the
added benefit of identifying and maintaining a high-level of risk consciousness. Tracking is
critical because it addresses the one risk attribute which is difficult to predict — time.
Generalizations about risk made early in the program can, and often do, decay with time.
Risk tracking keeps predictable, unpredictable, or unknown risks from becoming full-blown
problems. Risk element tracking occurs after mitigation strategies and tactics have been
implemented. It includes the following activities.

• Tracking against the plan. Assuring that the consequences of risk management decisions
are the same as planned.

• Improving plans. Identify opportunities for refining the RAP.
• Updating approaches. Providing feedback for future decisions about controlling new or

current risks not responding to risk mitigation or whose attributes have changed with time.
[CHARETTE89]

In this section of the risk management plan, you should:

• Identify the risk tracking indicators and measures
• Identify the individuals or groups to receive the risk information
• Determine the reporting schedule

The following subsections discuss each of these activities

(6.1) Identify the risk tracking indicators and measures
Risk indicators and measures should be selected to support the goals of the risk management
program. The use of the Goal, Question, Metric (GQM) [BASILI92] paradigm supports this
selection. The implementing steps of the GQM paradigm are:

• Select the goals
• Identify the questions that should be asked to determine if the goals are being met
• Identify the metrics/indicators that will allow you to answer the questions

Remember that all metrics/indicators should be explicitly defined to avoid semantic issues later.

Cost/schedule/performance are the usual areas considered for measurement. This involves using
techniques such as the work breakdown structure, quality indicators, activity networks, and earned-
value management to determine and track program progress with respect to plans, schedules,
and budgets. Cost/schedule/performance tracking is useful because potential schedule slippages,
cost overruns, and performance shortfalls can be identified early, and their impact on other
interdependent system elements reduced. Software development risk tracking methods include
peer inspections, reviews, audits, testing, and configuration management.

6-22

Chapter 6: Risk Management GSAM Version 3.0

(6.2) Identify the individuals or groups to receive the risk information
Identify the decision authorities who must receive the risk information. By knowing who will
receive the information, you may do a better job of identifying the indicators and metrics to be
collected as well as determining the required reporting schedule.

(6.3) Determine the Review and reporting schedule
The reporting should be frequently enough that the program could not go far astray between
reports yet not so frequent that unnecessary work is done.

(7.0) Risk Communication
Unless those who can make decisions regarding the allocation of resources to deal with the risk
are aware of the risk, preventative action cannot be taken. It is important for those who are aware
of a situation to communicate the status to the decision maker. This communication must be
timely. It does no good to inform a decision maker of pending calamity after the event has
occurred.

Communication often takes the form of periodic program reviews. Reviews must be held
frequently enough to provide necessary reaction time, or a means must be provided to communicate
risk information out of the normal review cycle.

This portion of the risk management plan should address all issues of risk communication,
including who, what, when, how, etc.

(8.0) Risk Feedback
Feedback on how a risk was minimized may be used to minimize similar risks. Lessons learned
from risks that became problems may be used to prevent other risks from becoming problems.
Additionally, feedback is necessary as risks are continuously monitored to update their status.
What was a severe risk last week may be only a slight inconvenience this week while the “unlikely
to occur” risk of yesterday may be an “almost certain to occur” risk today. The items to be fed
back to the other risk management process activities should be identified along with the feedback
schedule.

(9.0) Risk Documentation
Risk documentation involves the recording, maintaining, and reporting of risk assessments, risk-
handling analysis and plans, and risk-monitoring results. It includes all plans, reports for the
project manager and decision authorities, and risk reporting forms that may be internal to the
program office or the contractor’s management structure.

(9.1) Identify Documentation Needs
The documentation requirements for the risk management program should be detailed in this
section of the plan.

(9.2) Specify documentation format
For each risk identified, you will want to create a record to track the risk. This record could be
considered a risk aversion plan for each risk. The data elements for the record should be determined
and documented in this section. Figure 6-7 provides some suggested record elements.

6-23

Chapter 6: Risk Management GSAM Version 3.0

Table 6-5. Risk Record Elements

(9.3) Identify the repository for the documents
The risk documents should be maintained in a central file or database. The database may be as
simple as a card file or as elaborate as an online real time database. The issue is to use a database
that meets the needs of your project. The Software Program Managers Network has developed
Risk Radar, a database that uses Microsoft Access. It is available for free download at
http://www.spmn.com. Other products are available commercially.

6.2.3.3 Implementing the Plan

The following paragraphs describe how to implement the Risk Management Plan by completing
the remaining activities of the Risk management Process

6.2.3.3.1 Risk Assessment

Risk assessment is comprised of Risk Identification and Risk Analysis.

6.2.3.3.2 Risk Identification

The first step in implementing the plan is the risk identification step. As previously mentioned,
the use of a risk factor checklist or risk taxonomy can help to minimize the chance of overlooking
risk areas. The checklists and/or taxonomies from section 4.1 of the risk management plan
should be used. The goal of this step is to “turn over all the rocks” to identify all potential project
risks. However, recognize that all project risks may not be known at this time. That is why it is
important to reinitiate this step periodically throughout the project’s lifecycle.

Suggested Risk Record Elements
Element Description

Risk Identification A description of the perceived risk.
Risk Source A description of the source of the risk. The source can be identified by

using a risk factor checklist or risk taxonomy.
Risk Assessment The risk assessment rating (green, yellow, red), including the probability

of occurrence and potential damage, as extracted from the risk
assessment matrix.

Aversion Strategy Recommended aversion strategy with associated mitigation technique
(reduction, protection, transference, pecuniary) for the risk item (also note
risk items requiring no action).

Integration Strategy An integration strategy for individual risk aversion plans (with attention to
combining action plans for more than one risk item).

Resource Allocation Assignment of resources needed to implement the risk aversion strategy
(including personnel, cost, schedule, and technical considerations).

Criteria for Success The criteria that must be met for the risk considered to be considered
mitigated.

Monitoring Approach The approach to be used to monitor progress in mitigating the risk.
Implementation Schedule The schedule for implementing the mitigation effort, including key

milestones.
Mitigation History A record of the mitigation steps taken, the date taken, who took the steps,

and their results.
Cost and Effort The cost and effort expended in managing the risk.

www.spmn.com

6-24

Chapter 6: Risk Management GSAM Version 3.0

6.2.3.3.3 Risk Analysis

Once risks have been identified, they should be analyzed using the assessment matrix documented
in section 4.2 of your risk management plan. The probability and impact should be assigned
based on the best factual information available. Remember that a good dose of common sense
never hurts. Because time is ever changing and the scenario may change, this assessment step
must be repeated frequently during the project.

6.2.3.3.4 Risk Mitigation

Next comes the assignment of a mitigation strategy. This includes the specifics on what should
be done, when it should be accomplished, who is responsible, and associated cost. The mitigation
strategies to be considered should be those from section 5 of your risk management plan.

All risks should be assigned a mitigation technique, including the technique of “no action.”
Sometimes a combination of techniques is more effective than a single technique. Those risks
with an analysis rating of red should have a detailed mitigation plan developed and implemented.
Risks with an analysis rating of yellow should have basic mitigation plans developed and
implemented. Remember that resources can be saved by implementing mitigation strategies that
address multiple risks together.

Some may refer to the risk mitigation plan as a contingency plan. A contingency plan is really a
combination of several of the risk mitigation techniques discussed previously. The idea is to
have an alternative solution available if the originally planned solution does not succeed.

Napoleon’s Military Maxim Number 8 states:

“A general-in-chief should ask himself frequently in the day, ‘What should I do if the enemy’s
army appeared now in my front, or on my right, or on my left?’ If he has any difficulty in answering
these questions he is ill posted and should seek to remedy it.” — Napoleon Bonaparte, I
[NAPOLEON31]

Roetzheim provides an example of contingency planning when a program manager to develop a
large software-intensive system for the Navy. The system was to graphically plot specific target
positions by monitoring tactical Navy data links. He was told the Government would supply the
software interface (to be designed by government personnel) to convert the existing electronic
sensor signals into a compatible format with the software system under development.

After interviewing the government design team, Roetzheim was convinced they did not have the
necessary experience in the specialized Navy system to perform the task successfully. He concluded
that the probability of failure for this critical item was fairly high. The situation was further
compounded by the fact that his software development program was on a tight schedule. Final
system delivery was an at-sea demonstration during a major fleet exercise. In short, the
consequences of failure for his program were extreme. One month before the full-scale
demonstration, his worst fears were confirmed. The government-supplied interface failed dismally
during the first live test run. Luckily, his contingency planning included the following actions.

6-25

Chapter 6: Risk Management GSAM Version 3.0

• He had company engineers rough out an initial interface design in the event in-house
development was required;

• Based on the initial design, the company archives were searched and all required technical
data and specialized components were located and on-hand;

• Company personnel capable of performing the task were identified and their availability was
confirmed if they were needed for an emergency job;

• Overtime for the engineering department was approved by management; and
• A development plan, including all cost estimates and a statement of work, were prepared and

all the information needed to write a delivery order was ready.

The afternoon of the live test run failure, Roetzheim convinced the Navy contracting officer to
allow him to begin work on his interface in parallel with the government staff. As feared, the
government-furnished interface did not work. The at-sea demonstration was successfully
completed using the in-house developed interface. If he had not identified this high-risk item and
performed adequate contingency planning, his software program would have been a high-profile,
embarrassing fiasco — damaging his reputation and possible future work for his company.
[ROETZHEIM88]

Fairley explains that contingency planning must include justification for any added cost incurred
in preparing a the plan, monitoring the situation, and implementing action plans, if necessary. If
the cost is justified (as in Roetzheim’s case where the cost of failure was extreme), immediate
plan preparation and implementation might be necessary. This brings up the issue of adequate
lead-time. When should Rotzheim have started development of his own interface? The answer
comes from continuous analysis and tracking of the probability of failure and its consequences.
As the probability becomes greater, the urgency to build his interface becomes greater. With
proper contingency planning, drop-dead dates are established, funds and personnel are set aside,
while staying within preplanned delivery schedules. [FAIRLEY94]

A risk record (see your risk management plan, section 9.2) should be completed for each risk and
the record should be placed the document repository or database as described in section 9.3 of
your risk management plan.

6.2.3.3.5 Risk Tracking and Control

Risks should be tracked and controlled per section 6 of the risk management plan. The
measurements and indicators identified in section 6.1 of the risk management plan should be
used. Note that some programs have established thresholds to determine when additional
mitigation efforts should be implemented. Recognize that it is not just the threshold, but the rate
at which the threshold is being reached, that should determine when additional effort is required.
For example, when driving down the highway, the threshold is the lane markers. You may
determine that you are well within the lane and that you will not cross the lane marker for another
quarter mile. You have plenty of time to react. A slight correction at this time may extend the
distance before you cross the lane marker to a half mile. You have no great concern. However,
if you hit a stretch of icy road and your car begins to spin, you may still be within the lane markers
but may be expected to cross the lane marker within fifty feet. Immediate attention and mitigation
effort is needed NOW. You cannot afford to wait until the lane marker, or threshold, is exceeded.

6-26

Chapter 6: Risk Management GSAM Version 3.0

6.2.3.3.6 Risk Communication

Risk review and reporting should occur according to the schedule documented in section 6.3 of
the risk management plan. Those who are involved in the reviews or who receive the reports are
identified in section 7 of the risk management plan. All risks in the red range, along with the
near-red yellow risks, should be discussed during each review meeting. This means that there
should be no arbitrary limits placed on the number of risks to be discussed such as a “top ten”
list. Why? If a risk truly warrants a red evaluation during the risk analysis phase or later re-
evaluation, it is important enough for management to be concerned. The current status of each
risk, the ongoing mitigation effort, and the success of the mitigation effort should be included in
the discussion.

6.2.3.3.7 Risk Feedback

Lessons learned, either positive or negative, should be recorded and used in future risk evaluations.

6.2.3.3.8 Risk Documentation

Risk documentation should be updated as the risk assessment changes with time and as decisions
are made during the risk reviews.

6.2.4 Crisis Management Plans

A crisis is an overall show-stopper! All program effort and resources must be focused on resolving
a crisis situation. Once in crisis, you must gather your forces, go on the offensive, and attack! If
you do not attack this type of risk, it will attack you — and win!

A crisis occurs when your Contingency Plan fails to resolve an unforeseen event. If you do not
act quickly to manage a major unforeseen negative event, you may as well resign and go home.
If Roetzheim was unable to allocate enough engineers or hours to develop the interface, his
Contingency Plan would have failed.

If Roetzheim had waited for the government-supplied interface to fail before building his own
interface, he would have been out of time, over budget, and still not have the interface needed to
complete the at-sea demonstration successfully. Before a crisis materializes, you may be able to
define some elements of crisis management, such as the responsible parties and a drop-dead
date. However, you may be hard pressed to develop the exact details of a Contingency Plan until
a crisis occurs. If you are in such a situation, Fairley recommends the following.

• Announce and publicize the problem;
• Assign responsibilities and authorities;
• Update status frequently;
• Relax resource constraints (fly in experts, bring on emergency personnel, provide meals and

sleeping facilities to keep them on site until the crisis is resolved, etc.);
• Have program personnel operate in burnout mode;
• Establish a drop-dead date; and
• Clear out nonessential personnel. [FAIRLEY94]

6-27

Chapter 6: Risk Management GSAM Version 3.0

6.2.5 Crisis Recovery Procedure

Once recovered, you must examine what went wrong, evaluate how your budget and schedule
have been affected, and reward key crisis management personnel. During crisis recovery, you
should do the following:

• Conduct a crisis postmortem;
• Fix any systematic problems that caused the crisis;
• Document lessons-learned;
• Recalculate program cost and schedule;
• Rebaseline; and
• Update your schedule and cost estimates to reflect the new baseline. [FAIRLEY94]

6.3 Software Acquisition Risk Management

DoD 5000.2-R states that Program Managers must establish a risk management program for each
acquisition to identify and control performance, cost, and schedule risks. Risk management
programs must:

• Identify and track risks and risk drivers,
• Define risk aversion plans, and
• Provide for continuous risk assessments during each acquisition phase to determine how

risks have changed.

The following paragraphs identify some common risk factors that are common to most large-
scale software acquisitions. Be aware, these sources of risk are provided as a starting point. You
should also identify those risks that are unique to your specific program. The ability to identify
program-specific risks is predicated on your knowledge of your solution domain and your product.
The greater knowledge you have, the greater your ability to identify risks. The maturity of your
team’s technical and managerial processes is also a major factor. While some of these areas may
overlap, they all must be considered and managed.

Regardless of the selected acquisition strategy, the following should be considered high risk
acquisitions.

• Software-intensive systems. Systems with a large software component are often delivered
late, over-budget and do not satisfy user expectations.

• Rapidly changing hardware/software technologies. Traditional acquisition models often
result in the delivery of systems with obsolescent technology, due to the high speed of
technology advancement. Such systems often require subsequent upgrading at substantial
cost.

www.acq.osd.mil/api/asm/50002c3.pdf

6-28

Chapter 6: Risk Management GSAM Version 3.0

• Human-in-the-loop (HIL). Systems where humans are an integral component. Where the
performance of hardware/software performance may be predictable, the effects user interaction
with the technology is more difficult to predict. This makes system requirements difficult to
define. In addition, system shortcomings are often not revealed until operational testing. Or
worst case, they are not discovered until extended operational use. This leads to costly requests
for post-deployment modifications. Similarly, users often see opportunities for capabilities
not originally envisioned, leading to requests for enhancements or upgrades.

• Systems with many diverse users. Variations in the experience and competence of users
makes defining user requirements difficult, particularly in the area of human-computer interface
(HCI) design. This problem is exacerbated when there is a large number of users.

• Unprecedented systems. Users have difficulty accurately identifying requirements for systems
that will satisfy unprecedented requirements or for which they have little or no experience.

• Systems providing a quickly needed, limited capability. Operational demands dictate that a
limited capability is required early. [HENDERSON97]

ATTENTION! Risk management must be an on-going process. It is critically important
to combine risk management with acquisition planning discussed in Chapter 7, Software
Acquisition Planning. Be sure to read and implement Chapters 6, Risk Management, and
7 together.

Your Acquisition Strategy should include a Risk Management Plan that identifies key acquisition
risk drivers in critical risk components and processes (which may be the sum of a series of
smaller risks). The plan discusses how risks will be managed, with particular attention to
interrelationships among lower level events that can quantifiably impact program success. Table
6-6 summarizes the critical risk areas for which the probability and consequences of acquisition
failure must to be determined for all major DoD acquisition programs.

6-29

Chapter 6: Risk Management GSAM Version 3.0

Table 6-6. Significant Acquisition Risks to Address in the Acquisition Strategy

Risk Area Significant Acquisition Program Risks

Threat

• Uncertainty in threat accuracy and stability

• Sensitivity of design and technology to threat

• Vulnerability of system to threat countermeasures

• Vulnerability of program to intelligence penetration

Requirements

• Operational requirements not properly established or vaguely stated for program phase

• Requirements are not stable

• Required operating environment not described

• Requirements do not address logistics and suitability

• Requirements are too constrictive-identify specific solutions that force high cost

Design

• Design implications not sufficiently considered in concept exploration

• System will not satisfy user requirements

• Mismatch of user manpower or skill profiles with system design solution or human-machine interface
problems

• Increased user skills or more training requirements identified late in the acquisition process

• Design not cost effective

• Design relies on immature technologies to achieve performance objectives

Test &
Evaluation
(T&E)

• Test planning not initiated early in program (Phase 0)

• Testing does not address the ultimate operating environment

• Test procedures do not address all major performance and suitability specifications

• Test facilities not available to accomplish specific tests, especially system-level tests

• Insufficient time to test thoroughly

Modeling &
Simulation

• Same risks as identified for T&E

• M&S are not verified, validated, or accredited for the intended purpose

Technology

• Program depends on unproven technology for success or there are no alternatives

• Program success depends on achieving advances in state-of-the-art technology

• Potential advances in technology will result in less than optimal cost-effective system or make system
components obsolete

• Technology has not been demonstrated in required operating environment

• Technology relies on complex hardware, software, or integration design

• Program lacks proper tools and modeling and simulation capability to assess alternatives

Logistics

Inadequate supportability late in development or after fielding, resulting in need for engineering changes,
increased costs, and/or schedule delays

Life-cycle costs not accurate because of poor logistics supportability analyses (LSA)
LSA results not included in cost-performance tradeoffs
Design trade studies do not include supportability considerations

Development

Development implications not considered during concept exploration
Development not sufficiently considered during design
Inadequate planning for long lead items and vendor support
Development processes not proven
Prime contractors do not have adequate plans for managing subcontractors
Sufficient development tools not readily available for cost-effective production
Contract offers no incentive to upgrade tools, improve processes, or reduce costs

Concurrency
Immature or unproven technologies will not be adequately developed prior to system production
Development funding will be available too early-before the development effort has sufficiently matured
Concurrency established without clear understanding of risks

Developer
Capability

• Developer has limited experience in specific type of development

• Contractor has poor track record relative to costs and schedule

• Contractor experiences loss of key personnel

• Prime contractor relies excessively on subcontractors for major development efforts

• Contractor will require significant capitalization to meet program requirements

6-30

Chapter 6: Risk Management GSAM Version 3.0

Haimes and Chittister explain that software acquisition program managers must be able to verify
offeror’s cost and schedule estimates to make informed decisions about the risk of program cost
and schedule overruns. You should be concerned with the non-technical acquisition risks addressed
by the following questions.

Based on the offeror’s level of experience, the assumptions made, the estimating models selected,
and how model parameters are defined, do software developers with minimal experience
overestimate or underestimate the complexity of the proposed software development task? What
are the sources of software development cost estimation risk? How can this risk be quantified?
[HAIMES95]

6.3.1 Risk-Based Source Selection

Andy Mills [U.S. Army Communications and Electronics Command (CECOM) Software
Engineering Directorate] defined a risk-based source selection approach where offerors’ technical
proposals are evaluated and awarded based on how effectively they address software risk
management. In the RFP, he suggests that offerors be evaluated on how risk will managed
throughout the contract. During the evaluation process, the Government must implement its own
risk management program. By applying a standardized risk management approach to source
selection, a thorough evaluation can be achieved that increases the effectiveness of acquisition
streamlining.

6.3.1.1 Risk-Based RFP

The success of software-intensive system acquisitions depends on the establishment of a planned
acquisition path that manages risks. By requiring a risk-based approach, offerors’ proposals
should state how they would plan and schedule software activities based upon realistic assessments
of technical challenges and risks. Their Risk Management Plan should describe how they plan to
attack software risks through an appropriate choice of software architectures, reuse strategies,
requirements management processes, metrics, development models, tools, and technologies. In
fact, the offeror’s proposal is an initial Software Development Plan (SDP). Subsequent adjustments
of the approach often become necessary, as program risks shift during development. However, a
generic approach that does not plan for program and product risks will result in having to resolve
otherwise foreseeable problems if resources are already spent or committed elsewhere. [MILLS95]

To understand what is meant by requiring a proposal based on risk management, assume that
every software development activity is traceable to the mitigation of one risk or another. The RFP
should state that the offeror’s approach be organized around identified software development
risks and how they will exploit risk mitigation opportunities throughout contract performance.
Table 6-7 provides a typical list of proposal requirements. These areas represent possible areas
for mitigating software development risks. From industry’s perspective, the proposal tells the
Government why the proposed approach is the best possible. For each element of the proposal,
the offeror should explain how the proposed activity contributes to risk reduction. [MILLS95]

6-31

Chapter 6: Risk Management GSAM Version 3.0

Table 6-7. Areas Where Risk Mitigation Can Be Addressed in the RFP [MILLS95]

6.3.1.2 Risk-Based Proposal Evaluation

Proposal evaluation has traditionally depended on the opinions of highly qualified technical
teams participating in the source evaluation and selection process. Using a software risk evaluation
methodology extends the capabilities of evaluation personnel by facilitating risk identification
and by focusing attention on the feasibility and merits of the offeror’s approach.

Mills explains that when offerors approach the proposed software development from a risk
management perspective, proposals can be readily evaluated for their risk mitigation strengths
(and/or weaknesses). Although technical proposals are currently systematically evaluated, source
selection teams should implement a risk management approach that identifies and assesses risk,
such as the SEI’s Software Development Risk Taxonomy and the associated Taxonomy-Based
Questionnaire (both discussed above). The TBQ addresses source selection risk and poses critical

Typical Software Development Proposal
Requirements

Requirements difficulty
1. Software architecture
2. Domain reuse
3. System capacity and resources
4. Software engineering environment
5. Software tools
6. Proprietary versus Government data rights
7. Government furnished items/software
8. Commercial-off-the-shelf software
9. Interface requirements, integration, & support
10. Process improvement
11. Testing
12. Corrective action process
13. Configuration management
14. Software quality evaluation
15. Preparing for software transition
16. Risk management implementation
17. Software element tracking
18. Technical reviews
19. Subcontractor management
20. Program organization and resources
21. Personnel qualifications/experience/availability
22. Software work breakdown structure (WBS)
23. Engineering procedures
24. Planning and replanning:
• Identifying software activities
• Estimating activities
• Scheduling software activities
• Activity network

6-32

Chapter 6: Risk Management GSAM Version 3.0

questions within each detailed taxonomy attribute. These are intertwined within the risk reduction
and management activities for each taxonomy topic. This permits a detailed evaluation of the
feasibility of a proposed approach without prescribing required activities or practices.

Source selection must be based on balancing performance, schedule, and cost objectives by
selecting the contractor team that provides the best value to the user within acceptable risk limits.
Therefore, the source selection team must evaluate each offeror’s capability for meeting product
and process technical, schedule, and cost requirements while addressing and controlling inherent
software development risks. The evaluation team should discriminate among offerors based on
the following:

• Product and process approach and associated risks determined by comparison with the best
practices baseline;

• Ability to perform with a focus on the critical risk elements inherent in the program;
• Adherence to requirements associated with any mandatory legal items; and
• Past performance on software development efforts of similar in size, complexity, and software

domain to the proposed program being evaluated.

The process of choosing among offerors is significantly enhanced if the evaluation team includes
risk management as a “source selection discriminator” to be used in making the selection decision.
Risk management then becomes an important factor in the Source Selection Authority
determination of who can provide the most risk managed product.

McConnell explains that experienced software developers have also accumulated years of hard-
won experience. Software development programs often contain uncharted paths and dangerous
territory. He proposes the following list of Ten Essentials for software successful software
development programs. These should all be addressed in the RFP and offeror’s proposals should
be evaluated on how the approach these essentials:

Software's Ten Essentials
1 A product specification
2 A detailed user interface prototype
3 A realistic schedule
4 Explicit priorities
5 Active risk management
6 A quality assurance plan
7 Detailed activity lists
8 Software configuration management
9 Software architecture
10 An integration plan

Table 6-8. Ten Essentials for a Successful Software Development Program
[MCCONNELL97]

6-33

Chapter 6: Risk Management GSAM Version 3.0

6.3.2 B-1B Computer Upgrade Program Software Acquisition Risk

Management

In June 1992, the Air Force identified new conventional roles for the nuclear deterrent bombers,
the B-1B and the B-2A. Since then, the B-1B program has focused a series of systematic upgrades
to develop new weapons delivery software. Judicious risk management has been practiced in all
phases of the Conventional Munitions Upgrade Program (CMUP) upgrade program.

6.3.2.1 Identified B-1B Risks

Many risk management lessons have been learned on the B-1B upgrade program. One risk, true
for any acquisition program, is funding. Ensuring that available funding is not squandered on
mistakes or misdirections requires a well-defined set of requirements and active management
involvement. To help reduce program cost risk, the B-1B has maximized the use of COTS
technology

Another risk item was the Perry Memo, which requires the use of best commercial practices
wherever possible and to use Mil-Specs only when no suitable commercial standard exists. The
B-1B upgrade was one of the first programs to implement this policy. In some cases, equivalent
commercial standards and practices were difficult to identify. The issue was compounded by the
fact that many Defense contractors did not compete commercially (at least not in the same division);
thus they were not familiar with current commercial practices.

The CMUP also required compliance with the public law mandating the use of the Ada
programming language. If modifications to existing and/or new code exceed 33% the size of the
CSCI, existing JOVIAL code had to be converted to Ada. The new CPU could not support the
required code conversion to Ada. The code conversion was a good idea from the supportability
standpoint, but it required regression testing and recertification, especially for the terrain-following
and nuclear software. Other lessons learned include the following.

• You can never have too much spare memory and throughput;
• Never rely on contractor claims that firmware items will not require system life cycle adaptation;

and
• Conducting a fly-fix-fly flight test program is very inefficient. [STORMONT95]

6.3.2.2 Contractor Risk Management Teams

The prime contractor assumed the task of administering the Risk Management Program. Integration
control teams (government/contractor) identified and managed risk areas, as illustrated in Figure
6-8. Risks were also identified and tracked at the product level by product teams and at the
systems level by the Systems Engineering Team. [STORMONT95]

6-34

Chapter 6: Risk Management GSAM Version 3.0

Figure 6-8. CMUP Risk Management Teams

6.3.2.3 Integrated Risk Management Process

The Integrated Risk Management Process (IRMP) was an Aeronautical Systems Center (ASC)
initiative. The B-1B CMUP was the first program to successfully incorporate the IRMP as part of
its contracting process. Experts from the engineering and financial communities performed
technical content, budget, and program schedule evaluations. The SPO worked with the evaluators
to mitigate risk areas identified in the IRMP. This integrated process provided a vehicle for
honest evaluations and program risk analyses without the finger-pointing that frequently occurs
when outside agencies evaluate a SPO’s efforts. The IRMP assessment identified several risk
areas requiring SPO attention, which were addressed before CMUP contract award.
[STORMONT95]

6.3.2.4 Chief Engineers Watchlist

The B-1B program put a new spin on the old watchlist technique. Risk item lists were maintained
by product and systems engineering teams. However, the Chief Engineers Watchlist allowed
contractor chief engineers and the SPO to identify and track important risk items not on the other
watchlists. Technical personnel at the management level often identify risks not apparent at the
working level. This list ensures these items are not overlooked by product teams or systems
engineers. [STORMONT95]

CMUP Product
Teams

Integration
Control Board

Other B-1B
Activities

Software
Integration

Control Team

B-IB SPO

C M U P Ac tivities

6-35

Chapter 6: Risk Management GSAM Version 3.0

Figure 6-9. B-1B Conventional Munitions Upgrade Software in Action [USAF Photo]

6.4 Software Development Risk Management

EIA/IEEE J-STD-016 states:

“The developer shall perform risk management throughout the software development process.
The developer shall:

• Identify, analyze, and prioritize the areas of the software development program that involve
potential technical, cost, or schedule risks;

• Develop strategies for managing those risks;
• Record the risks and strategies in the software development plan; and
• Implement the strategies in accordance with the plan.”

While you can never totally remove software risk, there are many techniques that can be used to
mitigate it. These techniques should be used in the structure of a software risk management
process. While many methods exist, the next section, Formal Risk Management Methods, presents
several structured, well-proven risk methods from which to choose. Be advised, a formal risk
management method must be tailored to your specific risk environment, as illustrated by the
examples listed in the “Applied Risk Management” section below.

ATTENTION! Effective risk management, measurement, and metrics go hand-in-hand.
If you are implementing a software development risk management program, be sure to
read Chapter 13, Software Estimation, Measurement, & Metrics.

6-36

Chapter 6: Risk Management GSAM Version 3.0

6.4.1 Software Development Risk Factors

Software risk factors that impact a product’s performance, cost, and schedule can be further
segmented into five risk areas. However, any given risk may have an impact in more than one
area. The five risk areas are:

• Technical risk. On implementation, the software system does not perform as originally
intended, or it is so user-hostile it is under-used or rejected by users.

• Supportability risk. The software is so poorly constructed or complex, it is too costly or
impossible to maintain, upgrade, or maintain.

• Programmatic risk. Cost, schedule, or size estimates are so unrealistic the program is under
funded.

• Cost risk. The cost of development exceeds any benefits the system may offer during its
useful life.

• Schedule risk. The system is not delivered on time, making other system elements late and/
or the user opts to use alternative solutions.

Charrette explains that subtle environmental factors are often overlooked when identifying sources
of risk. These environmental factors include the following.

• Software developments are very complex. The software problem domain has numerous
elements with extremely complicated interrelationships.

• Problem element relationships are multidimensional. The changes in elements are not
governed by the laws of proportionality. For example, adding more people to a program that
is behind schedule, in many instances may make it even later.

• Software problem elements are unstable and changeable. Although cost and schedule may
be fixed, actual costs in labor and time to complete are difficult to project.

• The development process is dynamic. Conditions ceaselessly change. Thus, program
equilibrium is seldom achieved. The environment is never static (e.g., hardware malfunctions,
personnel quit, contractors do not deliver, etc.).

• People are an essential software development element and a major source of risk. Economic
or technical problems are relatively easy to deal with. The higher-level complications,
multidimensional ambiguities, and changing environment caused by conflicting human
requirements, interaction, and desires cause problems. Software development is full of
problems because it is a very human endeavor. [CHARETTE89]

Additionally, there are other interrelated factors that contribute to software risk. These factors
include:

• Communications. Communicating risk is one of the most difficult, yet important, practices
you must establish in your program. People do not naturally want to talk about potential
problems. Rather than confronting potential problems while they are still in the risk stage, we
wind up having to deal with them when they become full-blown problems. Then there is a lot
of communication! Effective risk planning only occurs when people are willing to talk about
risks in a non-threatening, constructive environment.

6-37

Chapter 6: Risk Management GSAM Version 3.0

• Software size. Size growth affects the accuracy and efficacy of estimates. Interdependence
among software elements increases exponentially as size increases. With extremely large
software systems, handling complexity through decomposition becomes increasingly difficult
because even decomposed elements may be unmanageable.

• Software architecture. Architectural structure is the ease with which functions can be
modularized and the hierarchical nature of the information to be processed. It also includes
development team structure, its relationship with the user and to one another, and the ease
with which the human structure can develop the software architecture. [PRESSMAN93]

Table 6-9 lists the software acquisition risk issues Conrow and Shisnido have classified for large-
scale DoD acquisition programs.

Table 6-9. Summary of Key Risk Issues on Large-Scale Defense Software-Intensive
Development Programs [CONROW97]

6.4.1.1 Common Thread Risk Factors

The Software Program Manager’s Network (SPMN) has identified common threads among
troubled software programs, which include the following.

• Management. Management is inconsistent, inappropriately applied or not applied at all. In
many cases, it is reactionary. Management reacts to, rather than plans for, issues.

• Predictable risks ignored. When a problem arises, it is identified by program personnel; but
they often say, “Hey, it’s too much trouble. I can’t deal with it.” They ignore it, press on, and
are blind-sided by the impact.

• Disciplines not uniformly implemented. Configuration management, product assurance, and
technical disciplines are not uniformly implemented. Organizations throw away quality
standards to “buy” more schedule time, performance, or save on cost. The program moves
along in the short-term, but creates a rolling wave of disaster in the long-term.

Risk Grouping Software Risk Issues

Program Level
• Excessive, immature, unrealistic, or unstable requirements
• Lack of user involvement
• Underestimation of program complexity or dynamic nature

Program Attributes • Performance shortfalls (includes defects and quality)
• Unrealistic cost or schedule (estimates and/or allocated amounts)

Management • Ineffective program management (multiple levels possible)

Engineering
• Ineffective integration, assembly and test, quality control, specialty engineering, or

systems engineering (multiple levels possible)
• Unanticipated difficulties associated with the user interface

Work Environment

• Immature or untried design, process, or technologies selected
• Inadequate work plans or configuration control
• Inappropriate methods or tool selection or inaccurate metrics
• Poor training

Other

• Inadequate or excessive documentation or review process
• Legal or contractual issues (such as litigation, malpractice, ownership)
• Obsolescence (includes excessive schedule length)
• Unanticipated difficulties with subcontracted items
• Unanticipated maintenance and/or support costs

6-38

Chapter 6: Risk Management GSAM Version 3.0

• Poor training. In many cases, the reason managers do not perform a specific task is they do
not know how to do it. For example, some managers do not understand costing or scheduling,
how the technical job should be performed, or how to plan. Access to, or resources for,
manager training are not available.

• Fallacy of easy solutions. Software programs often get in trouble when generic solutions are
applied to specific problems. Methods designed for non real-time work are used in real-time
programs. Unproven techniques with no tool support, standards, or an experience base from
which to proceed are used on high-risk programs. Programs in trouble fail to scale the work
to available resources.

• Inadequate work plans. Critical constraints and work plans must include schedules, budgets,
work allocation, and limited time-sensitive resources. Programs in trouble do not have a clue
where they stand. Their schedules are inadequate or schedules not enforced.

• Schedule reality. The schedule plan must be realistic. If the schedule slips, the impact on
delivery must be assessed. If there is a schedule slip, programs in trouble do not realistically
consider the effect on the end-date. They take short cuts and came up with success-oriented
schedules to avoid announcing an end-date slip.

• Delivery focus. Troubled programs focus on schedule and process, not the delivery. Successful
programs focus on the incremental completion of an event. The relationship among all activities
should be on the completion of an event, which transfers to the next completion, and the
next.

• Constraints. Successful programs use reasonable measurements to analyze and determine
program status, assess product quality and process effectiveness, and to program the potential
for success. Programs in trouble abuse measurement results, which are used to justify
unreasonable positions. Bad measures are ignored and good ones are used to inflate to
overshadow the bad.

• Government responsibility. The government Program Manager (PM) should not just sit back
and oversee. The PM has to provide the hierarchy of documentation and provide standards
for the software development phase. In troubled programs, the Government has a “hands-
off” approach.

• Methods and tool selection. Troubled programs select tools that are inappropriate for the
job. The program staff has too little or no experience in the methods used, which are not
integrated and run as stovepipes. The process is also not integrated through configuration
management. No effective information flow within the program is established. [EVANS94]

6.4.2 Formal Software Risk Management Methods

“Software process describes that which is common from project to project. Risk management
describes what is different about your project from all others. What is your unique set of
circumstances and issues for this particular effort? How will you handle them and how will that
affect your plans? Given that risk management addresses the particular and not the general,
beware of anyone who tries to turn the practice into a wholly standard process. Anyone who offers
you the complete formula for risk management has never even heard of your project, so how can
he or she be certain of identifying your risks before they’ve even come into being? Effective risk
identification needs the participation of all informed parties and a brainstorming, no-holds-barred
atmosphere.” — Tim Lister [LISTER97]

6-39

Chapter 6: Risk Management GSAM Version 3.0

Formal risk management refers to a structured process whereby risks are systematically identified,
analyzed, and controlled. A structured risk management process must be implemented early,
continuously, and rigorously. It provides a disciplined environment for decision making and for
the efficient use of program resources. Through a disciplined process, obscure and lower-level
risks that collectively could pose a major risk can be identified.

A proactive approach is the most effective way to control risks. The methods employed must be
disciplined, systematic, repeatable, and based on proven practices. They must facilitate
communication among all stakeholders — at all levels. A disciplined risk management approach
will help you to obtain valuable program insight, to make decisions, and to take actions that may
be critical to program success.

Formal risk management methods provide the necessary information to focus on priority risks
and their mitigation. They define distinct procedures for performing risk management functions
and provide integrated tools and techniques to ensure standardized application. Formal methods
gain their robustness through practical use, testing, and continuous field validation. A formal
risk management method should produce similar, consistent results no matter who applies them.
There are many risk management methods. Keep in mind that whichever method select, it must
be tailored to specific program needs. Examples of these methods are discussed here.

• SEI Risk Management Methods
• Software Risk Evaluation (SRE) Method
• Team Risk Management (TRM) Method
• Continuous Risk Management (CRM) Method
• Boehm’s Software Risk Management Method
• Software Program Managers Network’s (SPMN’s) Risk Management Method

6.4.2.1 Software Risk Evaluation Method

The Software Engineering Institute (SEI) Software Risk Evaluation (SRE) method focuses on
the contractor/government relationship. It is a formal approach for identifying, analyzing,
communicating, and mitigating software-intensive acquisition technical risks. This method views
risks from a system level. It identifies representative risk areas in a system environment as software,
hardware, technology, cost and schedule, and people, as illustrated in Figure 6-10. The risks in
these areas have complex interactions and interdependencies with each other.

www.sei.cmu.edu/publications/documents/94.reports/94.tr.019.html

6-40

Chapter 6: Risk Management GSAM Version 3.0

Figure 6-10. SEI-Identified Software Program Risk Areas [SISTI94]

As illustrated in Figure 6-11, the Program Manager (government) directs an independent SRE
team to perform the risk evaluation. The team then executes SRE functions for the contractor’s
target software development task. The outcome is a set of findings processed to provide value-
added information (results) to the Government. The SRE can also be used as a business tool by
contractors to manage software program risks.

TECHNOLOGY

COST

HARDWARE SOFTWARE

SCHEDULE

PEOPLE

Figure 6-11. SRE Government/Industry Risk Management Method

Risk are assessed at one of three levels of magnitude: high, medium, or low. The level at which
a particular risk is assessed depends on the separate assessments of its severity of impact and its
probability of occurrence. Severity of impact is the effect of the particular risk on the target
program or task and its impact on software performance, support, cost, and/or schedule. Each
assessed risk is assigned a severity level: catastrophic/critical, marginal, or negligible. Probability
of occurrence is the likelihood of the risk occurring. Each risk is assigned to a probability level:
very likely, probable, or improbable.

Management

Software
Development

Program

SQA CM

IV&V

Independent
SRE Team

User
Community

User
Community

User
Surrogate

User
Surrogate

Program
Management

Program
Management

Acquisition Responsibility

GOVERNMENT CONTRACTOR

6-41

Chapter 6: Risk Management GSAM Version 3.0

Table 6-10. Level of Risk Magnitude and Guidelines [SISTI94]

6.4.2.2 Team Risk Management (TRM)

The SEI Team Risk Management (TRM) views the joint government/industry team approach as
a constant process throughout the acquisition life cycle. Effective communication about risk is
addressed from a software perspective. The objective o TRM is to create a non-threatening
atmosphere for risk control and mitigation. With this method, plans are put in place to control
risks while they are still manageable.

ATTENTION: Although it is desirable to have provisions for TRM as part of the contract,
the SEI has concentrated their work on building the team environment after contract
award and the team is in place.

6.4.2.2.1 Team Risk Management Principles & Benefits

Under the TRM method, the Government and contractor perform risk management together. The
seven principles of TRM are illustrated in Table 6-11.

Magnitude Guidelines

Critical • High likelihood of severely impacting one or more factore, i.e., cost &
schedule, performance, or supportability.

High • High likelihood of moderately impacting one or more factors.

Medium • Medium likelihood of moderately impacting one or more factors.

Low • Low likelihood of moderately impacting one or more factors.

www.sei.cmu.edu/pub/documents/94.reports/pdf/sr05.94.pdf

6-42

Chapter 6: Risk Management GSAM Version 3.0

Benefit Description

Improved
Communications

The government and industry draw on each other’s resources to mitigate
risks, which enables rapid response to developing risks or problems.

Multiple Perspectives Bringing the government and industry together opens doors to strategies
they can perform together, but can not do alone.

Broader Base of
Expertise

The government/industry team creates a richer pool of experience in
perceiving and dealing with risks.

Broad-Based
Buy-In

Risks and mitigation strategies are cooperatively determined by the
government/industry team, so results are accepted by all. Second-
guessing and after the fact criticism are eliminated.

Risk
Consolidation

Knowledge of each other’s risks gives decision-makers global
perspective and highlight areas of common interest and concern.

Risk Principle Effective Risk Management Requirement

Shared Product
Vision

Sharing product vision based upon common purpose, shared
ownership, and collective commitment

Focusing on results

Teamwork Working cooperatively to achieve a common goal
Pooling talent, skills, and knowledge

Global Perspective

Viewing software development in the context of a larger systems-
level definition, design, and development

Recognizing the potential value risk mitigation and the potential
impact of adverse effects

Forward-Looking
View

Thinking to tomorrow, identifying uncertainties, anticipating
potential outcomes

Managing program resources and activities while anticipating
uncertainties

Open
Communication

Encouraging free-flow of information at and between all program
levels

Enabling formal, informal, and impromptu communication
Using consensus-building processes that value the individual

(bringing unique knowledge and insight to identifying and
managing risk)

Integrated
management

Making risk management an integral and vital part of program
management

Institutionalizing risk management methods and tools in the
program infrastructure and culture

Continuous
process

Sustaining constant vigilance
Identifying and managing risks routinely throughout all program life

cycle phases

Table 6-11. Team Risk Management Principles [HIGUERA94]

Table 6-12 highlights common benefits found on programs implementing TRM. [HIGUERA94]

Table 6-12. Team Risk Management Benefits [HIGUERA94]

6-43

Chapter 6: Risk Management GSAM Version 3.0

6.4.2.2.2 Team Risk Management Model

The Team Risk Management Model is illustrated in Figure 6-12. Each function has a set of
activities backed by processes, methods, and tools that encourage and enhance communications
and teamwork. The TRM Model adds initiate and team to the SEI Risk Management Paradigm.
Initiate and team are defined in Table 6-13.

Figure 6-12. Team Risk Management Model

Table 6-13. Team Risk Management Functions and Description

Function Description

Initiate
Recognize the need and commit to creating the team culture. Either
Government or industry may initiate team activity, but both must commit to
sustaining the team.

Team

Formalize the government/industry team and merge viewpoints to form a
shared product vision. Systematic methods establish a shared understanding
of program risks and relative importance. Establish a joint database of risks,
priorities, metrics, and action plans.

Identify
Search for and locate risks before they become problems. Identify risks and
set program priorities to arrive at a joint understanding of what is important.
Identify new risks and changes.

Analyze

Process risk data into decision-making information. Risk analysis is
performed to determine what is important to the program, to set priorities, and
to allocate resources. Group risks and quantify their impacts, likelihood, and
time frame.

Plan
Translate risk information into decisions and mitigating actions (both present
and future) and implement those actions. Establish mitigation plans for shared
risks.

Track

Monitor risk indicators and mitigation plans. Indicators and trends provide
information to activate plans and contingencies. Review them periodically to
measure progress and identify new risks. Maintain visibility of risks, program
priority, and mitigation plans.

Control

Correct for deviations from risk mitigation plans. Actions can lead to
corrections in products or processes. Actions may lead to joint resolution.
Changes to risks, risks that become problems or faulty plans require
adjustments in plans or actions. Maintain a level of risk that is acceptable to
the program managers.

Communicate

Provide information and feedback internal and external to the program on risk
activities and current or emerging risks. Communication occurs formally as
well as informally. Establish continuous, open communication. Formal
communication about risks and action plans is integrated into existing
technical interchange meetings, design reviews, and user requirements
meetings.

6-44

Chapter 6: Risk Management GSAM Version 3.0

6.5 Applied Software Risk Management

When an effective risk management program is in place, planning can focus on avoiding future
problems rather crisis management. Lessons learned can be applied to avoiding future crises
rather placing blame. Work plan activities can be evaluated for their effect on overall program
risk, as well as on schedule and cost. Important meeting agendas can be designed to discuss risks
and their effects before discussing the specifics of technical approaches or current status. There
is free flow of information among all program levels, because it is coordinated by a centralized
system that captures identified risks and the information about how they are analyzed, planned,
tracked, and controlled. This is achieved when risk is no longer treated as a four-letter word, but
rather is used as a rallying mechanism to arouse creative efforts.

With effective risk management, potential problems are recognized and dealt with daily, before
they occur. The finest software can be built within budget and on time. People, work groups, and
projects throughout the program understand that they have a shared common vision to build a
world class product on a program with a successful outcome. [WILLIAMS97] The following
examples show that, when successfully applied, risk management is an investment in success.

6.6 Software Risk Management Begins with You!

“Risk management is quickly becoming a mature discipline. To achieve the promise of fully effective
software risk management, the software industry still must address several continuing challenges.

• Achieve commitment of all key stakeholders (developers, customers, users, maintainers, and
others) to a risk management approach.

• Establish an evolving knowledge base of risk management experience and expertise, organized
for easy and collaborative use by all stakeholders.

• Define and propagate mature guidelines on when and how to avoid, prevent, transfer, or accept
and manage risk.

• Develop metrics and tools for reasoning about risk management’s return-on- investment issues,
including guidelines for deciding how much of a risk reduction activity is enough.” — Barry
W. Boehm and Tom DeMarco [BOEHM97]

Software acquisition and management may be the greatest challenge of your career. Software
programs are more prone to failure than success. The most important things you have to manage
are the inherent risks associated with the development and support of all major software-intensive
systems. Risk management encompasses a defined set of activities and mitigation techniques.
How you implement these activities and techniques are defined in structured, disciplined risk
management methodologies. The risk management methodology you choose must be tailored
and selected based on risks peculiar to your program. It must also be systematic, repeatable, and
based on solid, proven risk management techniques. A disciplined risk management approach is
essential for program insight and decision-making on preventive actions critical to program
success.

Significant risks must be assessed and their impacts quantified in terms of quality, cost, and
schedule. Proactive risk management must be budgeted for and include abatement plans based
on quantified risk impacts. Time and dollar requirements for risk management must be included
in the total estimated conract cost.

6-45

Chapter 6: Risk Management GSAM Version 3.0

Risk elements must be tracked throughout the acquisition life cycle. Techniques for managing
risk are discussed throughout these Guidelines. They include the following software acquisition
best practices.

• Software development maturity assessments;
• Software engineering discipline;
• Process, product, and program monitoring through measurement and metrics;
• Reuse;
• Continuous program planning;
• Reviews, audits, and peer inspections;
• Defect prevention, detection, and removal; and
• Constant process improvement.

Risk management, on an iterative tradeoff basis, is key. It is a proactive way for you to prevent
problems and be prepared. It is an insurance policy. It is a way for you to be armed with solutions
if an anticipated (or unforeseen) problem interrupts or negates your plans. The time, effort, and
funds you dedicate to its practice will be well spent. Risk management is a necessary, sound
investment in program success. Remember, software risk management begins with you!

6-46

Chapter 6: Risk Management GSAM Version 3.0

6.7 References

[AUGUSTINE83] Augustine, Norman R., Augustine’s Laws, American Institute of Aeronautics and
Astronautics, New York, 1983.

[BLUM92] Blum, Bruce I., Software Engineering: A Holistic View, Oxford University Press, New York,
1992.

[BOEHM91] Boehm, Barry W., “Software Risk Management: Principles and Practices,” IEEE Software,
January 1991.

[BOEHM97] Boehm, Barry W., and Tom DeMarco, “Software Risk Management,” IEEE Software, May-
June 1997.

[CARR93] Carr, Marvin J., et al, Taxonomy-Based Risk Identification, CMU/SEI-93-TR-6, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, June 1993.

[CARR97] Carr, Marvin J., “Risk Management May Not Be for Everyone,” IEEE Software, May-June
1997.

[CHARETTE89] Charette, Robert N., Software Engineering Risk Analysis and Management, McGraw-
Hill Book Company, New York, 1989.

[CONROW97] Conrow, Edmund H., and Patricia S. Shishido, “Implementing Risk Management on Software
Intensive Projects,” IEEE Software, May/June 1997.

[DAU98] Defense Acquisition University, Risk Management Guide for DoD Acquisition, Defense Systems
Management College, March 1998.

[EVANS94] Evans, “Thread of Failure: Project Trends That Impact Success and Productivity,” NewFocus,
Number 203, Software Program Managers Network, Naval Information System Management Center,
March 1994.

[FAIRLEY94] Fairley, Richard, “Risk Management for Software Projects,” IEEE Software, May 1994.
[HAIMES95] Haimes, Yacov Y., and Clyde Chittister, “An Acquisition Process for the Management of

Nontechnical Risks Associated with Software Development,” Acquisition Review Quarterly: The Journal
of the Defense Acquisition University, Defense Systems Management College, Fort Belvoir, Virginia,
Spring 1995.

[HALL97] Hall, Elaine M., Managing Risk: Methods for Software Systems Development, Addison Wesley
Longman, Inc., Reading, Massachusetts, 1997.

[HENDERSON97] Henderson, Derek E., and Andrew P. Gabb, “Using Evolutionary Acquisition for the
Procurement of Complex Systems,” DSTO Electronics and Surveillance Research Laboratory, Salisbury,
South Australia, March 1997; Defense Acquisition Deskbook, U. S. Department of Defense, The
Pentagon, Washington, DC, 18 December 1998.

[HIGUERA94] Higuera, Ronald P., et al, Team Risk Management: A New Model for Customer-Supplier
Relationships, CMU/SEI-94-SR-5, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania, July 1994.

[HIGUERA96] Higuera, Ronald P., and Yacov Y. Haimes, Software Risk Management, CMU/SEI-96-TR-
012, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, June 1996.

[LEE33] Lee, GEN Robert E., as quoted by J.F.C. Fuller, Grant and Lee: A Study in Personality and
Generalship, Eyre and Spottiswoode, London, England, 1933.

[LISTER97] Lister, Tim, “Risk Management Is Project Management for Adults,” IEEE Software, May-
June 1997.

[MAURICE600AD] Maurice, Flavius Tiberius, The Strategikon, circa 600AD.
[McCONNELL97] McConnell, Steve, “Software’s Ten Essentials: Prospecting for Programmers’ Gold,”

IEEE Software, March-April 1997.

www.sei.cmu.edu/pub/documents/93.reports/pdf/tr06.93.pdf
www.dsmc.dsm.mil/pubs/arq/haime.pdf
www.dsmc.dsm.mil/pubs/arq/haime.pdf
www.deskbook.osd.mil
www.sei.cmu.edu/pub/documents/94.reports/pdf/sr05.94.pdf
www.sei.cmu.edu/pub/
dlib/computer.org/so/books/so1995/pdf/s3020.pdf
dlib/computer.org/so/books/so1997/pdf/s2144.pdf

6-47

Chapter 6: Risk Management GSAM Version 3.0

[MILLS95] Mills, Andy, “Software Acquisition Improvement: Streamlining Plus Risk Management,” paper
presented to the Seventh Software Technology Conference, Salt Lake City, Utah, April 1995.

[MOSEMANN95] Mosemann, Lloyd K., II, as quoted by Edmond H. Conrow and Patricia S. Shishito,
“Implementing Risk Management on Software-Intensive Projects,” IEEE Software, May-June 1997.

[NAPOLEON31] Napoleon Bonaparte I, The Military Maxims of Napoleon, 1831, David Chandler, editor,
George C. D’Aguilar, translator, Greenhill Books, London, 1987.

[NAPOLEON55] Napoleon Bonaparte, as quoted by Christopher J. Herold, editor, The Mind of Napoleon:
A Selection from His Written and Spoken Words, Columbia University Press, New York, New York,
1955.

[NAVY95] Taught in the Employment of Naval Forces course, “The Military Planning Process,” U.S.
Naval War College, Newport, Rhode Island, 1995.

[PRESSMAN93] Pressman, Roger S., “Understanding Software Engineering Practices: Required at SEI
Level 2 Process Maturity,” Software Engineering Training Series briefing presented to the Software
Engineering Process Group, 20 July 1993.

[ROETZHEIM88] Roetzheim, William H., Structured Computer Project Management, Prentice Hall,
Englewood Cliffs, New Jersey, 1988.

[SISTI94] Sisti, Frank J. and Sujoe Joseph, Software Risk Evaluation Method, Version 1.0, CMU/SEI-94-
TR-19, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, December
1994.

[STORMONT95] Stormont, 1st Lt Daniel (USAF), “Risk Management for the B-1B Computer Upgrade,”
paper presented to the Seventh Software Technology Conference, Salt Lake City, Utah, April 1995.

[WILLIAMS97] Williams, Ray C., and Audrey J. Dorofee, “Putting Risk Management into Practice,”
IEEE Software, May-June 1997.

dlib.computer.org/so/books/so1997/pdf/s3083.pdf
www.sei.cmu.edu/pub/documents/94.reports/pdf/tr19.94.pdf
dlib.computer.org/so/books/so1997/pdf/s3075.pdf

Part 1: Acquistion GSAM Version 3.0

Chapter 7

Acquisition
Planning

Chapter 7: Acquisition Planning GSAM Version 3.0

7-2

Contents

7.1 Planning is Key to Success ... 7-4
7.2 Strategic Planning Goals .. 7-5

7.2.1 Program Stability.. 7-7
7.2.2 Quality ... 7-7
7.2.3 Supportability ... 7-8
7.2.4 Cost and Schedule .. 7-8

7.3 Software Acquisition Strategy ... 7-10
7.3.1 Mission Definition.. 7-11
7.3.2 Acquisition Strategy Development ... 7-11

7.3.2.1 Competition ... 7-12
7.3.2.2 Concurrency/Time Phasing ... 7-13
7.3.2.3 Design-to-Cost ... 7-14
7.3.2.4 Performance Demonstrations .. 7-15
7.3.2.5 Performance Incentives .. 7-15
7.3.2.6 Make-or-Buy.. 7-16
7.3.2.7 Pre-planned Product Improvement (P3I) 7-16

7.4 Program Planning Process ... 7-17
7.4.1 Planning Objectives .. 7-18
7.4.2 Planning Scope... 7-19
7.4.3 Recommendations for Program Planners .. 7-19

7.5 Program Decomposition .. 7-20
7.5.1 System/Segment Specification (SSS) .. 7-20
7.5.2 Work Breakdown Structure (WBS) .. 7-21

7.5.2.1 WBS Interrelationships... 7-21
7.5.2.2 Prime Mission Product Summary WBS 7-22
7.5.2.3 Software Project Summary WBS .. 7-22
7.5.2.4 Software Contract WBS ... 7-24
7.5.2.5 Software Project WBS ... 7-26

7.6 Market Analysis ... 7-27
7.6.1 Software Product Definition and Decomposition 7-27

7.7 Baseline Estimates ... 7-28
7.7.1 Estimation Accuracy .. 7-30

7.7.1.1 Program Estimate Selection .. 7-31
7.8 Continuous Program Planning .. 7-31

7.8.1 Continuous Planning Recommendations ... 7-33

Chapter 7: Acquisition Planning GSAM Version 3.0

7-3

7.9 Other Planning Considerations ... 7-34
7.9.1 Major Milestones and Baselines ... 7-34
7.9.2 Program Budgeting and Funding ... 7-36

7.10 References .. 7-37

7-4

Chapter 7: Acquisition Planning GSAM Version 3.0

7.1 Planning is Key to Success

An analogy can be made between planning for the acquisition and management of major software-
intensive systems and planning for a military campaign. Planning for combat was explained by
General H. Norman Schwarzkopf.

“I want to emphasize the importance of focusing on the enemy when planning and conducting
combat operations. First, you must know your enemy. Second, you must develop your plan
keeping the enemy foremost in mind. Third, you must wargame your plan to enhance your ability
to develop or adjust the plan once enemy contact is made.” [SCHWARZKOPF88]

You must view cost overruns, schedule slips, and performance shortfalls as your enemy. You
must also emphasize the importance of focusing on risk when planning for and conducting your
program. First, you must know your program-specific risks. Second, you must formulate your
strategy to enhance your ability to develop or adjust your plan as you encounter new sources of
risk in the ever-changing program environment.

World-class software doesn’t just happen — it’s planned! Planning is the most pivotal activity
you will perform as a program manager. Planning, combined with process improvement, is a
continuous activity that must be revisited and improved upon throughout the life of a software-
intensive system. A poorly planned software program is one that is doomed to failure. Through
proper and careful planning you can address and deal with the five critical factors that determine
the success or failure of a software program:

• Quality
• Cost
• Schedule
• Performance
• Supportability

Although software planning is performed throughout the software life cycle, up-front, strategic
planning is the most crucial. It addresses these critical planning factors that get exponentially
more costly to deal with in later phases. Software development is not an exact science, but using
a combination of good historical data and systematic techniques can improve the accuracy of
your estimations. The F-22 program illustrates that software development success is achievable
through careful risk management and knowledgeable strategic program planning that combines
a keen sense of lessons-learned with a commitment to achieve insightful, intelligent, and creative
process improvement. It involves interaction with Air Force agencies and strategic planning
stakeholders to arrive at the best software solution within budgeted resources.

In April of 1991, General Merrill A. McPeak, Air Force Chief of Staff, was proud to announce
the winner of the advanced tactical fighter (ATF) air superiority aircraft competition and the Air
Force’s new Top Gun. The contract award for the future, fast, agile, stealthy super cruiser, the F-
22, was the result of a 54-month Demonstration /Validation (Dem/Val), where two contractor
teams dueled for Air Force favor in an unprecedented, risk reducing, joint government/industry-
sponsored face-off. [EASTERBROOK92] Applying lessons-learned from the B-2, Air Force
planners had the more complex ATF fighter airborne in just four years. For the F-22 software

7-5

Chapter 7: Acquisition Planning GSAM Version 3.0

development effort, strategic planning made the difference. Our ATF planners must be commended
on their success. Former Secretary of the Air Force, Donald B. Rice, praised them when addressing
the House Armed Services Committee after the award of the F-22 contract. He stated that there
has never been a defense program “that invests as much in the front end...and is in as confident
a position to enter full-scale development as the ATF.” [RICE91] The critical nature of software
in the weapons and information systems you are developing or maintaining today, mandates that
you take every action necessary to ensure program success.

When trying to assure the overall success of your program, there are three important points to
remember when planning your software acquisition.

1. Software is always on the critical path. It is usually the biggest cost item in major DoD
software-intensive acquisitions, and is also the highest risk item that must be steadfastly
managed. The ATF planners used a strategy that included lessons-learned from the C-17
development where the software element was considered an unrealistically low-risk item.
[REILY92] To better manage the F-22 software development, they decided that software
costs must be tracked separately from hardware costs in the Engineering Manufacturing
Development (EMD) phase. This was the first time the Air Force had taken this approach to
manage and reduce the risk of software cost escalations on a new aircraft. [HUGHES92]

2. Strive for consistency and completeness. Consistency means having single standard languages
(i.e., Ada) where possible, a standard terminology, a standard software engineering
environment (SEE) used by all subcontractor team members, and a strong configuration
management program. Completeness means, quite simply, good documentation.

CAUTION: In planning for “good documentation,” do not fall into the “excessive”
documentation trap! Less required documentation (i.e., only that which is necessary for
technical software development and maintenance) of higher quality is the goal.

3. Keep government personnel abreast of the development process so they know what is
going on and understand the software and how it works. An important ingredient in program
success is to be an enlightened and supportive customer. If the contractor encounters
unforeseen problems, do not criticize and throw rocks — but cooperate in the search for a
solution.

7.2 Strategic Planning Goals

At the Pentagon there is a sign posted above the DoD Joint Staff office door (quoted from Field
Marshal Helmuth Graf von Moltke) that says:

“Planning is everything. Plans are nothing.”

The meaning behind von Moltke’s statement lies in understanding the concept of a process-
focused approach to problem solving, as opposed to a product-focused approach. Planning success
is achieved though the planning process.

In 1988-89, the Defense Systems Management College (DSMC) and Harvard University analyzed
the findings of several commissions held over a twelve year period and their own extended

7-6

Chapter 7: Acquisition Planning GSAM Version 3.0

research to determine why there were so many defense acquisition program failures. The objective
of the study was to determine how Government might learn to “do business like business.”
[DSMC89] This theme was reiterated more recently by John Deutch, Under Secretary of Defense
for acquisition and technology when he said:

We have built up a separate way of doing business with DoD that is entirely different than... the
commercial sector. There will be a time when a separate defense industrial complex will become
too costly to maintain. We have to learn to rely much more strongly on doing business like the
private sector. [DEUTCH93]

The strategic planning goals leading to program success are listed below and are also illustrated
in Figure 7-1.

• Program stability,
• Quality (including performance),
• Supportability, and
• Cost and schedule.

Figure 7-1. Strategic Planning Goals for Program Success

Achieving stability, quality, supportability, schedule, and budget are all determinants of software
program success. A realistic cost and schedule that enables built-in product quality enforces on-
time completion, which enhances program stability. Program stability, cost, and schedule are
always joined at the hip. A stable program can be executed more quickly than one, which is
constantly changing, or subject to change in an unforeseen way. Also, a program completed
within its projected schedule is subject to the forces of change for the minimum time possible.

Project/Program Management

System/Software Engineering

Logistics Management

Contracting Management

Production Management

Qual ity Management

Financial Management

QUALITY
COST
SCHEDULE
PERFORMANCE
SUPPORTABILITY

MEASURES OF SUCCESS

A
C

Q
U

IS
IT

IO
N

 F
U

N
C

T
IO

N
S

GOOD BUSINESS PRACTICES

Project/Program Management

System/Software Engineering

Logistics Management

Contracting Management

Production Management

Qual ity Management

Financial Management

QUALITY
COST
SCHEDULE
PERFORMANCE
SUPPORTABILITY

MEASURES OF SUCCESS

A
C

Q
U

IS
IT

IO
N

 F
U

N
C

T
IO

N
S

GOOD BUSINESS PRACTICES

7-7

Chapter 7: Acquisition Planning GSAM Version 3.0

Poor quality can cause schedule overruns leading to cost overruns. This can be particularly true
where the true quality is not known until final testing is complete and/or the software is in the
user’s hands. Post-deployment might be the first time you learn that your software simply does
not work. Lessons-learned from past DoD failures to meet schedule objectives show that schedule
slips promote excessive changes in requirements. Users having to wait inordinately long periods
before their needs are satisfied, invariably identify additional requirements as time and technology
advance.

7.2.1 Program Stability

“Recognition of the distinction between a stable system and an unstable one is vital for management
. . . A stable system is one whose performance is predictable. It is reached by removal, one by one,
of special causes of trouble, best detected by statistical signal.” — W. Edwards Deming
[DEMING86]

The DoD acquisition process has environmental factors not found in the commercial world, such
as congressional oversight with one year funding constraints on how and where Defense dollars
are spent. Given these differences, it is uniformly acknowledged that program stability is the one
business practice that should be institutionalized in DoD acquisition policy. It is also the first or
primary goal you should strive to achieve in your program planning efforts, which should ripple
across all traditional acquisition functions (e.g., engineering, logistics, and financial management).
The key attributes of program stability are steadiness of purpose, a firmly established plan, and
a supportive system. Your strategic planning process must link program objectives to resources
(time, people, funds, and technology). [Resource estimation is discussed in Chapter 13, Software
Estimation, Measurement, and Metrics.] It must organize these resources and define a process
for achieving the approval of all stakeholders to guarantee the implementation of your strategic
plan. It must then guide the development phase and provide for the integration of the effort.
Your approved plan should be a product of systematic consensus and a clear decision process.

Maintaining stability in a program that must be accelerated in order to meet a military threat, or
that has had its budget cut by 50%, is often a significant management challenge. However, the
steps you take to achieve stability (i.e., having an established plan and understanding how your
resources are tied to program objectives) can help you restabilize after a change. Not having a
flexible plan that adapts to change will often mean chaos added to chaos when your budget gets
cut or requirements are added or modified. The time you spend defining your acquisition strategy
early on will go a long way in assuring stability throughout the entire life of the system, especially
during the critical acquisition years. The Cost Analysis Requirements Document (CARD)
[discussed below] is an excellent tool for structuring your program for stability.

7.2.2 Quality

Without exception, the second most important goal must be product quality. In the past, the
goals of cost and schedule often took priority over quality because they had the highest visibility
during early phases of development. Until the testing phase, quality is essentially an unknown or
invisible commodity. The rewards for software with good operations and maintenance records
are usually not enjoyed by the program manager who developed and delivered the product. This

7-8

Chapter 7: Acquisition Planning GSAM Version 3.0

lack of positive feedback creates managers who let costs and schedules drive their decisions —
often at the expense of quality. This is “penny-wise and pound foolish!”

If you let cost and schedule take priority over quality, by the time your software is coded and
ready for testing, it can be so riddled with defects that dynamic testing is painfully time-consuming,
costly, and difficult. Once the software is in the user’s hands, poor quality becomes excruciatingly
visible because the cost to fix garbage code is exponentially greater than the cost of building a
quality product (not to mention the damage to user confidence poor quality causes). [KINDL92]
With quality as a key planning goal, you will produce a good product on a predictable schedule
at a predictable cost with the desired performance. Remember, one of the most important
ingredients in producing quality software is the belief in the importance of its mission and an
associated commitment at all levels to support that belief. Remember, the true success of your
software can only be determined from a life cycle perspective. To deliver a quality product you
must be willing to adjust cost, schedule, and resource allocation to support the quality goal,
however you define that goal.

Sufficient performance, a quality attribute, is defined in terms of mission capability, supportability,
life cycle costs, and unit costs. Beware, rigid or excessive system performance requirements can
drive costs unnecessarily high and stretch out schedules. The metrics you use to define your
performance goals will ultimately help to determine quality and cost. [See Chapter 13, Software
Estimation, Measurement, and Metrics for a discussion on these metrics.] Pre-planned product
improvement (P3I) and evolutionary development are the standard approaches used to obtain
desired technology or features not available at planned schedule cutoff points and milestone
decisions. An iterative, evolutionary design process allows for flexible development that
advantageously considers performance tradeoffs as the design evolves.

7.2.3 Supportability

A system that cannot be supported after it is built quickly becomes useless. Worse, when a
system is found to be unsupportable, previously used systems may have already been dismantled
or removed. Too often, a project has been completed, declared a success, and its builders given
accolades for their performance, only to be followed by the discovery in the field that it cannot be
maintained. Supportability must be planned and designed into the system from the beginning.
Trying to add it later can only be done at great cost, if at all. Ensure that your planning includes
supportability as a strategic goal.

7.2.4 Cost and Schedule

The successful F-22 acquisition strategy set a precedent for holding down the price of future
DoD weapons systems. Because contractors were required to gamble their own funds, there was
great incentive to propose cost-effective solutions. One competing program manager remarked,

“Except for the investment, Dem/Val was great. We probably developed the technology in half the
time we would have if we had not had a competition and a good, big team.” — Thomas R. Rooney
[ROONEY90]

7-9

Chapter 7: Acquisition Planning GSAM Version 3.0

Throughout this chapter the words “cost” and “schedule” are used over and over because they
are two critical metrics used to assess program performance. In DoD, they are often the drivers
used to define program management practices. Their importance is not surprising given the
pressing need to update old systems and develop new ones to meet new requirements or threats
in today’s resource-constrained Defense environment. As General John W. Vessey Jr., while
Chairman of the Joint Chiefs of Staff, explained,

“Resource-constrained” environment [are] fancy Pentagon words that mean there isn’t enough
money to go around.” [VESSEY84]

Staying within budget has been one of the most difficult software management goals to achieve.
Much of the difficulty arises from the DoD budgeting and funding process. Long lead times are
needed to get money committed; therefore, program costs must be projected long before software
requirements are defined and software cost elements can be realistically estimated. Unfortunately,
systems planners are impacted when insufficient dollars are allocated to the software element
(on the system’s critical path) which in turn often causes the overall program schedule to slip.
[MARCINIAK90]

The RFP should require that offerors provide a development schedule appropriate to the known
requirements, showing all major milestones, audits, reviews, inspections, and deliverables. It is
expected that this schedule will change as requirements become better defined. You must evaluate
this schedule to determine if the offeror understands the need for presenting detailed schedule
information and for tying that information to detailed program task requirements. You must also
determine whether the program tracking system being proposed is part of the company’s normal
management practices or if it is new for this program. Also, you will want to ensure schedule
needs and types are described and included in the Software Development Plan (SDP).

Problems are often created when schedule baselines are established before software requirements
are well defined and understood. Government RFP preparers may include schedule information
based on factors that do not take into account the system development process or software
requirements. Offerors then inadvertently accept RFP schedule information as a requirement for
a responsive proposal, and prepare their response based on these so-called requirements. This
practice causes offerors to bid to untenable schedules affecting the viability of their submissions,
decreasing the probability they will complete tasks as proposed. One solution is to provide
minimum schedule guidance, and to require that offerors propose development schedules based
on program requirements and their own development approach.

Where users remain adamant that arbitrary delivery dates must be met, you will do well to work
with them on the concept of evolutionary and/or incremental deliveries versus a full scope
capability. Even then, it is recommended that you use every persuasive power at your command
to educate them on the exceedingly high failure rate for programs with unrealistic schedules.

NOTE: DoD is more interested in receiving a quality product on a predictable schedule
at a predictable cost than in setting arbitrary target dates which may not be achievable.

7-10

Chapter 7: Acquisition Planning GSAM Version 3.0

7.3 Software Acquisition Strategy

Acquisition strategy has been defined as a master plan, a road map, a blue print, and a plan-to-
plan-by to achieve program goals and objectives. Every major software-intensive development
has the possibility of failure. Your acquisition strategy serves as a means for reducing the odds of
program defeat through the organized preparation of a plan to minimize software risk. It serves
as a guide to direct and control the program, and as a framework to integrate those functional
activities essential to fielding a totally operational system — not just pieces of hardware and
software. The conceptual basis of the overall plan — the objective — is what you must follow
during program execution. It also serves as the basis for all program management documents,
such as the Acquisition Plan, the Test and Evaluation Master Plan (TEMP), the Integrated Logistics
Support Plan, and the Systems Engineering Master Plan (SEMP).

As you learned in Chapter 6, Risk Management, your Acquisition Plan must address, deal with,
and identify risk issues and alternative solutions. You must decide on what type of contracting
strategy to employ, such as design-to-cost, award fee/incentives, or to make-or-buy your software
element, which brings with it the issue of data rights. Your development methodology might
include concurrency or time phasing of development phases, prototyping, P3I, evolutionary
acquisition, and/or incremental development. The supportability of your software must also be
part of your acquisition strategy which includes the requirement for an open systems architecture.
Other alternatives include the design and use of reusable assets; re-engineering as a re-development
alternative; assessing your potential suppliers’ development maturity; and tracking and controlling
risk elements. Additional factors you should address are the cost of scrap and rework, program
budgeting and funding risks, a forecast of how future technologies might impact your development,
and what kind of planning and management tools you can employ to facilitate your planning
activities.

Because acquisition strategies for software systems abound, you should conduct a meaningful
lessons-learned exercise before settling on your final acquisition and development plan of action.
The ATF engineering and manufacturing development (EMD) approach and contract were strongly
influenced by careful review of how a whole procession of prior avionics developments went
astray. According to Colonel Borky, ATF planners based their final acquisition strategy on avoiding
the following list of classic mistakes that get made over and over.

• Unrealistic estimates of time, costs and manpower requirements to execute a development.
(Admittedly, we still lack good estimating methods and tools, but there’s ample evidence of
program managers who willfully understate resource requirements for software to fit within
a program budget when they cannot cheat on the hardware estimates.)

• Inadequate planning for software integration and test, including required facilities.
• Allowing contractors to do significant coding before system engineering is complete and

requirements are stable. [BORKY91]

Selecting the right type strategy for your program is much the same as selecting the right strategy
for winning a battle. When preparing a battle plan, you must first know what you are getting into
and what you have to take with you. Sun Tzu, master Chinese strategist and general during the
Era of the Waring States (circa 500BC), explained:

7-11

Chapter 7: Acquisition Planning GSAM Version 3.0

“Know the enemy and know yourself; in a hundred battles you will never be in peril... If ignorant
both of your enemy and of yourself, you are certain in every battle to be in peril.” [SUN500BC]

Knowing your enemy and yourself, will enable you to understand your mission, identify your
enemy, assess the terrain over which you must pass, and from this, determine your tactics. Your
tactics, when combined, make up your overall acquisition strategy.

7.3.1 Mission Definition

Your mission is to deliver a software system that fulfills user requirements, on time, within
budget. In many cases, however, the user may not understand exactly what those requirements
are, so clarification of the mission may fall on your shoulders. This mission definition includes
timing (schedule) and cost constraints that may have an effect on perceived requirements. The
enemy can be equated to all those risk factors that conspire against the completion of your mission.

The enemy to a successful acquisition is not always as clearly defined as is the enemy in a
conflict between nations. The enemy may include a variety of programmatic risks or constraints
such as a short schedule, a limited budget, factors in the development environment (software
being developed concurrently with hardware, or software pushing the leading edge), or the
requirement to build software designed for reuse and easy maintenance. Assessing the terrain
involves analyzing the business base, the capabilities of the development team, development
system hardware, and host system hardware for which the software is being built.

7.3.2 Acquisition Strategy Development

When preparing your acquisition strategy, you must consider all the factors pertaining to the
requirement such as:

• Budget
• Technical aspects of the software
• Hardware on which the software will operate
• Obtainability of existing software to satisfy the requirement
• Availability and past performance of organic or contractor developers
• Timing of hardware and software development
• Size and functions required for the program office
• Software reusability
• System maintainability
• Ad infinitum

Obviously the list of issues that can affect the software development strategy is long and
complicated and will differ among programs. The bottom line is, you must consider every
possibility when selecting contractual, schedule, and budgeting tactics in developing your
acquisition strategy. It must be derived from a commitment to encircle, outflank, out think, and
triumph over the enemy at every encounter. Your strategy must not be a rigid formula, but a
flexible framework that can be applied artfully as circumstances dictate. It must also be based on

7-12

Chapter 7: Acquisition Planning GSAM Version 3.0

the application of common sense and best practices found in these Guidelines to address the
inevitable problems that emerge in every major software acquisition due to the extreme complexity
of the endeavor itself. Sun Tzu expressed this strategy when he proclaimed:

“When the enemy is at ease, be able to weary him; when well fed, to starve him; when at rest, to
make him move. Appear at places at which he must hasten; move swiftly where he does not expect
you.” [SUN500BC]

If your software requirements are relatively risk free, you might choose a straightforward approach.
If on the other hand, your software is complex and deeply embedded in a hardware system and/
or unprecedented, then your acquisition strategy will be quite complex and must involve extensive
research into alternatives. For example, avionics software acquisition usually follows airframe
development and avionics hardware selection. The airframe developer may then choose to
subcontract the development of the very sophisticated software suite needed to mechanize the
complex of weapons delivery systems. Planning for this type arrangement will greatly impact
your acquisition strategy. The acquisition strategies commonly used for major DoD software-
intensive acquisitions generally include the following concepts:

• Competition,
• Concurrency/time phasing,
• Design-to-cost,
• Performance demonstrations,
• Performance incentives,
• Make-or-buy, and
• Pre-planned product Improvement (P3I).

7.3.2.1 Competition

The software industry supplies technology for software development. It also supplies engineering,
development planning, management, organization, infrastructure, and processes. These elements
were created by industry through efforts to capture market share and gain a competitive edge.
Although academia helps sow the seeds of research and training, industry competes to apply
better ideas to the software engineering task. Competition is vital to enable technology
improvement in defense software acquisition. The forces of innovation are unleashed when
industry is challenged to compete for the position of the best supplier.

Defense competition can take many forms. In fact, there may even be no competition. For
example, a sole source procurement might be selected due to the nature of the product and the
availability of the source. A competition can involve two or more companies and may occur
during research and development or implementation. Two generic forms of competition are
used in military acquisitions:

7-13

Chapter 7: Acquisition Planning GSAM Version 3.0

• Design competition. An example of this was provided in the F-22 procurement discussion.
Two or more competing teams of companies develop concept and design approaches, one of
which is selected for the production contract. The benefits of this type of competition are a
clearer understanding of requirements through multiple perspectives, high risk items are
identified and resolved in a more thorough manner, budget commitment is deferred until
PDR, and the risk of selecting a poorly qualified FSD contractor (organization) is reduced.

• Production competition. Two or more companies bid to secure all or part of a production
contract. Where more than one company is employed through initial production, risk is
further reduced.

In general, you will be discouraged from dual awards for design and/or partial production because
this requires additional funding up front. However, experience has shown that the longer two
competing contractors are carried, the greater the opportunity for success.

7.3.2.2 Concurrency/Time Phasing

Concurrency is a fast track acquisition strategy that involves the overlapping of design, testing,
production, and deployment activities. The overlapping and elimination of phases in the
acquisition cycle, as well as overlapping or eliminating activities within a phase, are also choices
based on the urgency of the need or the maturity of the system. A realistic technology assessment
and allowance for critical time duration activities are key in planning a program with a high
degree of concurrency between (or within) phases of the acquisition process.

Concurrency is used in response to a need to get a product to the field within a critical time
frame. Short acquisition cycles, abbreviated proposals, condensed statements of work, minimal
data reporting, use of commercial practices, and fewer reviews are all used to reduce costs and
expedite schedules. A classic example where a concurrency strategy was successfully used was
on the Thor missile program. The winning contractor’s proposal consisted of a mere 20 pages
describing how they intended to manage the program. The contract was awarded in December
1955 and the Thor flew successfully 13 months later.

Another example of a successful concurrency strategy was the Single-Stage Rocket Technology
(SSRT) program. The contractor used commercial practices wherever possible which included
almost one million lines of COTS test software for controlling ground and flight operations.
Nearly 70,000 lines of onboard Ada flight control software were generated using a commercially
available autocoding technique that cut costs an order of magnitude over conventional coding
methods. They also reduced the number of government/contractor program meetings, saving
additional cost and manpower. [WORDEN94]

An example of the risk involved in concurrency was the Sergeant York anti-aircraft gun or
“DIVAD” for Division Air Defense, one of the most important weapons systems to be canceled
while in production. Concurrency was used to cut normal acquisition time (10+ years) in half
and save money. This approach featured parallel development by two competing contractors;
the use of off-the-shelf components, a skunk works approach with thinly staffed government/
contractor program offices shielded from outside scrutiny, contractor flexibility in making cost/
performance tradeoffs, limited and combined developmental and operational testing, and a
concurrent follow-on development and initial production phase. The strategy stressed minimum
government oversight during system development and reduced reviews and reporting
requirements. Government access to contractor facilities and information was also limited.
[GAO86]

7-14

Chapter 7: Acquisition Planning GSAM Version 3.0

NOTE: Taken from Al Capp’s Li’l Abner comic strip, the term “skunk works” was first
used by Lockheed on the U-2 and SR-71 programs. It denotes a separate management
operation outside the normal acquisition process due to the highly classified nature of
the contractor’s work.

By concurrently developing, testing, and making improvements while in production the gun’s
considerable software integration problems were never ironed out. The procurement was canceled
when it failed to perform during follow-on operational test and evaluation (FOT&E) and the
Government was stuck with 64 SGT Yorks at ~$42 million apiece.

The main advantage of concurrency is the achievement of an early operational capability. Another
is that design maturity and operational problems surface sooner through earlier testing.
Concurrency, however, introduces the substantial risk of performance shortfalls, schedule overruns,
and cost growth, especially in complex, unprecedented software-intensive systems.

7.3.2.3 Design-to-Cost

Design-to-cost is designing the system to fall within fixed cost and schedule limitations. It is a
proven acquisition tool for obtaining lower unit costs. Design-to-cost forces identification of
measurable design parameters which can be prioritized and used as targets in managing cost.
Since budget and schedule limits are known up front, this approach can result in better requirements
definition and increased efficiencies. The disadvantages are that it forces you to commit to a
design-to-cost goal before final software requirements are defined. Hence, the need to sell the
program may drive design-to-cost goals down to unrealistic levels. Also, since there are no
practical ways to validate life cycle cost estimates, the contractor (or the Government) may choose
to down-scope performance requirements to meet cost goals.

Computer Sciences Corporation (CSC) successfully used a design-to-cost approach to build a
document control and tracking system for a pharmaceutical drug application. This was a process
improvement initiative to invest in the development of a tool that would reduce the time it takes
to get drugs through the testing and regulatory process (8 years) by 50%. This development had
to be accomplished within a fixed time, fixed cost, and above a fixed functional baseline.

To accomplish their goal, they used what they called the “Blue Chevy Policy.” All they needed
was basic transportation — not a Mercedes, not a convertible, or a truck. They needed to provide
an adequate solution today — not the ultimate solution tomorrow. Their design-to-cost approach
relied heavily on hardware and software commercial off-the-shelf (COTS) products with as little
custom development as possible. This required a partnership between the developer and the
user to accomplish their common goal within mutually agreed upon architectural constraints.
This meant the developers had to have direct and continuous access to the user, especially during
the proof-of-concept prototyping process.

Training and documentation were developed in parallel with the system. When the program was
completed on time, training began the next day. With a good architecture and user-involved
prototyping throughout all phases of development, system functions exceeded expectations. They
delivered a “Loaded Blue Chevy” and were able to grow the company into new areas of technology.
[KEMP94]

7-15

Chapter 7: Acquisition Planning GSAM Version 3.0

7.3.2.4 Performance Demonstrations

An example of what can go right is the strategy used by F-22 planners to assess performance
requirements fulfillment. Using an open market strategy, each ATF competition team built their
own demonstration aircraft using their own funds (50% contractor/50% government) and ideas
which the Air Force evaluated during the Dem/Val phase. A less desirable alternative would
have been a paper design — only testable at the end of full-scale development (FSD). [MRAZ91]
This strategy was markedly different from that of the B-2 Bomber where the design was frozen at
the beginning of Dem/Val. In effect, the demonstration phase, where alternative approaches are
explored and bugs are worked out, was virtually skipped. This meant the B-2 was developed on
an essentially noncompetitive basis with a cost-plus contract awarded to a single prime contractor
eliminating the possibility of achieving a better design solution and reducing cost and schedule.

One reason ATF Dem/Val testing was such a success was because flight test objectives differed
radically from traditional military testing. Instead of checking for compliance with a laundry list
of requirements, ATF demonstration aircraft were used to show that the competitors had analytically
predicted aircraft behavior by spot-checking the performance and technology issues each team
thought were critical. “We didn’t come into the Dem/Val with what the military thinks of as
requirements,” remarked Lt. Col. W. Jay Jabour, director of the ATF combined test force. “We
said to the contractors: ‘Demonstrate what you think shows that you reduced risk to enter full-
scale development.’ Giving the contractor the latitude to fly his test program is a little bit
different.” [JABOUR91] Colonel John M. (Mike) Borky, former director of ATF avionics, noted
that the Dem/Val phase was a huge success because it fostered rapid technology insertion and
established the baseline configuration for the next phase, FSD. This method of testing along
with demonstrations insured that once the selected design went into FSD, there would be no last
minute surprises dragging out the schedule. There would also not be the need for additional
large sums of money to fix a system that did not work. [BORKY91]

7.3.2.5 Performance Incentives

Performance incentives are a proven risk reducing acquisition strategy that rewards developers
for exceptional contract performance. For incentive or award type contracts [i.e., cost-plus award
fee (CPAF), cost-plus incentive fee (CPIF), and firm-fixed-price incentive fee (FFPIF), you may
have difficulty identifying the factors on which to base the additional fee. While there is no
standard guidance, incentive awards can be based on:

• Milestone completion. The degree of completeness for major software milestones has been
successfully coupled with award fees. Surveys among Air Force managers show these award
fees can enhance software development and documentation quality.

NOTE: Difficulties can arise if software development progress is evaluated independent
of system development progress.

• Software quality and reliability. Quality and reliability are prime candidates for award or
incentive fees since they greatly affect both development and support. Remember, software
quality and reliability can only be determined through an effective measurement program.
[HUMPHREY90]

7-16

Chapter 7: Acquisition Planning GSAM Version 3.0

Contractors have a number of corporate goals which include profit, perpetuation, growth, and
prestige. Most defense contractors are adverse to risk and operate on the premise that a satisfactory
profit at acceptable risk is better than maximum profit at a high risk. Software development for
the military is a very high-risk corporate endeavor. Performance incentives and award fee contracts
offer a means for motivating contractors to achieve more than minimal program objectives without
excessive risk. This forces the Government and the contractor to work as a team — rather than
as adversaries.

CAUTION: A problem with this type approach is that often so much effort is put into
preparing for the award fee board that productivity is sacrificed. Also, problems that
should be dealt with as a team can be hidden from the Government to look good on
performance reports. Nevertheless, award fees are a proven, effective means for assuring
the achievement of desired performance, quality, and supportability objectives.

7.3.2.6 Make-or-Buy

The contractor’s make-or-buy decision recognizes that few, if any, prime contractors can or want
to make all of the many components required for a sophisticated, complex major software-intensive
system in the time allowed, within cost limits, and at required quality levels. Buy decisions on
the part of the prime can involve buying COTS or employing subcontractors to make subsystem
software components. However, as you will learn in Chapter 8, Contracting for Success,
subcontractors present government managers with a new set of issues. With subcontractors, the
program office is divorced from direct contact management of the software developer because
the subcontractor is under contract to the prime, not the Government.

The government make-or-buy decision involves whether to buy the software as COTS or contract
for the development of a custom (or a combination of custom and COTS) solution. If custom-
made, data rights issues must be analyzed and resolved.

7.3.2.7 Pre-planned Product Improvement (P3I)

If a technology or threat change occurs during the development of a software-intensive system,
you can respond to these changes in one of two ways: (1) redesign the system to incorporate the
change, or (2) continue the development as originally designed to deployment and modify the
system later in the field. Both of these approaches can be costly to implement. There is always
the risk that complete success in meeting unprecedented and unplanned for threats (or needs)
will not be achieved. P3I provides an approach to meeting such needs without having to develop
a new system. It entails making plans for probable future needs by improving the system as
technology becomes available. The advantages of this strategy are:

• Responsiveness to threat changes and future technology development,
• Earlier initial operational capability (IOC) for the baselined system,
• Reduced development risk,
• Potential for subsystem competition,
• Enhanced operational capability for the final system, and
• Increased effective operational life.

7-17

Chapter 7: Acquisition Planning GSAM Version 3.0

The disadvantages are:

• Increased nonrecurring cost during initial development,
• Increased technical requirements in areas such as memory efficiency, source code efficiency,

and reliability,
• Increased complexity in configuration management,
• Vulnerability to goldplating accusations and funding cuts,
• Compounding system management problems due to parallel developments, and
• Interference with the orderly development and implementation of effective support plans and

procedures.

7.4 Program Planning Process

The planning process involves decomposition of the system into functional elements or subsystems.
The functional subsystems are then decomposed or allocated into lower tier elements. This
process continues until the smallest functional element is identified. Within this systems
engineering process, various market analyses and trade studies are conducted to determine the
best solution to satisfy the particular subsystem allocated requirements or element of the subsystem.
Normally, this process follows a hierarchy where the architecture is the first element to be evolved.
The architecture is usually composed of components, interface between components and the
functions to be interchanged. The architecture design also considers timing and bandwidth of
the interfaces. From this architecture, the functional specifications for the components can be
developed. These components will typically consist of both hardware and software.

The elements of a Strategic Software Management Plan are:

• Objectives and scope. The objectives identify the overall goals of the program, without
consideration for how they are accomplished. The scope identifies the primary functions the
software must accomplish, defined quantitatively. It describes what has to be done, for whom,
by when, as well as the criteria for determining program success.

• Risk assessment/management. This activity filters throughout the process by determining in
advance the possibility that a problem will occur, estimating its probability, evaluating its
impact, and preparing solutions in advance. Risk assessment begins prior to acquisition
strategy development and continues as an integral part of software management activities

• Decomposition of software components by function and task. Rather than attempting to
understand and plan the entire program as a single entity, experience shows that it is easier
and more effective to break down the overall program into smaller, more manageable elements.
At a top level, the System Segment Specification (SSS) identifies those requirements and
system functions that must be fulfilled by either software or hardware. At increasingly lower
levels, the work breakdown structure (WBS) subdivides the program into more easily defined,
understood, tracked and managed discrete tasks.

• Market analysis. This consists of trade studies for hardware and COTS software products.
It also entails assessing competitive sources through Sources Sought Announcements, Broad
Agency Announcements (BAAs), and Requests for Information (RFIs) in the Commerce
Business Daily.

7-18

Chapter 7: Acquisition Planning GSAM Version 3.0

• Resource estimation. These are quantitative assessments on the number of people required
and the cost, schedule, and size of each individual element comprising the whole software
development task.

• Software size estimates. These estimates are quantitative assessments of the amount of code
required for each product element (system, subsystem, component, and/or module).

• Software cost/schedule estimates. These estimates are based on the size of the program,
product attributes (such as application complexity and security requirements) and
environmental considerations (such as development team productivity, CASE tool use, and
availability). Various estimating techniques and/or models can be used to estimate manpower
requirements (staff-months of effort), cost ($), and schedule (calendar month duration).

• Software support estimates. These are estimates of the resources required after system
deployment. They are typically based on system size and original development effort. Although
actual post-deployment costs must include product upgrades, error corrections, future
evolutionary enhancements, and rehosting to new hardware platforms, most software support
estimating models do not include all these elements in their estimates.

• Progress measurement and control. These are on-going measures after contract award.
They consist of formal programs for measuring and evaluating your contractors’ progress
against baselined budget, schedule, and quality standards. Typically, this involves defining
and collecting specific metrics that are consistent with the agreed upon baseline. Although
these measures may not answer all the questions about why variations from the baseline are
being experienced, they should be sufficient to identify that significant deviations are occurring.
They should also provide you with sufficient information with which to question your
developer. Historically, this has been one of the weakest software management activities.

ATTENTION! The Strategic Software Management Plan need not be developed by the
government program office except in outline form. However, one of the required products
for evaluation during source selection should be detailed strategic software management
plans submitted by the offerors with their proposals.

7.4.1 Planning Objectives

A veteran of the Vietnam War, Colonel Harry G. Summers, Jr. greatly influenced the serious
study of strategic planning within the US Army. His theory on objectives was:

“The first principle of war is the principle of The Objective. It is the first principle because all
else flows from it. It is the strategic equivalent of the mission statement in tactics and we must
subject it to the same rigorous analysis as we do the tactical mission.” [SUMMERS81]

The objective of the software planning process is much like the first principle of war. It is the
first activity of the planning effort because all else flows from it. It provides a framework (or
plan) from which an understanding of the mission and the execution of the effort can flow. This
includes having a baseline upon which to estimate the resources, cost, and schedule required, as
well as to evaluate recommendations for program changes. The plan serves as a guide for the
Special Program Officer (SPO) and as a means to communicate the content and execution of the
program to individuals outside the SPO. As the program progresses, the objective and the plan
must be subjected to rigorous analysis. You will progressively be able to quantify your original
estimates. Thus, it is important to update your plan to reflect any changes in requirements and

7-19

Chapter 7: Acquisition Planning GSAM Version 3.0

program management issues, and to more accurately document your new understanding of costs/
schedules, risks, and other technical issues.

7.4.2 Planning Scope

The first activity in the planning process is to define the scope of the software effort. It includes
function, performance, constraints, interfaces, and reliability. The definition process starts with
the System/Segment Specification (SSS), which is further decomposed with the work breakdown
structure (WBS). Make sure the functions described in the Statement of Scope are evaluated and
refined to provide the greatest amount of detail before beginning your estimation process. This
means that the performance allocated to the software segment during systems engineering must
be bounded and stated explicitly (e.g., quantitative data such as the number of simultaneous
users and the maximum allowable response time). Constraints and/or limitations (e.g., cost/
weight factors that restrict memory size) are the limits placed on the software by external hardware,
available memory, or other existing systems. Mitigating factors (e.g., desired algorithms, well
understood and available in Ada) must also be taken into account. [PRESSMAN92]

7.4.3 Recommendations for Program Planners

Past experience has given us a number of recommendations we can use to produce better, more
realistic plans.

• Planners must allow for an extended schedule to compensate for the impacts of implementing
new methodologies and adequately train personnel to build a repeatable process.

• Ensure there is enough schedule time to include quality in your product. Allow enough lead
time between reviews and formal delivery of documentation.

• When new equipment, methods, and processes are introduced concurrently, a tremendous
learning curve exists. Bringing personnel into a program after it starts makes it difficult for
them to grasp the scope of the program and become fully productive. Bring on key personnel
as early as possible in accordance with the staffing plan. Any other new personnel should be
phased in incrementally so as not to interfere with total team productivity and cohesion.

• Scheduling for an integrated government/contractor team must involve both government and
contractor management.

• On a program involving new processes, equipment, and methodologies, development
personnel must be allowed time to come up to speed on goals, tasks, and associated start and
completion dates. This can be accomplished by providing each team member with inchstone
schedules that are planned and staffed 60 days in advance. These should include all known
leaves, vacations, training, holidays, commander’s calls, etc.

• To avoid a series of nontrivial changes during software analysis and design, iron out Interface
Requirement Agreements (IRAs) as early as possible. Interfaces can be identified as a technical
risk. Organize a Risk Management Working Group to oversee IRAs and a risk mitigation
officer to monitor and plan risk mitigation.

• Make sure task configuration management (CM) personnel are briefed on CM policies,
procedures, and the possible consequences of not following them. CM policies and procedures
should be included in the SDP and distributed as required reading to all task members.

7-20

Chapter 7: Acquisition Planning GSAM Version 3.0

• The configuration requirements, implementation, and maintenance for a local area network
(LAN) requires planning and dedicated, specialized personnel. Therefore, upfront analysis
and planning to determine LAN requirements is necessary with special consideration paid to
how much and what type of terminal equipment will be connected to the LAN. Include
communications specialists in your staffing plan.

• Adequate identification of hardware and software constraints, connectivity, and supporting
documentation must be planned for prior to starting a task. Proper planning of staffing and
tools for each task lessens the impact on productivity.

• Government staffing must be coordinated between the task leader and his/her government
counterpart to ensure appropriate skills are provided at proper times in the life cycle. Have
each task leader identify a staffing strategy. The technical quality assurance evaluator (TQAE)
should then review this strategy and plan a similar strategy in coordination with the task
leader.

• An external interface process should be documented in a separate appendix to the SDP.
• Although not usually scheduled for delivery, prototype development requires a good support

environment. This includes the hardware environment and regular system backup. These
elements, often taken for granted, should be routinely provided in development deliverables.

• Documentation must be available from the onset of any new engineering endeavor. Prototyping
language manuals and texts will pay for themselves almost immediately after acquisition, as
they eliminate the time-consuming trial and error approach to learning.

7.5 Program Decomposition

In Chapter 9, Engineering Software-Intensive Systems, you will learn that one reason for employing
the principles of software engineering is that it provides a method for handling complexity. This
is accomplished by applying the old adage of divide-and-conquer. Major software developments
must be decomposed (broken down into manageable parts) to enable realistic estimates of size,
time, and manpower. Methods of decomposition differ depending on program objectives, which
may be based on either function or design. Functional decomposition divides the program into
basic components from a user’s perspective; whereas, design decomposition divides it into
software components or modules. [BENNATAN92] Your first layer of decomposition is at the
system level with the SSS. From that the WBS is developed.

7.5.1 System/Segment Specification (SSS)

The most important and critical aspect of system development is to nail down function-level
system requirements before they are allocated to either hardware or software components. For
weapons systems, the SSS, containing general software requirements, is an initial method of
decomposition at the system level. In the SSS, system requirements are defined in quantifiable,
measurable, and testable terms. [DSMC90] The SSS is then the basis for further decomposition
into the WBS.

7-21

Chapter 7: Acquisition Planning GSAM Version 3.0

7.5.2 Work Breakdown Structure (WBS)

A WBS should be developed for each major acquisition program (or major modifications thereof),
and for each individual contract within the program. The WBS, in its various forms, can serve as
a useful tool for planning, control, and communication throughout your program. The WBS, if
properly written, defines the program’s total objectives and relates the many work efforts to the
overall system. The WBS is the foundation for:

• Program and technical planning,
• Technical description of program pieces,
• Cost estimation and budget formulation,
• Schedule definition,
• Statements of Work and specification of contract line items,
• Progress status reporting and problem analysis,
• Tracking of technical changes [Engineering Change Proposals (ECPs)], and
• Engineering management.

7.5.2.1 WBS Interrelationships

The summary WBS defines the upper three levels of a system. The project summary WBS is
tailored to a specific program or project. The contract WBS defines the complete work effort for
a particular contract or other procurement action. It contains applicable portions of the project
summary WBS plus the extension of any levels necessary for planning and control. The
interrelationship between WBSs is illustrated in Figure 7-2.

Surface
Vehicle

Space

Ship

Ordnance

Missile

Electronics

Aircraft
System

Contract
WBS

Project
Summary

WBS

Each procurement
action requires a

contract WBS

P
ro

je
ct

 W
B

S
MIL-STD-881
SUMMARY

WBSs

Figure 7-2. Interrelationships Among WBS Types

7-22

Chapter 7: Acquisition Planning GSAM Version 3.0

From the project summary WBS, individual contract (or development organization) WBSs can
then be developed. The program office can initiate preliminary contract WBSs before contract
award that contain contract line items, configuration items, contract specifications, and industry
responses to the draft RFP. The initial project summary WBS and first contract WBS must be
established at the award of the first development contract. As the program progresses and
additional contracts are let, the project WBS must be extended to all levels it addresses, but the
basic structure should remain unchanged. A single project WBS, with element nomenclature
and definitions, should be maintained throughout the acquisition process to ensure traceability.
The components of the WBS are:

• Prime mission product. The prime mission product element is the hardware and software
used to accomplish the primary mission of a defense materiel item. It includes all integration,
assembly, test, and checkout, as well as, all the technical and management activities associated
with individual hardware and software items.

• WBS element. This describes a discrete portion of a WBS that is either an identifiable item
of hardware, a set of data, or a service. An element can consist of one or many work packages.

• Subsystem. This refers to all the hardware and software components of a subsystem.
• Software component. This is all the software integral to any specific subsystem specification

and can be an aggregate of application and system software [discussed below]. (It excludes
software specifically designed and developed for system test and evaluation.)

• Work package. This represents the work to be performed at the lowest WBS level where
work performance is managed. Developed by the contractor, it defines the work, how its
accomplishment is measured, how it is tied to a schedule, and where responsibility lies for
production of the operating unit. Interrelating the who, what, when, and how much for any
task effort, it is the heart of management control and provides visibility at designated levels.
Program performance can be measured and controlled by monitoring reports on the technical
and schedule aspects of each work package or combination of work packages.

7.5.2.2 Prime Mission Product Summary WBS

The prime mission product summary WBS identifies the upper three levels of a WBS and defines
the top-level software elements and their placement in the structure. The prime mission product
summary WBS is used to develop the software project summary WBS.

7.5.2.3 Software Project Summary WBS

A software project summary WBS is usually the result of the systems engineering efforts conducted
during Concept Exploration. At this time, the most suitable summary WBS software items are
considered that best satisfy operational needs. The preliminary software summary WBS should
not be constraining, but evolves and is tailored as program objectives stabilize. Developers
should be encouraged to propose changes to the preliminary project summary through creative,
alternative development options. The software project summary WBS elements are:

7-23

Chapter 7: Acquisition Planning GSAM Version 3.0

• Software WBS elements. Software WBS elements are described generically and apply to
each type of defense system. The associated activities and deliverables for which cost data
are collected are listed with each software WBS description.

• Application software. Application software is specifically developed for the functional use
of a computer system. Examples are battle management, weapons control, and data base
management software. This element refers to all the effort required to design, develop,
integrate, and checkout prime mission product applications, builds, and CSCIs. It excludes
all software integral to any specific hardware subsystem specification. Figure 7-3 illustrates
the breakdown of both application and system software CSCIs.

• System software. System (or support) software is designed for a specific software system, or
family of software systems, to facilitate its (and its associated applications; i.e., operating
systems, compilers, and utilities) development, operation, and maintenance. It also includes
all the effort required to design, develop, integrate, and checkout the system software, including
all software developed to support any prime mission product software development. It can
also include multiple builds.

7-24

Chapter 7: Acquisition Planning GSAM Version 3.0

Figure 7-3. Interrelationships Among WBS Types

7.5.2.4 Software Contract WBS

Only one preliminary software contract WBS is used for each RFP and its ensuing contract
WBS. The program office structures a preliminary contract WBS by selecting elements of the
approved project summary WBS that apply to that contract. It then organizes them into a
framework supporting the approved project summary WBS and development objectives. Software
subsystems may then be extended to the next lower level. Traceable summarization of individual
contract WBS(s) into the approved project summary WBS are maintained. The contract WBS
does not need to completely mirror the project WBS. For contracting issues (e.g., cost accounting)
a WBS different from the project tracking WBS may be necessary. The functional integration of
the project summary WBS with the contract WBS is illustrated in Figure 7-4.

Build
(1..N)

CSCI #1

CSCI #2

CSCI #3

CSCI to CSCI
Integration &

Check out

Coding &
Design Entity

Testing
DesignRequirements

Analysis
Design Entity
Integration &

Testing
CSCI

Testing
SPCR

Resolution

Design Entity
Re-integration

& Testing

Recoding &
Design Entity

Testing
Redesign

LL SOFTWARE WBS ELEMENTS

Subsystem
#N

PMP
Application
Software

AIRCRAFT
SYSTEM

Hardware
Component

Prime Mission
Product (PMP)

Subsystem
#N + 1

Software
Component

PMP
System

Software

Integration,
Assembly, Test

& Checkout

LL LL

LL

LL = Lower Lever Extension
CSCI = Computer Software Configuration Item
SPCR = Software Problem Change Report
Design Entities = Computer Software Components,
 Objects, Modules, etc.

7-25

Chapter 7: Acquisition Planning GSAM Version 3.0

Figure 7-4. Software Project and Contract WBS Functional Integration

In their proposals, or during source selection, offerors are encouraged suggest changes to certain
elements to make the contract WBS more effective. These changes are approved by the government
program manager. The final contract WBS, based on the contractor’s proposal, suggested changes,
and contract negotiations, becomes the basis for a more detailed definition necessary to manage
the effort. The contractor must also prepare program-specific terminology and definitions for
extended elements of the contract WBS.

A couple of points must be emphasized. First, the contract WBS provides the link between the
contracted effort and the overall program to include description of the interfaces necessary to
integrate the software of one contractor with that of other contractors or agencies. This is to
ensure that all software being developed is compatible when integrated with other software and
hardware at the next higher level of integration. Second, be careful to select WBS elements that
permit structuring of budgets and tracking of costs to whatever level is necessary for control.

You can accomplish this by assigning job orders (or customer orders) to the cost account level
for in-house efforts and by structuring line items (contract data requirements list (CDRLs)) or
work assignments [discussed in Chapter 8, Contracting for Success] in accordance with the
WBS. Usually, a cost account is established at the lowest level of the contract WBS where costs
are recorded and compared with budgeted costs. This cost account (WBS element) is a natural
control point for cost/schedule planning as it is the responsibility of a single organizational element.
Contractors should maintain records to the work package level so the Government has visibility
to the cost account level. Ideally, you and the contractor will agree on a WBS which is integral
to [and not disruptive of] their development process that they would normally use for internal
tracking and management.

k

ka

Te
st

M
FG

C
om

pa
ny

E
ng

in
ee

rin
g

D
es

ig
n

Mechanical
Design

Analytical
Design

Drafting and
Checking

Antenna Transmitter Receiver

Radar Head Up
Display

Fire Control
Software

Navigation
Aids

Fire
Control

Communication
and Identification

Airframe

Air Vehicle

A/C System

Avionics

P
ro

je
ct

 S
um

m
ar

y
W

B
S

C
on

tra
ct

 W
B

S

Cost
Account

Cost
Account

Functional
Management
Level

1 2 3 4

Level 1

Level 2

Level 3

Level 4

Level 5

Cost
Account

7-26

Chapter 7: Acquisition Planning GSAM Version 3.0

7.5.2.5 Software Project WBS

The software program/project office prepares the software project WBS by compiling the elements
of the extended contract WBS(s) with the project summary WBS. The program office then
incorporates the levels of the extended contract WBS(s) it considers necessary for program
management and other related requirements into the project WBS. This compilation occurs as
successive extensions of the individual contract WBS(s) are identified throughout the program.
The formal project WBS is completed prior to initiation of the system integration and test phase.
A 3-level project summary WBS for the F-22 is illustrated in Figure 7-5.

F-22 SOFTWARE

Support Data Systems

Mission Support Elements
Computer Resources

Support Systems

Peculiar
Support EquipmentS

up
po

rt
S

ys
te

m
s

Vehicle Management
System Software

Utilities and
Subsystems Software

Avionics
System Software

A
ir

V
eh

ic
le

S
of

tw
ar

e

Pi lot Training
System Software

Maintenance Training
Systems Software

Training Management
System/ Training System
Support Center Software

Computer-based Training
System Software

Tr
ai

ni
ng

Sy
st

em
 S

of
tw

ar
e

Figure 7-5. F-22 3-level WBS

The Integrated Master Plan/Integrated Master Schedule concept that evolved on the ATF program
is one approach to force contractors to perform detailed, step-by-step planning and report progress
and costs against their plan. If contractors are held accountable to deliver functions rather than
configuration items, they cannot cheat on software performance and integration because delivering
the hardware alone will not trigger payment. This is something of an oversimplification, but the
basic concept of requiring that contractors deliver integrated system capabilities and minimizing
progress payments for arrival on dock of a system capability, rather than bits and pieces, is highly
recommended.

7-27

Chapter 7: Acquisition Planning GSAM Version 3.0

WARNING TO WEAPON SYSTEM PROGRAMS! The lack of a software WBS has
been the Achilles Heel of many weapon programs. Do not be caught without meaningful
insight into your highest risk area.

7.6 Market Analysis

The Defense Standards Improvement Council (DSIC) states that market analysis is key to meeting
the spirit and letter of Secretary Perry’s June 1994 Memo. [See Chapter 4, DoD Software
Acquisition Environment.] You should perform a market analysis to determine if commercial
products are available that meet your identified need because current MilSpec reforms make
aggressive market analysis imperative.

Through comprehensive market analysis, you will be able to ascertain if adequate commercial
product alternatives exist and to identify satisfactory replacements for software MilSpecs and
MilStds. If your market analysis illustrates that certain software MilSpecs or -Stds can meet your
identified need, your analysis results can serve as the basis for a waiver request to the Milestone
Decision Authority (MDA), or you can cite the MilSpecs or MilStds as guides without mandating
that they be literally followed.

Whether your program is a new-start, an on-going, or one in post-deployment software support
(PDSS), you must perform a market analysis prior to every requirements definition effort. The
data you collect during the market survey are then used to reassess your original requirement.
You must determine whether a modification to the original requirement will result in greater
overall value to the Government in terms of cost, performance, availability, reliability — or other
risk drivers you have identified. You market survey should also cover maintenance and support
data, test results, and user satisfaction analyses. These data are used in developing your support
strategy and the TEMP. [The SD-5, “Market Analysis for Nondevelopmental Items,” Assistant
Secretary of Defense (Economic Security) [OASD/(ES)] describes a generic approach for market
analysis. A training program is also available from OASD/(ES). See Volume 2, Appendix A for
a point of contact.]

7.6.1 Software Product Definition and Decomposition

Software product definition and decomposition will be complete once you have accomplished
the basic planning process discussed above. Your product will be identified and decomposed, at
least initially, through the SSS and the various WBSs. However, it may be necessary to modify or
adapt these items to your software cost, schedule, resources, and support estimate preparation
requirements.

7-28

Chapter 7: Acquisition Planning GSAM Version 3.0

7.7 Baseline Estimates

The basic software estimating process mirrors the strategic planning process and builds on and
supports many of the other planning steps. It consists in defining what will be estimated, breaking
the total effort into appropriate lower-level elements, determining the scope (size) of each element,
assessing the software development environment, and performing assessments of alternatives
and risk factors. Once these elements have been quantified, evaluated, and boundaries placed
around their values, baseline estimates of cost, schedule, resources, and support can be determined
and assessed. Table 7-1 (from Kile’s A Process View of Software Estimation) outlines the steps
necessary for bid preparation. Although it names the steps and presents the view differently than
discussed here, the basic process is the same. [KILE91]

Phase Major Activity Specific Products

1. Design Baseline Define a point of sufficient precision to identify the number
of CSCIs and the required functionality of each.

List of CSCIs, functionality,
and similar completed
projects or CSCIs.

2. Size Baseline Using the products from the Design phase, define the
expected size for each CSCI.

List of CSCIs with appropriate
size information.

3. Environmental
Baseline

Using the products from the two previous phases,
determine the environmental characteristics required and
available to perform the job.

List of software cost model
parameters and their initial
settings along with a written
rationale for each.

4. Software Baseline
Estimate

Using the size and environment products, make a software
cost model run (using whatever model best satisfies the
organization's needs).

Output from the software cost
model showing schedule and
cost information.

5. Project Baseline Using the output from the Software Baseline Estimate
phase, add those elements not included in the particular
software cost model (each model has a specific set of
items not included in the estimate) and subtract those
elements excluded from this project.

A complete estimate of the
costs and schedule for the
software portion of the
project.

6. Risk Analysis Determine the cost/schedule risk associated with the
Project Estimate. Make changes to the size or environment
products to perform what-if analyses. Determine the size
and/or environment setting required to validate the final
software bid.

Risk assessment, risk graphs,
risk memorandum with
Parameter-by-Parameter risk
explanations.

7. Project Bid Perform analysis of the Project Estimate, considering such
factors as expected competition, type of contract,
budgetary or personnel constraints, risk analysis, etc.
Convert labor and other direct charge (ODC) estimates into
contractor's price and determine the Project Bid.

Project Bid.

8. Dynamic Cost
Projection

Using existing known environment and size information,
produce a revised Project Estimate and determine the
remaining costs and schedule-to-complete for the on-going
project.

Cost-to Complete, Schedule-
to-Complete, Size-to-Cost.

Table 7-1. The Software Estimation Process

7-29

Chapter 7: Acquisition Planning GSAM Version 3.0

The software estimating process is an interactive, dynamic process. As program requirements,
the development environment, and/or the program funding profile change, re-estimation of the
effort/cost and schedule must be performed. Contractor Engineering Change Proposals (ECPs)
must also be evaluated for their affect on both development and support costs, as well as schedule.
Funding constraints typically result in program delays which can, in turn, increase cost.

To develop master schedules, acquisition strategies, and preliminary budgets, a preliminary cost/
schedule estimate reflecting the program baseline needs to be developed using preliminary size
and environmental assessments. This baseline estimate provides a starting point from which
alternatives may be compared and changes tracked. Throughout development, as assessments
are updated to reflect current conditions, cost/schedule estimates must be updated to support
decision making at all levels. A cost track from the baseline estimate to each update, as well as
clear, understandable documentation substantiates the need for programmatic change. [A rule of
thumb for a well-documented estimate is that it is verified by a second party.] The goodness of
an estimate depends on whether factor assessments are realistic, appropriate risk is considered,
and estimating methodologies substantiate reasonableness of the cost estimate. Significant cost
and schedule drivers should be re-estimated and documented using a secondary methodology as
a confidence check. A minimal confidence (or sanity) check, is performed on significant cost
elements to assure that the estimation is within an acceptable range of general knowledge (e.g.,
sources lines-of-code (SLOC)/staff month is within range of similar software programs).

NOTE: An overview of several estimating techniques/methodologies is found in Chapter
13, Software Estimation, Measurement, and Metrics.

The preliminary estimate becomes the baseline from which the process of updating your estimates
proceeds, and continues throughout the development life cycle. As program knowledge increases,
metrics data are collected and analyzed, and your estimates are updated, your cost and schedule
estimates will become increasingly more accurate. This approach does not omit or conflict with
longer term acquisition strategies such as systematic reuse and families of product-lines and
systems. Long term, wide scope acquisition planning is necessary to ensure a cost-effective
acquisition, especially when such requirements may contradict the profit motives of individual
development contractors.

Once an initial cost and schedule estimate has been developed, significant effort is required to
analyze and understand the estimate before accepting it as a formal part of your strategic plan.
The analysis of your original estimate serves four purposes: (1) to make sure the estimate is
thoroughly understood, (2) to insure that the estimate is as accurate as possible; (3) to provide a
baseline upon which to evaluate programmatic alternatives (e.g., trade studies, software capability
assessments, tradeoff analyses, and development methodologies), and (4) to conduct risk analyses.
The original estimate analysis includes answering the following:

• Does the estimate make sense?
• Are estimated schedules, costs, and effort consistent with prior experience?
• Does the estimated effort, cost, and schedule meet programmatic requirements?
• Are required productivity levels reasonable?
• Have all relevant costs been included?
• Have any cost elements accidentally been included more than once because different estimating

techniques were used for different WBS elements?

7-30

Chapter 7: Acquisition Planning GSAM Version 3.0

7.7.1 Estimation Accuracy

The accuracy of your cost estimate directly relates to the quality of the information upon which it
is based. The exactness of this data increases as a function of time and the stability of requirements.
During the planning phase of a program, requirement uncertainties often result in questionable
estimates. As time progresses, the fidelity of the information improves along with the accuracy
of the estimates. [MARCINIAK90] The quality of the information is also dependent on the skill
and experience of your analysts/engineers who gather and analyze the input information. The
quality of the estimate is, similarly, dependent on their skills and experience in software cost and
schedule estimating, the specific estimating methods and models used, as well as their familiarity
with the software system being estimated.

Using a second (or possibly third) estimating technique or model to identify these potential
problems is a proven, effective way to compare estimation results (after normalizing results for
equivalent content). To correct any identified problems, your cost analyst must change model
input settings [not input data] to reflect a better understanding of the information required by the
model and/or seek additional clarifying data upon which to base changes in model inputs. If
your model’s estimated schedule exceeds programmatic requirements, your analyst may need to
turn-on a schedule constraint variable within the model. If the staffing profile predicted by the
model is inconsistent with the development plan, a staffing constraint variable may need to be
adjusted. After several iterations (under a variety of assumptions and with varying parameter
settings) your analyst should arrive at an estimate that is both credible and reasonably accurate.
This estimate should also include a risk assessment. At this point, the estimate may consist of a
range of estimates that reflect different assumptions and probabilities of success rather than a
single-point-estimate. You should review these estimates and risk assessments and provide
additional guidance for further analysis and/or approval.

Once the estimate is as accurate as possible using known information, it can be used to perform
sensitivity analyses, risk analyses, and what-if exercises by varying model inputs based on
expectations or alternative sets of assumptions. If there is uncertainty about the size measurement
(or other factors influencing the cost or schedule), high and low end estimates of the expected
range should be developed. These studies can be used to identify risk areas and to develop
contingency plans. If there are constraints on your budget or schedule, your estimate should be
derived taking these limitations into account. This will provide your baseline estimate as to the
viability of developing the software within identified constraints. If it appears that either cost,
schedule, or resource limitations can not be met, other programmatic options must be examined
during planning, rather than waiting until these constraints have been violated. It is extremely
important that you do not change estimate parameters to meet programmatic restrictions. This
will merely invalidate your estimate, your program planning activities, and greatly reduce your
likelihood for program success.

7-31

Chapter 7: Acquisition Planning GSAM Version 3.0

CAUTION! Beware of “Rosy Scenario” (also known as “Optimism”). Program managers
are inclined to manipulate the input variables to software estimating models to assure
an “acceptable” outcome in terms of estimated cost and schedule. One example is to
understate the size of the program, while another typical situation is to overstate the
capabilities and/or resources (tools and practices) of the development team. Time and
again this has led to broken programs, delays, restarts, loss of confidence, all around
embarrassment, and on occasion — program cancellations. Well-documented estimates
using reasonable, but conservative, assumptions will bring you accolades in the long
run, even if there are grimaces and groans in the near term about the predicted cost and
schedules taking too long.

NOTE: All analysis and estimation to this point have been done by the acquirer. This
analysis may have NO relationship to a similar analysis performed by the developer.
The analysis should provide the acquirer with a rough order of magnitude estimate of
what the development will take in terms of cost and schedule. However, it is the
developer’s estimate of cost and schedule that ultimately count!

7.7.1.1 Program Estimate Selection

After the analysis of the estimate is complete, it is up to you to select the cost and schedule
estimate baselines which become part of your Strategic Plan. Ideally, this is performed in
cooperation with your development team manager as an on-going activity in your program
management process. This baseline must be periodically updated to reflect changes in the Strategic
Plan as more is known about your program.

The key element in selecting the baseline estimate is the level of cost and schedule risk you are
willing to accept. You need to understand that, although it may be possible to accomplish your
program within the cost and schedule to which you have committed, based on historical examples
there may be only a 10% probability you will succeed. It is only through realistic estimates and
early planning that this probability can be increased. Similarly, if the schedule for a software
development is dictated by other mission-critical factors (such as a payload launch date), you
must realize and understand the probability of meeting that schedule. Once you understand your
probability of success, you can rethink your strategy by planning various incremental efforts to
insure that critically-necessary functionality is completed on time. Other noncritical functionality
may be deferred to later development stages, or if necessary — omitted completely. Software
estimating models (used in concert with independent risk analysis techniques) should be used in
assessing the critical cost and schedule risks associated with changes in your program.

7.8 Continuous Program Planning

The final and most challenging step in planning is for you to constantly re-implement the planning
process throughout the life of your program. Budget cuts, personnel cuts, short schedules,
incessantly changing requirements, and the development environment force you to continuously
re-evaluate your estimates. To ensure successful program completion, you need to update your
Acquisition Plan. Figure 7-6 illustrates how planning is a continuous, iterative process.

7-32

Chapter 7: Acquisition Planning GSAM Version 3.0

Figure 7-6. Iterative Software Planning Process [HUMPHREY89]

Remember, the requirement to prepare software cost and schedule projections does not end.
The baseline estimate must be updated to reflect changes in your program environment, your
increased program understanding, and the actual metric data being collected. Similarly, cost and
schedule impacts of proposed and unforeseen changes can be quantitatively evaluated using
estimating models and your baseline estimate. These may not answer all the questions you have
about what is happening in your program, but they will provide you with a solid starting point
from which you can direct your questions.

Software estimation (and indeed software development) is still an art practiced with varying sets
of standard procedures, tools, and methods. Also, there are many unknown and dynamic variables
(i.e., human, technical, and political) in the development process that affect the software effort.
For example, requirements are frequently added or changed well into the software testing phase.
Because requirements frequently change, there is an axiom in the cost analysis community that
states: “original estimates are never correct because we never build what was originally
estimated.” Also, initial estimates of software size are typically based on limited information
and are often driven by optimistic, rosy scenario, success-oriented influences. Software cost and
schedule estimates also fall-short because the analyst performing the estimate is unfamiliar with
either the estimating model(s) being used or the specific details of the program — or both. As a
result, estimating the cost, effort, and schedule of software development is a necessary but inexact
science. Software program estimates can be improved, however, by using a systematic, disciplined
estimation procedures.

Initial
Requirements

Program
Commitment

Decompose
Requirements

Derived
Requirements

WBS Estimate
Product Size

SLOC

Develop
Schedule

Estimate
Project

Resources

Program-
mer

Months
Does

Schedule
Meet Need?

Projected
Schedule

Develop
Software

Yes

No

Compare
(Database)

Actuals

Deliver
Product

Estimates

7-33

Chapter 7: Acquisition Planning GSAM Version 3.0

7.8.1 Continuous Planning Recommendations

• No one likes to be a slave to schedule, but adherence to schedule promotes program stability
and inhibits requirements creep. Develop your deliverables around the delivery of a functional
capability and use cost payments as incentives to meet those deliveries.

• If a software development effort begins to sink because of schedule slips, throwing more
people onboard may not help. In fact, more people can actually cause the program to fall
even farther behind due to added communications and training requirements that decrease
productivity. Therefore, plan team composition and buildup in the early strategic planning
phases.

• Initially, QUALITY does not stand out like this. If you do not think quality upfront, you will
pay dearly for its neglect later.

• If you are living with evolutionary requirements, it makes sense to pursue an evolutionary
acquisition strategy. Develop an acquisition strategy that is flexible, can accommodate
evolutionary change, and deal with risk.

• Software planning is an iterative and continuous process. Initial estimates must be refreshed
and reflected in updated schedules and resource commitments.

• Monetary reward is a proven incentive for contractors to produce quality software. Money
might not be everything, but it sure is way ahead of whatever is in second place.

• Software size estimates have traditionally been poor and rank right up there with estimates
on the Gross National Product. Inaccurate estimates of SLOC have been a major impediment
to accurate software development cost estimates. Another major impediment has been the
failure to accurately estimate the capability of the development team.

• To make your estimates more accurate, use a combination of estimation techniques. Of all
the program risks with which you must deal, size estimating will be your biggest planning
problem. A word of caution is to use well-documented estimates based on conservative
assumptions.

• Use the Mitre Skills Matrix to reduce the team capabilities risk element.
• Identify software support requirements, as well as computer hardware support requirements,

in program budgets and schedules.
• A well-planned measurement program is an investment in successful management and product

quality.
• Performance risk can be reduced by planning for delivery of incremental levels of functionality.
• Use program decomposition and program management automated tools to get a handle on

program complexity.
• When comparing estimates produced by different cost models, make sure they have the same

definitions of environmental input parameters.

7-34

Chapter 7: Acquisition Planning GSAM Version 3.0

7.9 Other Planning Considerations

There are several other areas of strategic planning that you must include in your planning process.
These include:

• Use of milestones and baselines to track program progress towards achieving objectives,
• Factoring in the often hidden (but often substantial) cost of software scrap and rework in your

estimates,
• Program budgeting and funding considerations,
• Upfront definition of requirements for software safety and security, and
• Planning for future changes in technology that can impact your development efforts.

7.9.1 Major Milestones and Baselines

Milestones signify major events in the software development process. The completion of
requirements and design specifications are major milestone events. Major program milestones
often gain added importance through their linkage to other events, such as budget payments used
as measures of program progress or for determining baselines. If milestones can be described as
major program events, then baselines can be described as major milestones. [BENNATAN92]

The IEEE definition of a baseline is “a formally agreed upon specification that serves as the
basis for further development.” [IEEE87] Baselines are important in DoD software development
as they indicate critical times when major milestones are finalized. Baselines also provide
significant and complementary ways to control acquisition programs. Strategic planning baselines
include:

• Cost/schedule control performance measurement baseline. This baseline provides the
budgeted cost of work scheduled and is the measure against which schedule and cost variances
are calculated.

• Configuration management baselines. The software configuration management process is
important in providing support to the baselining of system products, and is central for
controlling the development process. Baselines that mark the completion of major milestone
activities are formal baselines. Changes to formal system baselines can directly impact both
cost and schedule. With formal control, any changes to the baselined system must be approved
by the authority responsible for system integrity as defined in that baseline. In software
development, there are three formal baselines.

• Functional baseline. The functional baseline establishes the requirements the system must
satisfy. With functional baseline establishment, system specifications are placed under control.

• Allocated baseline. The allocated baseline marks the end of the software analysis phase.
The allocated baseline is established when requirements are allocated to individual software
subsystems. It captures the linkage between the architecture and software requirements.

• Product baseline. A product baseline is established when the software system is fully designed,
developed, and tested. This baseline defines the produced software product, and provides
the framework for modifying the system through defect correction and incorporation of new
requirements.

7-35

Chapter 7: Acquisition Planning GSAM Version 3.0

• Acquisition program baseline (APB). The APB provides quantifiable targets for key
performance, cost, and schedule parameters of an acquisition program throughout the
acquisition process phases. The APB has two components for each parameter, an objective
and a threshold. Objectives and thresholds are determined differently for cost, schedule, and
performance. The user’s Operational Readiness Document (ORD) provides performance
objectives and thresholds. The ORD also provides the user’s requirement for initial operational
capability (IOC) and full operational capability (FOC) — both of which have schedule
implications. Cost and schedule objectives and thresholds are developed by your acquisition
team. [Recommendations for ORD preparation are found in Volume 2, Appendix T.] APBs
are sequentially refined as we move through the life cycle phases and are submitted at
Milestones I, II, and III. The APB may be adjusted at milestone approval (or program reviews)
based on changes in requirements and/or on the results of activities taking place in the previous
phase. The APB can also be adjusted in response to a baseline breach. Only those performance,
schedule, and cost parameters attributable to the breach, however, can be adjusted.

• Operational performance thresholds are the user’s minimum acceptable requirement for
the system when fielded and are derived directly from the ORD. (Other performance thresholds
may be added by the Milestone Decision Authority.) Cost objectives and thresholds should
reflect the independent cost estimate (ICE) for the program to meet performance objectives.
For schedule, the objective is the most likely date for a key event (such as a milestone review,
design review, or the completion of a test activity).

When the operating command identifies an unfulfilled need, they must start working closely
with the developing command and the supporting command in defining system thresholds
(minimally acceptable requirements) and objectives. This approach recognizes that technology,
funding, or schedule may preclude the developing command (and its contractors) from achieving
each and every objective. The objectives, if properly integrated into the program, can help the
system designer accommodate P3I. Thereby, parallel development upgrades can be incorporated
at appropriate procurement stages. A better understanding of requirements and more effective
teamwork can be achieved while still maintaining acquisition competition.

Program executive officers and senior acquisition executives must establish an atmosphere that
fosters frank program assessments by the development team. One method is to actively support
realistic realignment of system requirements and schedules during program reviews. This must
be a strategic part of the iterative process of refining the system by considering technology,
budget, and schedule. Program baseline documents (e.g., requirements correlation matrices and
system maturity matrices) must mature throughout the evolutionary process and be used as
management tools. They should reflect the refinement of system requirements as the development
proceeds, provide an audit trail of requirements, and establish the rationale behind subsequent
requirements changes.

During each phase of development, you need to maintain a current estimate of cost, schedule,
and performance parameters. If the current estimate indicates a threshold breach is anticipated,
or has occurred, they must be reported and acted upon.

7-36

Chapter 7: Acquisition Planning GSAM Version 3.0

7.9.2 Program Budgeting and Funding

The Air Force develops its programs through the Planning, Programming, and Budgeting System
(PPBS). It consists of three parts:

• Planning identifies the threat facing the nation for the next 5-15 years, assesses our capability
to counter it, and recommends forces necessary to defeat it.

• Programming allocates resources for competing requirements within the fiscal and manpower
ceilings imposed by the Congress. This effort develops a five-year program, i.e., the Program
Objective Memorandum (POM).

• Budgeting provides the initial estimated cost of approved plans and programs and refines
estimated costs as programs are better defined or modified in subsequent POM cycles, budget
estimate submissions (BESs), or the President’s Budget (PB). [Refer to AFI 65-601, Vol 3,
The Air Force Budget Corporate Process]

As a program manager, your role in the PPBS process is important. You may not be involved in
the initial planning process, but you are an important player in the software-intensive systems
programmed as a result of this planning. You must investigate the technology and software
solution recommended to satisfy the planning requirement, and if the solution is not sound, you
must bring that to the attention of all concerned and work to resolve all issues. These efforts are
critical to the success of your program. In the budgeting phase, your program’s costs are tied to
the rest of the Air Force’s monetary needs for coming years and your program is prioritized
relative to its importance and the current probability that it will be successfully fielded. [Refer to
HQ USAF/PE Primer, The Planning, Programming, and Budgeting System, HQ USAF/PE.] In
the past several years GAO has noted that virtually not one program has received full funding.
As a result, program managers have been forced into the position of having to restructure their
programs “on-the-fly.” Your challenge in today’s environment is to structure your software
development program to respond readily and aggressively to uncertain funding. [GAO91]

Field Marshall Erwin Rommel defined success on the battlefield as the ability to be flexible and
adapt to volatile wartime conditions. He explained that,

“Success comes most readily to the commander whose ideas have not been canalized into any one
fixed channel, but can develop freely from the conditions around him.” [ROMMEL53]

Success in planning for software management is the ability to stick to your plan while having a
plan flexible enough to adapt to changes in the development environment. The planning continues
throughout the software life cycle and is one of the most crucial activities you must perform as a
manager.

7-37

Chapter 7: Acquisition Planning GSAM Version 3.0

7.10 References

[BENNATAN92] Bennatan, E.M., On Time, Within Budget: Software Project Management Practices and
Techniques, QED Publishing Group, Boston, 1992

[BORKY91] Borky, Col John M., communication to SAF/AQK regarding draft AFPAM 63-116, December
11, 1991

[DEMING86] Deming, W. Edwards, Foreword to M. Walton, The Deming Management Method, Dodd,
Mead & Co., New York, 1986

[DEUTCH93] Deutch, John, as quoted by John Moore, “CIM Will Play Key Role in NPR Challenge,
Paige Declares,” Federal Computer Week, September 20, 1993

[DSMC89] Using Commercial Practices in DoD Acquisition: A Page from Industry’s Playbook, report of
the Defense Systems Management College 1988-89 Military Research Fellows, Fort Belvoir, Virginia,
1989

[DSMC90] Caro, Lt Col Israel I., et al., Mission Critical Computer Resources Management Guide, Defense
Systems Management College, Fort Belvoir, Virginia, 1990

[EASTERBROOK92] Easterbrook, Gregg, “Stealth-Creators,” The New Republic, January 6 & 13, 1992
[GAO86] General Accounting Office, Sergeant York: Concerns about the Army’s Accelerated Acquisition

Strategy, Report to the Chairman, Committee on Governmental Affairs, United States Senate, GAO/
NSIAD-86-89, May 1986

[GAO91] “Memorandum: Comments on Successful Acquisition of Computer Dominated Systems and
Major Software Developments,” US Government Accounting Office, Washington, D.C., January 25,
1991

[HUGHES92] Hughes, David, “Digital Automates F-22 Software Development with Comprehensive
Computerized Network,” Aviation Week & Space Technology, February 10, 1992

[HUMPHREY90] Humphrey, Watts S., Managing the Software Process, The SEI Series in Software
Engineering, Addison-Wesley Publishing Company, Inc., 1989

[IEEE87] IEEE Standard 1058.101987, Standard for Software Project Management Plans, Institute of
Electrical and Electronics Engineers, Inc., New York, 1987

[JABOUR91] Jaybour, Lt Col W. Jay as quoted by Michael A. Dornheim, “Air Force’s Hands-Off Approach
Speeded ATF Testing Programs,” Aviation Week & Space Technology, July 1, 1991

[KEMP94] Kemp, Dan, “CSC Software Development at Syntex: A Case Study,” briefing, 1994
[KILE91] Kile, Maj Raymond L, USAFR, A Process View of Software Estimation, HQ United States Air

Force/C4 Plans and Policy, Washington, D.C., June 1991
[KINDL92] Kindl, LTC Mark R., Software Quality and Testing: What DoD Can Learn from Commercial

Practices, US Army Institute for Research in Management Information, Communications, and Computer
Sciences, Georgia Institute of Technology, Atlanta, Georgia, August 31, 1992

[MARCINIAK90] Marciniak, John J. and Donald J. Reifer, Software Acquisition Management: Managing
the Acquisition of Custom Software Systems, John Wiley & Sons, Inc., New York, 1990

[MRAZ91] Mraz, Stephen J., “Face-off Over Tomorrow’s Fighter,” Machine Design, March 7, 1991
[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition,

McGraw-Hill, Inc., New York, 1992
[REILY92] Reily, Lucy, “Arms Software Hits Flak: GAO Targets Pentagon on Costs and Scheduling,”

Washington Technology, August 27, 1992
[RICE91] Rice, Secretary Donald B., as quoted by Patricia A. Gilmartin, “US Lawmakers Tighten Scrutiny

of B-1B and C-17 Aircraft Programs,” Aviation Week & Space Technology, March 4, 1991
[ROMMEL53] Rommel, Field Marshall Erwin, B.H. Liddel Hart, ed., The Rommel Papers, Harcourt

Brace & Company, New York, 1953

7-38

Chapter 7: Acquisition Planning GSAM Version 3.0

[ROONEY90] Rooney, Thomas R., as quoted in “ATF Avionics Met Dem/Val Goals, Providing Data for
Flight Tests,” Aviation Week & Space Technology, September 24, 1990

[SCHWARZKOPF88] Schwarzkopf, GEN H. Norman, “Food for Thought,” How They Fight, 1988
[SUMMERS81] Summers, COL Harry G., On Strategy: The Vietnam War in Context, US Army War

College, Carlisle Barracks, Pennsylvania, 1981
[SUN500BC] Sun Tzu, Samuel Grifford, ed., The Art of War, Oxford University Press, New York, 1969
[VESSEY84] Vessey, GEN John W., as quoted in the New York Times, July 15, 1984
[WORDEN94] Worden, Col Simon P. and Lt Col Jess M. Spanoable, “Management on the Fast Track,”

Aerospace America, November 1994

Part 1: Acquistion GSAM Version 3.0

Chapter 8

Contracting for
Success

Chapter 8: Contracting for Success GSAM Version 3.0

8-2

Contents

8.1 Team Building: Attacking The Lion ... 8-3
8.1.1 Building High-Performance Teams ... 8-4

8.2 Contract Type Selection ... 8-5
8.3 Developing the RFP ... 8-6

8.3.1 RFP Development Team Building... 8-7
8.3.2 Statement of Objectives (SOO) .. 8-9
8.3.3 Contractual Data Requirements List .. 8-9
8.3.4 Subcontracting ... 8-9
8.3.5 Joint Venture Partnerships .. 8-12

8.4 Special Software RFP Considerations ... 8-13
8.4.1 Commercial-off-the-Shelf (COTS) Software 8-15

8.4.1.1 COTS Advantage ... 8-15
8.4.1.2 COTS Integration ... 8-16
8.4.1.3 COTS Integration Lessons-Learned .. 8-18
8.4.1.4 More Cautions About COTS .. 8-19
8.4.1.5 Cautions About Modifying COTS .. 8-21

8.4.2 Data Rights .. 8-23
8.5 Source Selection Factors .. 8-25
8.6 Source Selection ... 8-26

8.6.1 Source Selection Team Building ... 8-27
8.6.2 Source Selection Planning .. 8-27
8.6.3 Advisory Multi-Step Process .. 8-27

8.7 Proposal Evaluation and Contract Award .. 8-28
8.7.1 Proposal Evaluation... 8-28
8.7.2 Best-Value versus the Cost of Poor Quality .. 8-29
8.7.3 Present Findings to the SSA .. 8-30
8.7.4 SSA Decision and Contract Award ... 8-30

8.8 Protests ... 8-31
8.9 Navy Seawolf Lessons-Learned ... 8-33
8.10 References .. 8-35

8-3

Chapter 8: Contracting for Success GSAM Version 3.0

8.1 Team Building: Attacking The Lion

“Four brave men who do not know each other will not dare to attack a lion. Four less brave, but
knowing each other well, sure of their reliability and consequently for their mutual aid, will attack
resolutely.” — Colonel Charles Ardnant du Picq [DuPICQ80]

Large, complex, software-intensive military applications are beyond the intellectual comprehension
of any one individual. A single creative developer can produce all the elements required for a
simple PC application, but one individual cannot fully understand a large-scale software
development, such as an automated air traffic control system, the avionics for a stealth fighter, or
a complex command, control communications, and intelligent (C3I) network. Nor can one person
manage its design, development, integration, and testing without help. These activities require
groups of highly-skilled, experienced professionals.

Software engineering, more than any other engineering discipline, is an extremely human endeavor.
Seasoned managers know that software development programs ultimately succeed or fail, not on
the sophistication and power of the tools used by their teams — but on the skills and performance
of those teams. There are case studies of organizations that assign two equally matched,
independent development groups to a software program to minimize the risk of failure. Team A
will be given a sophisticated set of automated tools, finishing the task 20% faster and producing
better code than Team B. Then the teams switch tools, and Team A will still complete the task
20% faster, with fewer defects than Team B. Experienced managers are aware that this
phenomenon reflects the situation throughout the entire software industry. The teamwork factor
impacts significantly on your management ability to attack the lion. [ALIC92]

The formation of a Computer Resource Working Group (CRWG) should be your first step in
team building. Though the CRWG is no longer required by regulation, it is still a good idea.
CRWG members include the implementing agency, the using agency, the supporting agency, and
other DoD and Service stakeholders. Other players such as the testers, contracting officers, in-
house software developers, and software engineering laboratories are also included. The CRWG
should be formed as soon as an official program is designated. The CRWG works together to
ensure the Request for Proposal (RFP) addresses all areas of interest and/or concern for all
CRWG members. After contract award, the final team member, the developer, is brought onboard.
This team member is probably the most crucial and important team member. The software
contractor you select can literally “make you or break you.” Figure 8-1 illustrates the composition
of a typical software acquisition/development team.

8-4

Chapter 8: Contracting for Success GSAM Version 3.0

Figure 8-1. Typical Software Acquisition/Development Team

8.1.1 Building High-Performance Teams

Recognizing the importance of each team member (contractor and Government) is essential in
the accomplishment of your mission. Too often government program managers have relied
totally on the contract as their management vehicle. Their approach considers problems that
arise as the contractor’s problem and exerts contractual pressure to solve them. A “hold-the-
contractor’s-feet-to-the-fire” approach has been a common mistake where the them-versus-us
mindset has held the contractor at fault when problems occur. This intractable approach has
proven unworkable time and again, because it plays against the teamwork goals of communication,
cooperation, mutual respect, and trust. [MARCINIAK90]

While the contract should not be used as the only management vehicle, it should be used to set
the limits. It represents the best form of communication, a clear statement of the requirement at
the start of development, and a framework for establishing a common sense of purpose among
government/industry team members. This is where effective team management must start. Keep
in mind that the purpose of the development effort is the delivery of an optimum solution — not
the exercise of the contract. To deliver a successful solution, successful teamwork is a must.
[MARCINIAK90] Team productivity and morale are enhanced when the contract states clear
and attainable goals, provides a mechanism for trust and open communications, and defines a
breakdown of tasks and resources that allow the team to function as a cohesive unit. When
acquisitions fail, government program managers often immediately point their fingers at the
hapless contractor; i.e., the contractor is the enemy. Sadly, those program managers do not
realize that they, themselves, are frequently the enemy. Do not let this happen to you. Build a
team from the outset and develop a common purpose and a productive working relationship with
your contractor. When programs fail there is no innocent party — both sides are guilty.
[MOSEMANN94]

Program
Management

Office

System
Program
Director

Contracting
Office

Prime Developer

Sub-Developers
(Gov’t or Contractor)

AFOTEC

Using
Command

Post
Development

Support
Organization

Training
Commands

COTS
Suppliers

Software
Engineering

Labs

SETA
(In-house

Contractors)

8-5

Chapter 8: Contracting for Success GSAM Version 3.0

Figure 8-2 illustrates the acquisition organization contracting process.

Figure 8-2. Acquisition Organization Contracting Process

8.2 Contract Type Selection

The degree of interaction between you and your contractor depends on the nature of the
development effort and the type of contract used. When software requirements are well-defined
(such as upgrading or enhancing an existing system) and the risk of development is low, a fixed-
price type contract is probably the right choice. Where requirements are ill-defined and
development risk is high, a more flexible cost-reimbursable contract may be more appropriate.

A way to mitigate high technology risk is to consider multiple award contracts, or contracts with
a provision for event-driven task orders. This contracting strategy allows for a closer working
relationship, and provides a better chance for arriving at a satisfactory solution because the risk
is shared am ong governm ent and industry team m em bers. [M A R C IN IA K 90] [FAR, Part 16
provides basic principles and policy guidelines for contract type selection.]

The same factors influencing cost uncertainty also influence schedule uncertainty. However,
there is no equivalent acquisition practice for establishing flexibility in the program baseline
schedule. Although baseline schedules are often driven by the initial operational capability
(IOC) need, the IOC is frequently established before assessments of technical risk and relative
uncertainty, requirements definition, design solution, and effort (i.e., schedule) have been made.
This is particularly true for unprecedented systems. Program level schedules are, too often,
success oriented, do not reflect past actual schedules, and are, in fact, unachievable. Offerors
have no real choice during competitive source selection but to respond to these schedules, even
though meeting them represents inordinately high risk. Success-oriented schedules are seldom
successfully achieved. Schedule pressure often compromises sound engineering and management
practices — increasing the risk of poor product quality. One way to deal with unrealistic schedules
is to allow partial delivery of the required functionality, with additional functionality delivered in
later phases (i.e., evolutionary acquisition).

Another solution is to include the concept of schedule-plus in your RFP as an approach for
establishing program schedule baselines. The schedule-plus approach is selected for the same
reasons the cost-plus approach is used, where technology and other factors have sufficient
uncertainty and risk. This is equivalent to setting up a management reserve for cost, extended to
schedule. It is also warranted if you are planning to use a cost-plus approach, if similar past

Acquisition
Planning

Source
Selection
Planning

RFP/Source
Selection

Preparation

Contract
Administration

Source
Selection

Contract
Award

8-6

Chapter 8: Contracting for Success GSAM Version 3.0

programs have had schedule performance problems, if a comprehensive Program Definition and
Risk Reduction phase has not been accomplished, or if you face significant challenges in the
areas of performance and/or supportability requirements.

A schedule-plus contract includes a baseline (minimum) schedule plus a delta range. This is
determined by comparing your proposed schedule to past actual schedules achieved on programs
similar to yours. Your schedule must then be evaluated and adjusted to within the delta, as
necessary, at program milestones. Schedules adjusted beyond the delta range will require re-
approval of the baseline schedule estimate. You can include incentives for the contractor to stay
within the planned schedule delta, such as a profit share line tied to the schedule, completion
fees, and award fees. Your RFP must also identify specific schedule review elements to determine
schedule status. These reviews are based on measurable events and actual data (metrics). The
schedule-plus approach is also integrated with the systems engineering master schedule and
plan. Firm performance requirements are clearly differentiated from goals, allowing offerors to
bid to realistic schedules. Your schedule-plus approach is also integrated into your cost/schedule
status report (C/SSR) system. For example, a periodic schedule estimate at completion (EAC) is
accomplished along with the cost EAC. [SPAT92] Ideally, you will not state any specific schedule
requirement in your RFP, but allow offerors to propose a realistic schedule which you will evaluate
for realism during source selection.

8.3 Developing the RFP

The contract vehicle must be designed to clearly express a vision of final product goals and
development effort requirements. Thus, the development of the Request for Proposal (RFP) is
your first step towards bringing Government and industry together as a cohesive, high-performance
team. The RFP also marks the culmination of the strategic planning process and represents the
formal means for communicating government requirements to industry. Too often, the RFP is
viewed as an administrative (rather than a technical) document. Its administrative function must
be secondary to its technical function. The RFP must contain clear and sufficient technical
guidance so the contractor has a definite picture of how the system is envisioned to perform once
delivered. It is also important that a technical functional description of software requirements is
included and that those requirements are clearly scoped. Inconsistencies, insufficient detail, and
inappropriate software requirements will result in an inadequate response from industry to
government needs.

NOTE: Because every program has unique requirements, it is beyond the scope of these
Guidelines to provide specific information on what is important for every source selection.
However, if you consider the suggestions listed herein, you will be well on your way to
a successful acquisition.

Considerable time and effort is required to form a comprehensive software development RFP.
Your program office must work with the future user of the system (your customer) to establish
requirements, expectations, schedules, and support needs. Both the program office and the user
must remember that well-defined, performance specifications yield good contracts and the better
scoped the requirement — the better response from industry. [MARCINIAK90]

8-7

Chapter 8: Contracting for Success GSAM Version 3.0

Early industry involvement in acquisition planning often improves the quality of the RFP and
fosters a sense of government/industry partnership. Early involvement is an iterative and interactive
communication process. You are required to integrate early industry involvement in your
acquisition planning for all competitive procurements that are estimated to exceed $24 million.
Additionally, early communications with potential sources on any intended acquisition is plain
common sense. Figure 8-3 illustrates the major RFP preparation process components.

Work
Breakdown
Structure

Acquisi tion
Strategy Contractual

Elements

Source
Selection
Factors

Draft
Request for

Proposal

Solicitation
Review
Board

Request for
Proposal
Release

Contract Data
Requirements

List

Statement
of

Objectives

Spec ifications

Figure 8-3. RFP Preparation Process

The following chapters contain discussions on software engineering subjects that must be
addressed in the RFP.

• Chapter 6, Risk Management: Addressing Risk in the RFP,
• Chapter 10, Software Development Maturity: Addressing Software Development Maturity

in the RFP,
• Chapter 12, Software Support: Addressing Software Support in the RFP, and
• Chapter 13, Software Estimation, Measurement, and Metrics: Addressing Measurement and

Metrics in the RFP,
• Volume 2, Appendix S, Software Source Selection.

8.3.1 RFP Development Team Building

It takes highly qualified, in-house personnel to develop the RFP. Competent people are also
indispensable to judge product deliveries and keep the program headed for success once the
contract is awarded. Assembling a qualified acquisition team to bring on the last team member
is another opportunity to practice your team building skills. Your acquisition team must include
personnel from the supporting and using agencies, as well as software, contracting, and cost
analysis experts. Team members creating the portion of the Statement of Objectives (SOO)
related to software development must be knowledgeable in software engineering and management.
Program office personnel serve as team leads and must make sure the user and supporting
organizations’ needs, concerns, and desires are fully addressed.

The RFP team develops the mission capability, proposal risk, performance confidence assessment,
and cost/price evaluation factors for the acquisition. The software specification must be thorough
and source selection evaluation factors rigorous. Your evaluation factors should only, however,
measure those items that are valid discriminators and directly traceable to requirements. The

8-8

Chapter 8: Contracting for Success GSAM Version 3.0

RFP must require that each proposal submitted contains sufficient information for a thorough
assessment of each offeror’s software development experience, tool availability, product assurance,
team skills and experience, software support, and program management capabilities. The offeror’s
proposal should describe how their product and process will satisfy required and desired
functionality. The RFP should include:

• Specific tasks (quantifiable, measurable, and testable),
• Specifications and standards to be used for the program (relying on commercial standards

and practices, whenever possible),
• Planned use of government-furnished equipment (GFE), government-furnished information

(GFI), and/or government-furnished software (GFS),
• Requirements for the contractor to provide a comprehensive layout of program schedules

(internal reviews, formal peer inspections, testing, technical meetings, etc.),
• Requirements for relevant and pertinent domain experience,
• Requirements for a thorough Software Development Plan (SDP) and plans for its

implementation and updates, to include a proposed test process plan,
• Requirements to describe use of the chosen programming language, commercial-of-the-shelf

(COTS), and reuse,
• Requirements for appropriate software documentation,
• Requirements for an open systems architecture and architecture performance verification,
• Requirements for resources growth/margin verification,
• Requirements for a total life cycle/total systems perspective,
• Requirements for prototyping and/or demonstrations (ideally, a demonstration of an executable

architecture as part of the proposal),
• Requirements for a progress, process, and quality measurement program, including a specific

Metrics Usage Plan,
• Requirements for a software quality assurance (SQA) program,
• Requirements for supportability planning,
• Requirements for a Risk Management Plan and its implementation,
• Requirements for a Process Improvement Plan and its implementation,
• Requirements for a process control mechanism [e.g. software development tools, management

tools, etc.],
• Requirements for developing interface software with other system software and/or hardware,
• Requirements for assessing software development maturity/capability,
• Planned communications with any Independent Verification &Validation (IV&V) contractors

or agencies, and
• Requirements for delivery of the life cycle support environment.

NOTE: The first item “clear, concise statement of specific tasks” is particularly important.
For example, a requirement to respond to user requests in “real-time” is ambiguous
because there is currently no standard definition of the term “real-time.” It is much
better to provide a numerical value (such as “within one microsecond”) for such a
requirement.

8-9

Chapter 8: Contracting for Success GSAM Version 3.0

8.3.2 Statement of Objectives (SOO)

The SOO is the primary document for translating performance requirements into contractual
tasks. The SOO must be consistent with the summary work breakdown structure (WBS) and
contain sufficient information for the offeror to prepare a detailed contract WBS [discussed in
Chapter 7, Acquisition Planning]. It must also contain tasking information for contract data
requirements lists (CDRLs). While the SOO states the specific tasks to be performed, it must not
tell the offeror how to do the required work. Do not spell out specific qualitative and quantitative
technical requirements in the SOO. Instead, offerors must be solicited to propose their solution
to your stated need

8.3.3 Contractual Data Requirements List

The RFP’s CDRL is the primary vehicle for acquiring documentation from contractors. It lists all
data item descriptions (DIDs) that apply to the development program. DIDs describe the data
the contractor is required to provide, along with delivery instructions (such as media and format).
Each CDRL entry contains the DID identifier, title, requesting organization, distribution, referenced
SOW task(s), and a remarks section where information (such as tailoring) is included. Nearly all
DIDs require tailoring for appropriate application to a contract.

8.3.4 Subcontracting

On major DoD software-intensive system acquisitions, seldom is all the work performed by one
contractor. Instead, the winning contractor is the prime who in turn arranges with other contractors,
subcontractors, to complete some portion of the effort. Currently, over 60% of total weapon
systems development and production efforts are subcontracted. [BAKER92] This includes
most of the software for these systems. Note that the government has no direct involvement in
the relationship between the prime and subcontractor. The following is for information purposes
only.

Parallel hardware /software efforts involving prime and subcontractors have resulted in adversarial
relationships and turf battles between the prime (hardware) and the subcontractor (software) —
often impeding software development efforts. Although the prime is responsible for product
quality, the prime must include in their subcontracts all contractual requirements necessary to
ensure that software products are developed in accordance with prime contract requirements.
Subcontracts also generally state that the Government must be given access to subcontractor
facilities to review software products and activities required by the prime contract.

Inappropriate contract types are often a subcontractor problem because software developers seldom
have solid requirements. A firm-fixed-price (FFP) contract is risky because the subcontractor
views all requirements changes as out-of-scope changes, whereas the prime views them as in-
scope with the System/Segment Specification (SSS). Since the subcontractor must develop the
Software Requirements Specification (SRS) from the SSS, many problems occur when the SRS
does not accurately reflect the performance requirements desired by the Government. Other
problems occur when too many specifications are left up to the discretion of the subcontractor.

8-10

Chapter 8: Contracting for Success GSAM Version 3.0

These contrasting views of responsibility are illustrated in Figure 8-4. When software programs
experience difficulties, primes and subcontractors often resort to blaming each other. When
schedules are not met, it is always the other company’s fault!

Figure 8-4. Prime/Software Subcontractor Development Responsibility [MOORE]

In addition to differing development effort views, primes and subcontractors frequently have
differing business perspectives and goals. Software subcontractors are often hired only for the
development effort, whereas the prime makes a profit throughout the life cycle up to deployment,
as illustrated in Figure 8-5. [MOORE]

8-11

Chapter 8: Contracting for Success GSAM Version 3.0

Figure 8-5. Prime-Sub Different Business Perspectives [MOORE]

Subcontracting can also be enigmatic because DoD managers have no direct control over
subcontractors. You can only direct your prime contractor. You should also remember that you
manage the contract, not the contractor. It’s up to the prime to direct their subcontractors. Figure
8-6 illustrates the communications distance between you and your software developer and between
the user and the software developer. In the RFP, you must ensure that the prime contractor
provides the needed direction the Government requires of the software developer. One approach
is to suggest that the prime contractor develop and follow a Subcontractor Management Plan that
ensures government visibility and participation in the management process. After contract award,
the program office, with the consent of the prime contractor, should be allowed to make periodic
escorted visits to critical subcontractors. The plan should also make provisions for a joint team
(user/SPO/prime/subcontractor) software development effort.

8-12

Chapter 8: Contracting for Success GSAM Version 3.0

Figure 8-6. Chain of Government-Subcontractor Communications [MOORE]

8.3.5 Joint Venture Partnerships

To avoid difficulties associated with subcontracting, some firms enter into joint ventures. In a
joint venture, two or more prime contractors create a single corporate entity for a specific program.
An example is the Boeing-Lockheed-General Dynamics joint venture for developing the F-22.
This arrangement has provided a low-risk business approach for all joint team members and the
Government. The contractual agreement among the three companies calls for equal sharing of
any cost overruns. If one team member encounters a problem, the other two members must help
solve it — or they all suffer. The degree to which each company has subordinated self-interests
to achieve team goals for the F-22 is another first in defense contracting lore. [VELOCCI91]

Joint ventures place much of the management burden on the contractors. Because the joint
venture establishes the team members as equal team partners, it enhances cooperation and avoids
many problems associated with subcontracting. If one member is lax, the other member(s) can
exercise considerable leverage. Joint venture also removes much of the technology transfer
requirements from the government program office. When evaluating joint venture proposals,
source selection officials must ascertain whether a joint venture team is a viable competitor.
However, the contractual arrangement details between the joint venture team members are not
the Government’s concern. [KRATZ84]

While joint venture partnerships eliminate some subcontracting issues, they present other
management challenges associated with contractor teaming arrangements. This complex
agreement between companies requires the formation of a new corporate entity, election of officers
and a board of directors, assignment of personnel, and establishment of accounting and
administrative procedures. Large responsibility is placed on parent members and on what is, in

U SER

SP O

PR IM E

SO F TW AR E
SUB

Software developer has l ittle
d irect contact with

Government customer

SW Sub is an
easy target for

blame

8-13

Chapter 8: Contracting for Success GSAM Version 3.0

essence, a start-up company. Therefore, joint ventures should not be construed as the end-all
panacea for subcontracting quandaries.

The subcontracting dilemma may not be altogether eliminated either, since joint venture members
may not be precluded from subcontracting out a portion of their individual tasks, of which software
will always be a target. This can place an additional management layer between you and your
software developer. Another potential disadvantage to joint ventures is that while equal partners
are established, they may be geographically separated. This leaves you with three (or more)
entities with which to interface at multiple locations, further complicating program management.
[KRATZ84]

8.4 Special Software RFP Considerations

As you learned in Chapter 4, DoD Software Acquisition Environment, new acquisition streamlining
initiatives state that essential government needs should be met with a minimum SOO. Mills
expands on the concept of teamwork to one of government/industry “partnership,” where both
team members share the responsibility for success. By transforming the Government’s contract
monitoring role from the older documentation-driven review it, approve it, and baseline it
paradigm, the new partnership role places the contractor solidly in charge of the process and the
emerging product.

To meet DoD’s requirement for an overall manageable procurement, five key elements are essential
in an RFP for a major software-intensive system. A risk management path for each element
entails a minimum SOO with reduced proposal instructions. Offerors are then left with defining
their actual approach. There is a strong synergistic relationship among the software RFP elements.
For example, by allowing contractor control of baselines until very late in development, without
the need for 100% correctness and completeness of documentation, it is possible to reduce former
resistance to open sharing of technical information. This promotes partnership. At the same
time, it is essential to clearly agree upon technical milestone points and formal reviews, and to
establish a framework to ensure contract progress is achieved. Confidence in the offeror’s software
development process permits greater trust in the offerors ability to achieve contract milestones.
The five key software RFP elements are:

1. Software development process,
2. Contractor documentation and formats,
3. Contractor control of baselines,
4. Direct technical visibility, and
5. Proactive risk management.

• Software development process. A mature contractor process helps ensure that they will
produce supportable, quality software on schedule in a predictable, consistent manner. The
contractor’s practices must also be documented, maintained current by the development team,
and be available for Government review. This supports the need for continuous verification
of process maturity and effectiveness.

• Contractor documentation and formats. Documentation deliverables should maximize the
use of information in the form and format used to develop the software.

8-14

Chapter 8: Contracting for Success GSAM Version 3.0

• Contractor control of baselines. Allowing the contractor to retain configuration and
engineering control of baselines until they are stable, frees the developer from the government
review and approval cycle which also supports partnering.

• Direct technical visibility. This may be implemented with the following requirements:
− The contractor must plan and implement a means for sharing software development

information with the Government. The contractor should be required to provide access
to current working documentation in the language and format normally used for software
development. This includes Government access to software engineering tools and
databases.

− Documentation, where possible, should reside in electronic format in the automated
software engineering environment.

− The contractor must plan the information sharing mechanism so that little or no contractor
assistance is required for government personnel to access information. The information
can be used as a basis for formal government recommendations to the contractor, and
whenever practical, should be used to simplify the formal technical review process. Thus,
you need not provide formal approval of shared information on a day-to-day basis.

• Proactive risk management. In the past, risk was reduced by requiring the delivery of a
series of documents. Each deliverable was typically reviewed and approved by the Government
to ensure quality and to independently verify contractor adherence to schedule. In principle,
this document-driven contract monitoring was an efficient way to manage software
development risk and perform program oversight. In practice, the oversight role progressively
removed the developer from responsibility for design as each new document was approved.
Since the Government performed the review and found the errors, the contractor only had to
deliver a product on schedule and correct any errors the Government found. This approach
too often led to increased reliance on testing and diffused the responsibility for quality problems,
which often remained hidden until system delivery.

Providing Government access to software development information promotes partnership by
removing disincentives for information sharing. Technical concerns are, for the most part,
transferred from the schedule enforcement aspects of oversight. The monitoring role includes a
technical function where you participate in reviewing emerging products and gain visibility into
program progress and product quality. Knowing that you are monitoring product quality prior to
delivery, the contractor is more inclined to build quality into your product. You also have the
opportunity to directly verify process effectiveness and program metrics.

To ensure industry participation in contract monitoring, your RFP should request that offerors
address the important aspects of program management and monitoring in their proposals. These
requirements must be brief and concise in the SOO, thus requiring expansion and clarification in
the offeror’s proposal. The offeror’s commitment to partnership and an improved contract
monitoring role should be an important software source selection factor [discussed below]. This
not only provides a performance incentive, but also rewards offerors who are committed to
quality and process improvement. This monitoring role also must be strongly supported by
proactive risk management.

When preparing your RFP, it is often difficult to communicate the need for a comprehensive
response from industry. Because software is just one part of a system, the detailed proposal
instructions necessary to obtained a risk-based proposal can easily be confused with non-value
added requirements. When upper management is told that source selection requires more time

8-15

Chapter 8: Contracting for Success GSAM Version 3.0

and attention, your program schedule can often become the constraining factor. Despite these
obstacles, reducing software risk during source selection is one of the most crucial management
activities you will perform. Unfortunately, the acquisition planning and RFP preparation process
is lengthy and challenging. We must do more with less and we are all anxious for a stable
program which can be smoothly budgeted. Schedule and availability of program funds are often
the our main constraints. However, at the heart of the challenge is the requirement to meet your
particular program’s needs by selecting the contractor of whom you are assured represents the
least risk with the greatest potential for success. [MILLS95]

8.4.1 Commercial-off-the-Shelf (COTS) Software

Our procurement cycle for major software-intensive systems is usually 10-plus years from inception
to IOC. This acquisition cycle contrasts with the commercial software life cycle in which a
product is enhanced in 6-9 months, a new product is developed in 12-18 months, and a product
is obsolete in 36-48 months. [FAA94] Hence, DoD is often procuring systems which are
technologically obsolete by the time they are fielded. Strict regulations and the long acquisition
cycle translate into commensurately exorbitant costs for custom developed software. Software
costs are also high because DoD has borne the entire financial burden for software maintenance
(either contracted or in-house).

An alternative to developing and maintaining our own custom software is the use of software
that has already been developed. It may have been developed for general use by industry and
business, or for specific use by a specific group. Software which has already been developed and
is available for use by any customer is known as commercial-off-the-shelf (COTS) software. It
can save a development effort a great deal of time and cost. It can also single-handedly ruin a
program. Both advantages and disadvantages of using COTS are discussed here. Make sure
you study both!

CAUTION! COTS is a double-edged sword. Properly used, it can give the developer a
great advantage. However, when it is not the right tool for the job, it can prove disastrous.
Know when and how to use it, and when and how not to use it.

8.4.1.1 COTS Advantage

The Pentagon’s long-range budget plans show future funding will be devoted to technological
modernization after several years of steep declines. To modernize our software technology, cut
costs, increase quality, and indeed, to maintain our superpower status, we must become software
users, instead of custom software developers. By removing requirements for government-unique
accounting standards, product specifications, and processes, DoD’s purchasing system must
become more compatible with that of the commercial marketplace. In addition, preference for
the use of commercial standards and processes (established through the June 1994 Perry Memo),
protection of technical data rights for commercial items, and a broadened exemption from cost
data requirements is essential. [SULLIVAN94]

The 1994 report of the Defense Science Board identified an urgent need to integrate major parts
of our defense-industrial base with our commercial-industrial base. It concluded that this
integration allows DoD access to those technologies, products, and processes dominated by the

8-16

Chapter 8: Contracting for Success GSAM Version 3.0

commercial sector that are far more advanced than military technology (e.g., electronics, software,
computer hardware, robotics, telecommunications, etc.). [HERMANN94] The advantages to
purchasing COTS software include:

• Intense competition leading to commodity-like pricing and alternative sourcing,
• Hundreds, to millions, of product users leading to low defect latency,
• Market pressures to rapidly innovate, leading to better products,
• Some degree of standardization leading to interoperable components between otherwise

competing software manufacturers,
• Ease of migration to often revolutionary, future technologies,
• Built-in compliance with standards (although these are often as de facto as they are de jour),
• Exploitation of lower cost, quicker evolutionary development processes, and
• The use of commercially-developed tools and software engineering environments for increased

automated development. [FAA94]

By exploiting these advantages in our acquisitions, we can achieve lower costs, faster
developments, and more flexible maintenance with the ability to phase in new requirements
throughout the software life cycle. We can gain greater capability by using COTS [and government-
of-the-shelf (GOTS) and non-developmental item (NDI) (i.e., reuse)] instead of relying solely on
new developments to meet our needs. COTS increase productivity by decreasing the lines-of-
code to be developed, and improve quality by using code that is already tested and proven. In
fact, COTS products can sometimes entirely preclude development, because they are often cheaper
and more readily available than developed software. A well-used COTS application has been
refined through updates (or versions) and corrected for latent defects — making it more reliable
than newly developed, untried code. Additionally, vendor support of COTS is usually available.
In the DoD environment, general-use applications such as word processors, spreadsheets, and
cost models should generally be acquired as COTS.

8.4.1.2 COTS Integration

The Technical Architecture Framework for Information Management (TAFIM) is commonly
known as a standards-based architecture (SBA). The integration of COTS with an SBA involves
the partitioning of system capabilities into well-bound modules. An example of this integration
is the mapping of modules from the TAFIM to traditional client/server components (presentation
management, application function, data management.) Encapsulation refers to the classification
and isolation of each system capability into appropriate client/server components. Further
encapsulation within a component is sometimes necessary to ensure greater flexibility and ability
to interchange COTS with other system components. This controls maintenance costs by allowing
the developer to incorporate new technology rapidly with minimal impact to the other partitioned
components.

Shrink-wrapped COTS products require little more than installation and configuration
management. The use of a development language is not required to integrate software capability.
Some shrink-wrapped examples include:

8-17

Chapter 8: Contracting for Success GSAM Version 3.0

• Embedded communication software that contains all the logic necessary to enable the
communications function, with only connectivity and configuration parameters required.

• Relational database management systems, from simple personal computer products to
distributed solutions that provide centralized access to one or more disparate data sources.
Some of these data access products are referred to as middleware.

• Vendor applications that perform standard commercial functions required by DoD, such as
financial data tracking and administration, which provide common industry calculations and
formula manipulation.

• Advanced industry scanning and image manipulation technology, such as Electronic Data
Interchange (EDI) translators and wireless communications products.

Advantages of using shrink-wrap COTS are the incorporation of the latest technologies, automating
manual processes, low initial cost relative to a new development effort, reduction of maintenance
costs, and timely solutions to changing requirements. Often called the “golden handcuffs,” the
disadvantages of shrink-wrap COTS include: proprietary development language (i.e., 4GLs),
difficult customization to unique DoD requirements, inconsistent support for established standards,
lack of real-time support, limited support for a centralized DoD data repository, and changing
vendor relationships and can result in tight integration between two products for one version and
loose (or no) integration for another version. Hillier explains, the keys to removing the “golden
handcuffs” of reliance on vendor proprietary solutions include:

• Implementing the application component in a standard 3GL, independent of any proprietary
COTS solution;

• Limiting the use of de facto vendor standards and seamless integrated COTS solutions to
environments with no migration or cross functional requirements; and

• Selection of “shrink-wrapped” COTS and development environment COTS based upon
product superiority within each selected partitioned component.

Factors to consider when selecting COTS products include:

• Security. Does the COTS solution provide two-way authentication, authorization, access
control, privacy, and integrity?

• Middleware supplier independence. Does the solution truly provide greater independence
from computer and network suppliers or does it simply shift to different ones?

• Server supplier independence. Does the solution employ general purpose server-independent
middleware, to reduce vendor reliance and avoid affecting the client interface to the middleware
layer?

• Standards and interoperability certification. Does the vendor supply verification of standards
compliance (when appropriate)?

• Training curve. Does the product require considerable training and does the vendor provide
it?

• Costs.
− Commodity pricing. Is the COTS based on plug-compatible standards to promote lower

licensing costs?
− COTS product and perquisite support products. Are there any hidden costs?
− New requirements. How mutable is the COTS product to changing requirements? Do

simple to moderate changes induce a ripple effect across the rest of the software?
− COTS version upgrades. Are major changes planned in the COTS product to maintain a

competitive edge with rivals?

8-18

Chapter 8: Contracting for Success GSAM Version 3.0

• Performance. Does the COTS product provide (or enable the development of) the capabilities
needed to satisfy mission needs?

• Time to develop. Will the use of the COTS product decrease (or at least not extend) the time
to market for the system?

• Memory, storage, and processing power. Processing capability is cheap, but some solutions
take lots and lots of memory which eventually increases cost at the PC and work station level.
With what degree of efficiency does the software suite employ memory with reserves for
future growth? For COTS, NDI, and software reuse, criteria should assess the complexity of
integration. How transportable is the software and standard hardware architecture?

The level of COTS integration achievable depends on the amount of COTS software that can
meet mission needs, of which there have been 100% COTS solutions. This situation, however,
is not the norm. Most military systems require the addition of mission-specific logic. Some even
have unique performance requirements that almost entirely preclude the use of COTS. These
classes of systems can be categorized as:

• Predominantly COTS,
• Integration of COTS, new 3GL, and reusable 3GL assets, and
• Predominantly 3GL.

CAUTION! COTS products derive their quality (identification of latent defects) by an
extensive body of users who identify the defects for fix in subsequent releases over a
prolonged period of time. Quality is not necessarily designed-in as would be the case in
a Cleanroom-based development. Accordingly, where safety or other critical requirements
would suffer if the COTS contains hidden bugs, custom development may be preferable.

8.4.1.3 COTS Integration Lessons-Learned

The following are lessons-learned on the Loral Service Layer ReARC COTS software integration
program.

• The customer’s willingness to pay to gain the benefits of COTS must be understood. There
must be a willingness to: abandon/modify some requirements if COTS cannot meet them;
deal with sometimes disparate user interfaces; and accept the lack of control that COTS
brings to the change process (slower reaction to problems, less desire to incorporate changes).

• Metrics for COTS integration are difficult to extract. [The high degree of integration between
COTS and ReARC developed code made correct allocation of efforts difficult to determine.
Late selection of COTS product baseline (and even which requirements would be met with
COTS) made the allocation of funds difficult between COTS and developed code.]

• While COTS are less expensive than developed code for large, general applications (e.g.,
operating systems, DBMS), experience does not indicate this is true for smaller, niche products.
Savings are anticipated in formal qualification tests (FQT) and operations and management
(O&M). However, the customer is not always willing to be flexible enough to achieve reduced
costs from COTS.

• Non-technical COTS selection criteria are as important as the technical. These include:
vendor stability; product cycle; availability of support for back-level releases; and willingness
of the vendor to work with the contractor.

8-19

Chapter 8: Contracting for Success GSAM Version 3.0

• Managing product licenses can be a big headache. Therefore, get as flexible a set of licensing
terms as possible — a site license is the best; node-locked licenses are the worst. Remember
that every hardware baseline change can impact your COTS product baseline causing days of
down time in the development lab.

• Do not believe what you read — fly before you buy! Early prototyping and integration with
developed code (before CDR) is the only way to ensure that the product performs as advertised.

• Understand prerequisites and dependencies between products, especially when planning
upgrades.

• Make sure procurement processes are in place to expedite COTS delivery.
• Establish hardware and COTS product baselines early. [ReARC changes from a heterogeneous

hardware environment (Sun and RISC) to a RISC-only environment was positive, but came
too late and drove up costs by having to find replacement COTS products. Slow response
from vendors can best be dealt with if problems with COTS are found early.]

• Work with the customer to negotiate modifications to documentation requirements for COTS
products.

• The cost of integrating COTS is much more front-end loaded than the cost of developing
code. [The developed code algorithm used on ReARC allocated 50% of cost to Preliminary
Design Review (PDR) and Critical Design Review (CDR) phases, and 50% to Code and Unit
Test, Software Integration, and CSCI Testing. They estimated that 75% of COTS integration
costs come in the PDR and CDR phases. The potential exists for substantial savings in FQT,
if agreements regarding verification of requirements satisfied by COTS are established early.]

• Spend as little time as possible on paper trade studies. Get products to the lab for prototyping
and integration. [RAND95]

8.4.1.4 More Cautions About COTS

The advantages of COTS (availability, cost, reliability) are evident in that all major DoD software-
intensive systems are progressively increasing the use of COTS hardware and software. Aside
from the advantages, there are, however, also some downsides to the use of COTS. Most COTS
software is proprietary and the supporting agency cannot make changes to it. Therefore, COTS
is not a good choice for weapon systems where the software must be continuously enhanced in
response to changing mission requirements. Also, the Navy Seawolf BSY-2 program taught us
that it is sometimes quicker and cheaper to simply build. You may be hard pressed to meet
highly demanding volume and reliability requirements with commercial products not designed
to perform under large-scale military conditions.

There are some fundamental differences between commercial software products and
developmental software, as the final report of the 1991 Joint Command COTS Supportability
Working Group concluded. [COTS91] Although cheaper than developing it yourself, be aware
it is often difficult to integrate all the COTS applications (especially for weapons systems) needed
to provide the required functionality. Even if your integration is successful, (for example, with
26% COTS combined with 74% developmental software) you can encounter configuration control
problems. With new versions of each vendor’s product being delivered at varying times, taking
full advantage of the enhancements of each new product through changes in interfaces and
interoperability with existing software can be like trying to catch a leprechaun to get his pot of
gold. Every time you are about to grab him, he pops up somewhere else.

8-20

Chapter 8: Contracting for Success GSAM Version 3.0

To alleviate this burden, traditional support approaches must be tailored to accommodate the
COTS difference. Your approach should be commercially oriented to tap into the support
infrastructure vendors establish to support their products. The 1991 report claims the goal is not
to become locked into sole-source contractor support for COTS, but to take advantage of the
competition inherent within the commercial sector which keeps prices low and quality high.
[COTS91] To survive in a competitive market, vendors are intensely attuned to their customers’
needs. Changes in your requirements will either show up in the next release of their software —
or in that of their competitors.

NOTE: COTS products must be fully compatible with an open systems environment
and must be accompanied by an assurance that they will be maintained by the COTS
supplier for the life of the system.

Another concern with COTS is the chance for introducing a commercial virus into large,
interconnected military software systems. Therefore, be very careful with software acquired
from electronic bulletin boards, the public domain, or shareware sources, as they may contain
hidden defects (and/or viruses) that can result in system failures, loss of critical data, or
compromised security. That is not to say that these same problems do not exist in commercially
acquired COTS, but that the incidence is lower. An additional hazard with integrating different
software packages (not originally designed to work together) is that sometimes you get unexpected
responses (or side-effects) under stressed operational conditions. Thus, for COTS to be effective,
they must meet de jour or de facto interface standards. Your RFP must emphasize COTS
compliance with controlled interfaces (e.g., those developed by the IEEE, ANSI, ISO, or NIST)
that allow for evolutionary software exchanges. The benefit in using controlled interfaces is that
software can be swapped out to improve reliability, gain performance, or better address changing
requirements without impacting the entire system. Because hardware and software components
must perform as integrated units, NIST has identified four key MIS interface categories which
help in hardware/software partitioning:

• Application program interface (API),
• Human computer interface (HCI),
• Information storage and retrieval interface (ISRI), and
• Communications interface (CI). [FAA94]

To mitigate interoperability risk, you must evaluate each offeror’s ability to judiciously select the
proper standards for each interface category. NIST has developed an Applications Portability
Profile (APP) model to ensure interoperability on a systems-wide basis, and to help make informed
decisions on which interface standards to include. This model is useful for intelligently applying
interface standards to the specific software system being procured.

The approach for achieving robust, easily upgradeable software varies widely among domains
and should be approached differently. A rule of thumb for DoD software domains is:

8-21

Chapter 8: Contracting for Success GSAM Version 3.0

• For a desktop environment, use 100% COTS;
• For MIS and some command and control (C2) systems, expect to base 80% of the system on

COTS; and
• For weapons systems and real-time command, control, communications, and computers (C4)

and C3I systems, maximize the use of COTS, GOTS, and NDI to allow technology upgrades
of computer platforms and software components (such as display drivers, operating systems,
database management, and communications) as technologies evolve. [FAA94]

The remaining unique components must be controlled at the interface level to allow for future
upgrades with minimum impact to the system. When procuring COTS, consider the following:

• Require that COTS deliverables be included in the contractor’s Logistics Support Analysis
(LSA). The LSA must address contract and organic support for COTS throughout the system
life cycle;

• Ensure sufficient documentation is provided for COTS software for life cycle operation and
support;

NOTE: COTS documentation need not adhere to requirements which may be levied on
developmental software.

• Support COTS software at the vendor’s current revision level, unless upgrades will adversely
impact operational capability;

• Use competitive commercial practices to the maximum extent when supporting COTS
software. For COTS software in systems with a life cycle greater than five years, consider
recompetition of logistics support contracts; and

• Obtain locally purchased COTS software from your requirements contract if it is designated
as a mandatory purchase item.

8.4.1.5 Cautions About Modifying COTS

COTS software consists of unmodified software applications (except as intended by the vendor).
Commercial markets, independent contractors, and vendors control the design configuration and support
(i.e., enhancements, modifications, and upgrades) of COTS software — not DoD. There is a basic
reason why we do not want to engage in the modification of COTS. If you change even a small
portion of a COTS product, when the next version comes out your software will no longer be
compatible or upgradeable to it. You will be faced with patching old technology, while advances
in state-of-the-art pass you by. Thus, do not purchase COTS software with the intention of modifying
it! By so doing, you negate its benefits and create a very substantial source of program risk.

When making your COTS decision, remember that DoD has learned the hard way why modification
of COTS software is not a sound decision. Rationalizations for modifying COTS have included:
some, but not all, of the users requirements were met with the COTS package; or the COTS
package did not comply with Public Law, DoD regulations, Service regulations, policies,
procedures, or current systems interface requirements. Although these sound like good reasons
to do some tweaking of a COTS package, the consequences of doing so have been costly and
often regrettable.

8-22

Chapter 8: Contracting for Success GSAM Version 3.0

WARNING! Modifying COTS software can be hazardous to the success of your
software development and downright deadly for follow-on support.

The Depot Maintenance Management Information System (DMMIS) is an example of a program
that made the change-the-COTS decision. The DMMIS is based on the CINCOM MRPII COTS
package. The team’s original intent was to utilize this package unmodified. But after further
analysis, they determined that the CINCOM package would have to be customized to satisfy the
user. The decision to proceed with the COTS customization was based on the following issues:

1. The COTS package did not meet the original users’ requirements;
2. The differences between CINCOM’s manufacturing-based software and the Air Force’s re-

manufacturing-based processes; and
3. The need to interface with legacy software systems.

Although the DMMIS team believes they delivered a product superior to the original COTS
package in less time than if developed from scratch, they learned some valuable lessons on why
modifying proprietary software is not recommended. The team summarized the consequences
of their COTS modification and lessons-learned as follows:

• They had to pay individual COTS charges to license each application running on each
mainframe.

• They had to pay maintenance on the customized COTS packages.
• They had to pay an integrator to maintain their customized COTS packages.
• Difficulties surfaced when they wanted to take advantage of new releases of the original

COTS. Now they no longer have the luxury of simply download a new version because their
customized COTS has to be retrofitted to accommodate any new versions — costing down
time and money.

• Customizing the COTS was time/money consuming because they had to understand what
was needed, understand how and why the COTS was coded the way it was, and then figure
out how to change it to meet their specialized needs.

• The combination of having to purchase the original COTS, having to employ an integrator on
a FFP contract (in addition to having unstable requirements) led to more difficulties. The
FFP contract forced the integrator to make short-term, quick fixes, the cheapest way possible.
This, they know, will end up costing more in the long-run. It also required frequent open
discussions between the developer and the user to reach an understanding — causing
requirements creep.

• They learned that good requirements definition is crucial. This should be the first step before
deciding on whether to modify COTS or develop software.

Recommendations the DMMIS team made for other programs considering a COTS modification
include:

• Have the vendor make the modifications (not always possible).
• Instead of modifying the COTS package to match policies and procedures, the policies and

procedures should be modified to match the COTS. This requires high-level management
intervention and oversight.

• When software is available that meets the users’ needs, COTS makes sense. When nothing
is available, it may be necessary to develop software.

8-23

Chapter 8: Contracting for Success GSAM Version 3.0

• If there is no other choice but to modify a COTS package:
− The COTS package should meet most “core” requirements. Additional customization

should be modularized, taking advantage of CASE tools (both in the COTS package
and in the modifications), as much as possible. Make modifications outside the COTS
package (i.e., put a shell around it) by modifying the COTS inputs and/or outputs, or by
providing additional manipulations or enhanced data analysis so that new versions of
the COTS package can plug-n-play with minimal changes by the integrator.

− Use a cost-plus-fixed-fee (CPFF) or a firm-fixed-price-incentive-fee (FFPIF) contract
so the contractor proposes the best long-term solution.

REMEMBER: You can surround COTS with interim functional layers that modify their
inputs/outputs, but DO NOT MODIFY COTS!

8.4.2 Data Rights

Computer software data rights are of great importance to both the Government and the contractor.
According to the FAR, the term “data” simply means recorded information, including software.
“Computer software” means computer programs, computer data bases, and the documentation
thereof. Policies governing the rights to these data are found in FAR Part 27.4, DFARS 227.72,
and DFARS 252.227-7014.

NOTE: Purchasing COTS software should be your acquisition strategy only for those
components that do not require change or maintenance by the Government. Thus, data
rights for COTS should not be required.

Software data is divided into to categories: commercial computer software or commercial
computer software documentation and noncommercial computer software and noncommercial
computer software documentation. Regarding commercial computer software or commercial
computer software documentation,

(a) The Government shall have only the rights specified in the license under which the commercial
computer software or commercial computer software documentation was obtained.

(b) If the Government has a need for rights not conveyed under the license customarily provided
to the public, the Government must negotiate with the contractor to determine if there are
acceptable terms for transferring such rights. The specific rights granted to the Government
shall be enumerated in the contract license agreement or an addendum thereto. [DFARS
227.7202-3]

Noncommercial computer software and noncommercial computer software documentation has
data rights specified in three categories:

• Unlimited rights means rights to use, modify, reproduce, release, perform, display, or disclose
computer software or computer software documentation in whole or in part, in any manner
and for any purpose whatsoever, and to have or authorize others to do so. [DFARS 252.277-
7014(a)(15)]

8-24

Chapter 8: Contracting for Success GSAM Version 3.0

Unlimited data rights are usually associated with computer software developed exclusively with
Government funds. For other situations that may apply, see DFARS 227.7203-5.

• Government Purpose rights means the rights to-
 (i) Use, modify, reproduce, release, perform, display, or disclose computer software or

computer software documentation within the Government without restriction; and
(ii) Release or disclose computer software or computer software documentation outside the

Government and authorize persons to whom release or disclosure has been made to use,
modify, reproduce, release, perform, display, or disclose the software or documentation
for United States government purposes. [DFARS 252.227-7014(a)(11)]

Government purpose rights usually apply to software developed with mixed (Government and
contractor) funding.

• Restricted data rights apply only to noncommercial computer software and mean the
Government’s rights to-
(i) Use a computer program with one computer at one time. The program may not be accessed

by more than one terminal or central processing unit or time shared unless otherwise
permitted by this contract;

(ii) Transfer a computer program to another Government agency without the further permission
of the Contractor if the transferor destroys all copies of the program and related computer
software documentation in its possession and notifies the licensor of the transfer.
Transferred programs remain subject to the provisions of this clause;

(iii) Make the minimum number of copies of the computer software required for safekeeping
(archive), backup, or modification purposes;

(iv) Modify computer software provided that the Government may-
(A)Use the modified software only as provided in paragraphs (a)(14)(i) and (iii) of this

clause; and
(B) Not release or disclose the modified software except as provided in paragraphs

(a)(14)(ii), (v) and (vi) of this clause;
(v) Permit contractors or subcontractors performing service contracts (see 37.101 of the Federal

Acquisition Regulation) in support of this or a related contract to use computer software
to diagnose and correct deficiencies in a computer program, to modify computer software
to enable a computer program to be combined with, adapted to, or merged with other
computer programs or when necessary to respond to urgent tactical situations, provided
that-
(A)The Government notifies the party which has granted restricted rights that a release or

disclosure to particular contractors or subcontractors was made;
(B) Such contractors or subcontractors are subject to the use and non-disclosure agreement

at 227.7103-7 of the Defense Federal Acquisition Regulation Supplement (DFARS)
or are Government contractors receiving access to the software for performance of a
Government contract that contains the clause at DFARS 252.227-7025, Limitations
on the Use or Disclosure of Government-Furnished Information Marked with
Restrictive Legends;

(C) The Government shall not permit the recipient to decompile, disassemble, or reverse
engineer the software, or use software decompiled, disassembled, or reverse engineered
by the Government pursuant to paragraph (a)(14)(iv) of this clause, for any other
purpose; and

(D)Such use is subject to the limitation in paragraph (a)(14)(i) of this clause; and

8-25

Chapter 8: Contracting for Success GSAM Version 3.0

(vi) Permit contractors or subcontractors performing emergency repairs or overhaul of items
or components of items procured under this or a related contract to use the computer
software when necessary to perform the repairs or overhaul, or to modify the computer
software to reflect the repairs or overhaul made, provided that-
(A) The intended recipient is subject to the use and non-disclosure agreement at DFARS

227.7103-7 or is a Government contractor receiving access to the software for
performance of a Government contract that contains the clause at DFARS 252.227-
7025, Limitations on the Use or Disclosure of Government-Furnished Information
Marked with Restrictive Legends; and

(B) The Government shall not permit the recipient to decompile, disassemble, or reverse
engineer the software, or use software decompiled, disassembled, or reverse
engineered by the Government pursuant to paragraph (a)(14)(iv) of this clause, for
any other purpose. [DFARS 252.227-7014(a)(14)]

Restricted rights apply to computer software developed exclusively at private expense.

CAUTION! The entire issue of data rights is very esoteric. This discussion is intentionally
general, as data rights are a sticky, controversial subject. It is recommended that you
consult your contracting officer and/or legal advisor about your specific acquisition to
flush out all data rights issues and alternatives. The primary concern should be the
capability to maintain the software during its government-use life cycle at a reasonable
cost (i.e., data rights per se are not the issue). The objective is life cycle supportability.

8.5 Source Selection Factors

Source selection factors for Air Force acquisitions are grouped into four areas: cost or price, past
performance, mission capability (technical), and proposal risk. Factors and subfactors are to be
limited to those that are real discriminators. Evaluation factors, subfactors, and elements:

(i) Are to be written in enough depth to communicate the measures of merit used to determine
how the proposal will be evaluated and rating determined;

(ii) Should include only those specific program characteristics that are significant enough to
have an impact on the source selection decision, such as those identified through program
risk analysis;

(iii) Are to be set forth in Section M of the draft and final RFPs, Evaluation Factors for Award. In
addition, the relative importance of all factors, subfactors, and elements shall be specified in
Section M of the RFP; and

(iv) May be quantitative, qualitative, or a combination of both.

The Mission Capability factor should be limited to six subfactors, unless additional subfactors
are justified, documented in the Source Selection Plan, and approved by the Source Selection
Authority. Proposal risk is to be assessed at the Mission Capability subfactor level. Subfactors
are not normally used for Past Performance and Cost or price.

See FAR Part 15.101-1, 15.101-2 and AF FAR Supplement 5315.304 for additional guidance
regarding evaluation factors and subfactors.

8-26

Chapter 8: Contracting for Success GSAM Version 3.0

Two categories that should always be considered as mission capability factors are first, does the
proposed product or service satisfy the objectives of the SOO (product issues), and second, has
the offeror described a development process that has the planning and maturity required to develop
the product or service described within the resources estimated (process issues)?

8.6 Source Selection

Selecting a development contractor you can respect, trust, and with whom you can communicate
and cooperate, is a major milestone in achieving program success and software excellence.

NOTES:

1. The GSA has published two reports: Improving Industry/Government Communications
in Major Information Technology Acquisitions and Communications Between Government
and Industry: A Reference Guide for Federal Information Processing (FIP) Resources
Acquisitions. [See Volume 2, Appendix A for information on how to obtain them.]
2. See FAR Part 15 and AFFARS Part 5315 for detailed descriptions of source selection
requirements and activities.

Consideration of these issues does not imply that contractor organizations are disrespectful,
dishonest, hard-to-work-with cutthroats, or that their employees are contemptuous, lazy, thieving
cheats. Cooperation, communication, respect, and trust are fragile commodities that must be
established slowly and carefully and can evaporate quickly. The necessary conditions required
for these high-performing team attributes to occur include the following:

• Contracts history. The offeror has never done anything on any other contract to make you
distrust them, or if they have, their most recent accomplishments are sufficiently successful
to supplant their earlier shortcomings. They should furnish historical data (size/time/effort)
on 3-4 completed programs in the same domain and of comparable size and complexity as
your proposed program. These data should then be used to assess bidder productivity.

• Understanding of the problem. The offeror knows what you want them to do, and has
convinced you that they know how to do it.

• Awareness. You know their plan for meeting the requirement and are aware of their progress.
Furthermore, they make sure you are aware of what they have accomplished, what the risks
and problems are, how they are going to mitigate risks and solve problems, and where they
are going. [HUMPHREY90]

The selection of a source(s), and subsequent award of a contract(s), follows a structured process
which is designed to ensure impartiality while identifying the best-value for the Government. To
solicit the best response from industry, offerors must know what discriminators you intend to use
when they make their decision on whether to bid. The source selection process is illustrated in
Figure 8-7. As with every other step in the software development process, planning is the key to
contracting success.

8-27

Chapter 8: Contracting for Success GSAM Version 3.0

Figure 8-7. Source Selection Preparation Process

8.6.1 Source Selection Team Building

A key requirement for source selection is for the Source Selection Evaluation Team (SSET)
chairperson to assemble a qualified team of evaluators. The SSET includes software experts in
specialties such as software engineering, software architectural engineering, operating systems,
compilers, software quality management and measurement, and database management systems
and applications. SSET membership should also include functional user representatives and the
Software Support Activity (and other Computer Resources Working Group (CRWG) members).
However, remember the goal is to have a well qualified team that can address all stakeholder
issues, not to have a large team with minimal qualifications who are only there to protect their
parochial interests.

8.6.2 Source Selection Planning

Source selection planning is normally worked as an integral part of the RFP preparation process.
It provides policy and procedures for developing the source selection plan and proposal evaluation.
Government software acquisition source selection should include a judgment on the validity of
each bidder’s proposal based on a comparison with the Government’s baseline plan and the
bidder’s demonstrated performance (i.e., historical corporate software development success).

8.6.3 Advisory Multi-Step Process

The advisory multi-step process is used by and agency to advise prospective offerors about their
potential to be viable competitors. The agency may publish a presolicitation notice that provides
a general description of the scope or purpose of the acquisition. The presolicitation notice should
identify the information that must be submitted and the criteria that will be used in making the
initial evaluation. Information sought may be limited to a statement of qualifications and other
appropriate information (e.g., proposed technical concept, past performance, and limited pricing
information). At a minimum, the notice shall contain sufficient information to permit a potential
offeror to make an informed decision about whether to participate in the acquisition. This process
should not be used for multi-step acquisitions where it would result in offerors being required to
submit identical information in response to the notice and in response to the initial step of the
acquisition.

Source
Selection
Authority
Identified

Source
Selection
Planning

Request for
Proposal

Preparation

Advisory
Multi-Step
Process
(If Used)

(See FAR
Part 15.202)

RFP
Released

Proposals
Received

Exchanges with Industry (See FAR Part 15.201)

Solicitation Amended
(See FAR Part 15.206

8-28

Chapter 8: Contracting for Success GSAM Version 3.0

The agency evaluates all responses in accordance with the criteria stated in the notice, and advises
each respondent in writing either that it will be invited to participate in the resultant acquisition
or, based on the information submitted, that it is unlikely to be a viable competitor. The agency
advises respondents considered not to be viable competitors of the general basis for that opinion.
The agency informs all respondents that, notwithstanding the advice provided by the Government
in response to their submissions, they may participate in the resultant acquisition. [FAR 15.202]

8.7 Proposal Evaluation and Contract Award

Once proposals have been received, they must be evaluated against the source selection factors.
This evaluation results in a ranking of the offerors. This ranking along with other findings are
presented to the Source Selection Authority (SSA) for final decision. After consideration, the
SSA awards the contract to the offer the SSA considers to be the best. See Figure 8.8 for the
process flow.

Evalutate
Proposals

Present
Findings

Source
Selection
Authority
Decision

Award
Contract

Proposals
Received

Source
Selection
Factors

Figure 8-8. Proposal Evaluation and Contract Award Process

NOTE: Source selection factors must be approved by the SAA before RFP release.

8.7.1 Proposal Evaluation

The source selection evaluation team is responsible for the cost or price, past performance,
mission capability (technical), and proposal risk evaluation of each proposal. (See FAR Part
15.305, 15.404, 15.407 and AFFARS 5315.305 and 5315.404) The evaluation must be rigorous,
especially for system software, and alternative proposals must be evaluated for realism and value.
Remember, the only evaluation criteria allowed are the evaluation factors and subfactors
established during source selection planning. This is why it is so important that the evaluation
factors and subfactors selected provide the capability to discriminate between offerors. Those
offerors chosen for FPR should be required to submit to a software capability evaluation performed
by the source selection team (and DoD personnel skilled in these evaluations). An SCE below
Level 3 presents high risk and should be color-coded downward.

8-29

Chapter 8: Contracting for Success GSAM Version 3.0

After completing technical, managerial, and cost evaluations, the program office sometimes
conducts oral discussions with potential contractors to clarify any ambiguities in their proposals.
If the offeror’s approach is acceptable, it must then be made part of the contract.

Since peak manpower and staffing profiles so profoundly affect software development schedule,
quality, and reliability, the lower limits on these two variables should be negotiated into all contracts.

CAUTION! To avoid too many nuisance changes to the contract and to preclude the
contractor from using the inflexibility of “contractually specified processes” as an excuse
for not meeting schedules, overrunning cost, or not meeting performance requirements,
only the critical, top-level portions of the offeror’s proposal should be made part of the
contract.

8.7.2 Best-Value versus the Cost of Poor Quality

When it comes to source selection, cost has always been a major consideration. Too often, it has
been the driving factor. If you consider all the selection criteria and discriminators discussed
herein, and believe you have identified the best developer who can deliver the highest quality
product on a predictable schedule, the “value of predictability and quality” should influence
your decision. Remember, the Government is as interested in buying a sound and predictable
process as an attractively packaged and well-described product.

• Best-value. Best-value, as defined in the Federal Acquisition Regulation (FAR), “means the
expected outcome of an acquisition that, in the Government’s estimation, provides the greatest
overall benefit in response to the requirement.” It reemphasizes the concept that contracts
should be awarded on the basis of “cost and other factors considered.” Too often, cost has
been used as the only evaluation factor. FAR 15.101 describes the best-value continuum.

“An agency can obtain best value in negotiated acquisitions by using any
one or a combination of source selection approaches. In different types of
acquisitions, the relative importance of cost or price may vary. For example,
in acquisitions where the requirement is clearly definable and the risk of
unsuccessful contract performance is minimal, cost or price may play a
dominant role in source selection. The less definitive the requirement, the
more development work required, or the greater the performance risk, the
more technical or past performance considerations may play a dominant
role in source selection.”

8-30

Chapter 8: Contracting for Success GSAM Version 3.0

• Cost of poor quality. Hungry for business in a shrinking defense market, companies are
often prone to “buying-in” on programs for which they have little ability to deliver. Be leery
of those organizations who promise low costs, but do not meet even rudimentary SCE maturity
levels or your other source selection discriminators. The cost of poor quality can be significant
(in terms of scrap and rework expense) when a contractor has to perform a process more than
once to complete the work correctly. Even worse, you might have to write off $100 million or
more when an unsuccessful program is terminated, as happened recently with several programs.
The challenge is to quantify, for “best-value” purposes, the surety that comes from selecting
a contractor with a solid process, even if he is not the lowest bidder. It can be accomplished.
It is helpful to identify, in your RFP, the names of one or more consulting firms who will
assist you in calculating this value. At the same time, you must be assured that the best-value
proposal carries a reasonable price tag. Be aware, quality does not cost — it pays!

Be aware, with best-value comes an added responsibility on the part of the Government to inform
offerors in a clear, unambiguous RFP how you will evaluate them equally — in exactly the same
precise manner. Otherwise, from the loser’s perspective, you are simply choosing the contractor
you want regardless of any other considerations. You must clearly state whether you are buying
the least cost, minimally compliant, or best-value. If best-value, you must state that technical
solutions are more important than the costs associated with the program, while still working
within an established budget. (SEE FAR Part 15.101-1) Remember, valid source selection
decisions must be based on life cycle costs — not only up front costs. If your available funding
profile is a constraint, it should be so identified to all offerors.

WARNING! The final bidding and pricing process. To remain competitive, offerors
often reduce quality assurance manhours to shave costs. It is imperative that the SSET
tracks any changes at FPR and change technical/management evaluations as required.
While the quality assurance requirement remains part of the contract, performance in
this area may be jeopardized. [MARCINIAK90]

8.7.3 Present Findings to the SSA

After evaluating each proposal against the evaluation factors and determining merit as compared
to the factors, the SSET leader presents the results to the SSA. For the Air Force, the format for
reporting evaluation findings can be found in AFFARS 5315.305.

8.7.4 SSA Decision and Contract Award

The SSA is the contract award authority. The SSA’s decision must be based on a comparative
assessment of proposals against all source selection criteria in the solicitation. While the SSA
may use reports and analyses prepared by others, the source selection decision must represent
the SSA’s independent judgment. The source selection decision is documented, and the
documentation includes the rationale for any business judgments and tradeoffs made or relied on
by the SSA, including benefits associated with additional costs. Although the rationale for the
selection decision must be documented (See AFFARS 5315.308-90 for a list of required
documents), that documentation need not quantify the tradeoffs that led to the decision. [FAR
Part 15.308 and AFFARS 15315.308]

8-31

Chapter 8: Contracting for Success GSAM Version 3.0

ATTENTION MANAGERS! Success requires a contractor with top-down commitment
to software engineering practices, concepts, technology, training, planning, people, and
the willingness to commit corporate resources to achieve quality goals. The best-value
contractor you select must be able to provide you with a superior technical solution at a
reasonable cost.

8.8 Protests

To avoid protests, you must be careful when crafting your best-value RFP. You must articulate
precisely what you mean by “value.” Vendors need to know about your program, its mission,
goals, and objectives. They must understand how this software purchase plays in the
accomplishment of DoD’s mission and in what user environment it will operate. You must state
your needs in functional terms as much as possible. Without this background, offerors are likely
to be in the dark about what you value most, and therefore, about how you will evaluate their
proposals. [PETRILLO93] Clear, explicit detail must be included in your RFP about your
definition of “value” and how proposals will be rated. The technical and cost relationships in
award criteria and how they will be applied to the selection must be specified. Cost must be
given relative weight along with technical criteria so there is not the impression of indiscreet
flexibility (and thus subjectivity) in your evaluation.

NOTE: Also make provisions in your RFP, Section M, for assignment of value to product
features or development approaches not anticipated.

Make sure your technical evaluators have ensured that every mandatory solicitation requirement
has been met by the proposed awardee. A surprising number of protests are sustained because
the awardee did not meet a mandatory requirement. Conversely, limit the number of mandatory
requirements in the solicitation to those that are absolutely necessary. A situation in which the
solicitation calls for more than 500 mandatories is a recipe for protest.

Unfortunate experiences have shown that DoD cannot always rely on the integrity of even well-
known vendors. Best-value procurements are particularly prone to error. In three recent major
acquisitions, vendors have displayed the misconception that an agency can make whatever choice
they wish in best-value procurements. This is only true to the extent that the decision is well-
reasoned and documented. It is also essential that an agency follow its own rules. The General
Services Board of Contract Appeals (GSBCA) sustained protests where the solicitation states
that an award would be based on a particular weighting of cost and technical factors, and where
the agency did not follow that formula. [See “Centel Systems versus Department of the Navy,”
GSBCA No. 12011-P, 1992 BPD, paragraph 359.]

If sophisticated cost-technical tradeoffs are being made, it is essential that those making them
have the necessary skills to perform the appropriate judgments and to do the quantifications
required. This is especially true if the choice is the technically high-scored, high-cost solution.
The case law does not require the source selection team to close the price gap between a high-
tech, high-priced solution and a low-tech, low-priced solution. However, as a practical matter, it
is very difficult to explain why you chose a $150 million blue-blue solution over a $100 million
green-green solution unless you close the price gap in quantifiable terms. Sometimes this is

8-32

Chapter 8: Contracting for Success GSAM Version 3.0

accomplished through productivity studies and sometimes by evidence of other types of savings.
There is no particular formula for quantifying a best-value price-gap closing, but it must be
defensible.

A mere list of desirable features along with the statement that these features are worth the extra
money does not normally do the job. On one recent Internal Revenue Service (IRS) award, for
example, the source selection decision lacked documentation. There was no detailed narrative
statement explaining why the superior aspects of Company A’s proposal were worth the large
gap in price between its proposal and the other offers — from $500 to $700 million dollars. The
only documented support for closing the price differential was something the IRS called “Methods
A & B.” The agency’s “A & B” approach attempted to quantify the differences between the
relative power of the multi-user systems offered. The IRS attempted to express this difference in
dollar terms, using what is often called a “normalization process.” Company A’s mid-level
systems were 6 times more powerful than Company B’s systems. Because of this, the IRS analysts
assumed that they would have to buy 6 times fewer systems from Company A as from Company
B and discounted Company A’s price accordingly. This simplistic analysis was rejected by the
GSBCA because the IRS did not take into account the benefits the Government would receive
from the different offers. The offers were made on the basis of the IRS’ estimated quantities, and
Company B did not offer 6 times as many systems as Company A. The second time around the
IRS did a much more sophisticated job of measuring the comparative benefits of the different
offers and the GSBCA, and ultimately the Federal Circuit Court, sustained their award.

Another recent case illustrates the problems of using a crude normalization process. It also
illustrates the problems in relying on one approach in general. It is better to use several methods
and to look at each one of them carefully. Often a price-gap closing will require a source selection
team with a combination of information resource management and accounting skills of a high
order. Institutional or personal arrogance in recognizing this requirement is often punished later
on. The theory that “we do not need help to do our own procurements” is fine until the protest is
decided adversely for DoD. Then no excuses are accepted. Do not assume that your in-house
people are as knowledgeable as the extremely expensive experts who will be hired by disappointed
vendors.

Be prepared to “fight fire with fire,” and do not be hesitant to bring on your own big guns. It is
suggested that serious consideration be given to hiring an outside expert to “red team” the
award decision before it is signed. This expert may wind up testifying for the Government. His
or her insights will be extremely helpful in anticipating future challenges. SAF/GCP will help
you secure such an expert if desired. In anticipation of the need to employ experts, you must
identify your intentions in your RFP, including the identity of the experts, or firm of experts, you
intend to employ.

8-33

Chapter 8: Contracting for Success GSAM Version 3.0

• Industry involvement. Keeping industry involved throughout the acquisition planning phases
is also essential to a successful procurement. Up until the RFP is released, you should maintain
an open, public dialogue with industry through industry briefings, by providing open reading
libraries, allowing industry to brief you on potential solutions, and by releasing draft RFPs.
One or more draft RFPs ensure that requirements are better defined and understood. Industry
can better respond to draft RFPs than amendments to RFPs that cost time and money, or even
worse, multiple FPRs. [WAYS94] You can require that offerors submit a cost and technical
tradeoff analysis based on their understanding of your system’s mission. You can also have
them submit alternative proposals offering different solutions with low-cost/low-performance
and high-cost/high-performance alternatives. [BRENDLER93] This will enable the SSET
to consider the implementability, applicability, and validity of each offeror’s proposal.

Can an exponentially lower price be credible? Perhaps. In one recent acquisition a small,
innovative company using Cleanroom engineering bid $20 million. The next lowest bids were
in the $120 million range. The lowest cost bid, which the source selection authority acknowledged
had the best technical proposal, was not accepted because the cost was considered too low (and
risky). In this instance, it may have been in the Government’s best interest to make two awards
— one for the $20 million proposal and another for a more conventional proposal. This would
have served the dual purpose of reducing risk, and, if the Cleanroom solution had resulted in a
successful product, demonstrating that revolutionary improvement in software productivity, quality,
and cost is feasible.

8.9 Navy Seawolf Lessons-Learned

The largest Ada software development in the US Navy, the AN/BSY-2 software for the SSN 21
Seawolf submarine, was estimated to cost $1.4 billion, was to be made up of 4.6 million source
lines-of-code (SLOCs) (of which 3.0 million will be new and 1.6 million reused and COTS), and
was to be built by over 600 software personnel. The AN/BSY-2 software component has come
under GAO scrutiny “as being exposed to unnecessarily high risk by rushing production to meet
milestones.” [JENKS92] Lessons-learned from a program of this size and complexity are
invaluable for software RFP preparation. Recommendations from Seawolf lessons-learned
include:

• Review subcontractor agreements against the prime contract for contractual consistency.
• Require early identification of all commercial products and associated licensing agreements.
• Require that the contractor establishes a system performance model upfront to be maintained

throughout the program.
• Expand database design documentation requirements to include a logical, as well as, a

relational and physical design.
• Clearly define firmware documentation deliverables.
• Require standardized software Style Guides for technical documentation produced across

multiple developer sites. Make the prime contractor establish a single point-of-contact as the
Style Guide distributor.

• Include electronic format as an optional contract delivery medium.
• Require that the contractor provides analyses of metrics data with respect to the SDP.
• Require installation of secure links between software developers and prime contractor sites.

8-34

Chapter 8: Contracting for Success GSAM Version 3.0

• Require the prime contractor to establish controls for the management of common code and
the document control process in software developers’ SDPs and documentation.

• Require the use of a standard set of support tools across development teams (e.g., compiler,
code counter, document generator).

• Require strict version control of support tools throughout development to ensure all delivered
software and firmware is compiled or assembled under the baselined version.

• Require the prime contractor to implement a shared problem reporting system across all
developers early in the program.

• Evaluate hidden risks associated with the use of COTS tools (e.g., limited life cycle vendor
support, upward incompatibilities, and schedule impacts associated with porting tools).

• Require the establishment of common databases to track all prime item development
specification (PIDS) requirements for flow-down, and to ensure consistency across interfaces
during integration.

• Make sure the contractor allocates additional time and resources for tool modification and
for resolution of COTS interface/performance problems.

• Encourage the use of a standards checking tool to ensure high quality, maintainable code.

8-35

Chapter 8: Contracting for Success GSAM Version 3.0

8.10 References

[ALIC92] Alic, John A., et al., Beyond Spinoff: Military and Commercial Technologies in a Changing
World, Harvard Business School Press, Boston, Massachusetts, 1992

[BAKER92] Baker, Emanuel R., “TQM in Mission Critical Software Development,” G. Gordon Schulmeyer
and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New
York, 1992

[BRENDLER93] Brendler, Beau, “Best-Value Unclear: Procurement Philosophy Explored at Meeting,”
Washington Technology, October 7, 1993

[COTS91] Joint Command Commercial-off-the-Shelf (COTS) Supportability Working Group (CSWG) Final
Report, June 1991

[DuPICQ80] du Picq, Col Charles Ardnant, Battle Studies, 1880
[FAA94] “Report of the ‘Open System Development’ Subcommittee,” briefing prepared by the Federal

Aviation Administration, Research, Engineering, and Development Advisory Committee, Headquarters,
Washington, D.C., 1994

[HERMANN94] Hermann, Robert, “Defense Science Board Task Force on Acquisition Reform,” Army
Research, Development, and Acquisition Bulletin, January-February 1994

[HUMPHREY90] Humphrey, Watts S., Managing the Software Process, Addison-Wesley, Reading,
Massachusetts, 1990

[JENKS92] Jenks, Andrew, “DoD to Change Purchasing,” Washington Technology, August 27, 1992
[KRATZ84] Kratz, L. A., Drinnon, J. W., and Hiller, J. R., Establishing Competitive Production Sources:

A Handbook for Program Managers, Defense Systems Management College, Fort Belvoir, Virginia,
August 1984

[MARCINIAK90] Marciniak, John J., and Reifer, Donald J., Software Acquisition Management: Managing
the Acquisition of Custom Software Systems, John Wiley & Sons, Inc., New York, 1990.

[MILLS95] Mills, Andy, “Software Acquisition Improvement: Streamlining Plus Risk Management,”
paper presented to the Seventh Annual Software Technology Conference, Salt Lake City, Utah, April
1995

[MOSEMANN94] Mosemann, Lloyd K., II, comments provided to AFPAM 63-115, May 1994
[PETRILLO93] Petrillo, Joseph J., “If Agencies Won’t Articulate Needs, Can There Be Best-Value?”

Government Computer News, October 25, 1993
[RAND95] Rand, Linda M., “ReARC COTS Software Integration Lessons-learned,” briefing presented on

July 24, 1995
[SPAT92] “Software Process Action Team, Process Improvement for Systems/Software Acquisition,” Air

Force Systems Command, Final Report, June 20, 1992
[SULLIVAN94] Sullivan, Bruce E., “The Section 800 Report: Streamlining Defense Acquisition Law,”

Army Research, Development, and Acquisition Bulletin, January-February 1994
[VELOCCI91] Velocci, Anthony L., Jr., “ATF Development Program’s Risk Light for Lockheed, Financial

Officer Says,” Aviation Week & Space Technology, May 13, 1991
[WAYS94] Ways, John P., “Best-Value Not the Best Approach: Procurement Strategy is Well-intentioned

But Hard to Implement,” Washington Technology, February 10, 1994

Part 2: Engineering GSAM Version 3.0

Chapter 9

Engineering
Software-Intensive
Systems

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

9-2

Contents

9.1 Engineering is the Key ... 9-3
9.2 What is Domain Engineering? ... 9-4

9.2.1 Domain Identification ... 9-5
9.2.2 Domain Analysis .. 9-6
9.2.3 Domain Design .. 9-6
9.2.4 Domain Implementation ... 9-7
9.2.5 Benefits of Domain Engineering ... 9-8

9.3 What is Systems Engineering? .. 9-9
9.3.1 Integrated Product Development (IPD) ... 9-11
9.3.2 Concurrent Engineering .. 9-13
9.3.3 The Case for Software Engineering .. 9-14
9.3.4 Domain Engineering and the Software Engineering Process................ 9-17
9.3.5 Relationship Among Enterprise Engineering, Domain Engineering,
 and Application Engineering ... 9-19

9.4 What is Software Engineering? ... 9-20
9.4.1 Software Engineering Goals ... 9-22

9.4.1.1 Functionality .. 9-22
9.4.1.2 Supportability ... 9-22
9.4.1.3 Reliability... 9-22
9.4.1.4 Safety ... 9-23
9.4.1.5 Efficiency ... 9-23
9.4.1.6 Understandability ... 9-24

9.4.2 Software Engineering Principles ... 9-24
9.4.2.1 Abstraction and Information Hiding .. 9-25
9.4.2.2 Modularity and Localization ... 9-26
9.4.2.3 Uniformity, Completeness, and Confirmability............................ 9-26

9.5 Managing Software Engineering ... 9-27
9.5.1 Software Engineering Information .. 9-28

9.6 What is Information Engineering? .. 9-29
9.6.1 Information Engineering Process .. 9-30
9.6.2 Information Engineering Architecture ... 9-31
9.6.3 IDEF .. 9-32

9.7 Success Through Engineering .. 9-34
9.8 References .. 9-36

9-3

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

9.1 Engineering is the Key

As we mature into the Information Age, the same forces that assured success during the Industrial
Revolution are driving how we produce software. The world’s industrial giants attained their
status through superior mass production processes developed through advanced engineering.
Mass demand and global competition are driving software production into the world of
engineering, the same as they did for hardware.

Computer hardware engineering is quite mature and grew out of the manufacturing and electronic
design processes. Within the hardware engineering discipline, “hardware design techniques are
well-established, manufacturing methods are continually improved, and reliability is a realistic
expectation rather than a modest hope.” Unfortunately, software has not advanced nor matured
as quickly as the electronic hardware upon which it runs. In computer-based systems, where the
hardware component is exceptionally stable with predictable fast-paced advances — the software
is usually “the system element that is most difficult to plan, least likely to succeed (on time and
within cost), and most dangerous to manage.” [PRESSMAN92]

New trends in development, however, are gradually removing the riskiest component stigma
from software. By applying the engineering discipline that matured hardware beyond the risk
threshold, software can now achieve expected levels of reliability, maintainability, and reusability.
Software engineering is maturing software development, which has been historically characterized
as a cottage industry populated by artisans, craftsmen, and skilled maverick developers.
Engineering discipline is transforming software production into a mighty industrial machine
characterized by a finely-tuned engineering process that predictably and consistently mass produces
reliable software, on time, at competitive prices. The quickest, cheapest, highest quality way to
build software is not to make mistakes during its development, and not to do any job more than
once. Through years of experience and a well-defined, mature process, world-class software
developers have learned how to do the right things, the right way — the first time, every time.
Sound software engineering discipline is essential for software success. [ZELLS92]

“Above all, discipline; eternally and inevitably, discipline. Discipline is the screw, the nail, the
cement, the glue, the nut, the bolt, the rivet that holds everything tight. Discipline is the wire, the
connecting rod, the chain that coordinates. Discipline is the oil that makes machines run fast, the
oil that makes parts slide smooth, as well as the oil that makes the metal bright. The principle of
discipline here is divinely simple; you lay it on thick and fast, all the time.” — Private Gerald
Kersh [KERSH90]

Software engineering discipline cannot be ignored; it must be laid on thick and fast — all the
time. It must be institutionalized early in the life cycle. For large military software systems, this
is particularly difficult because most requirements are based on subjective strategic and tactical
demands, are dynamic, evolve over time, and are troublesome to precisely define. Developers
and testers (software verifiers) must have procedures to identify and remove errors during
requirements definition and design before they are translated into code. Quality can only be
accomplished through the rigorous application of software engineering discipline and process
knowledge to ensure that quality is the norm — not the exception. As you will learn throughout
these Guidelines, successful program management strives for both process and product quality
through methods to:

9-4

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

• Assess process and product status,
• Foster early process and product error identification and correction, and
• Continuously improve processes and product methodologies to prevent defects.

The implementation of a disciplined engineering process for software is a complex process.
Software engineering for a system interacts with, and is dependent upon, related domain
engineering, information engineering, hardware engineering, and systems engineering activities
that occur in the production of a total, integrated system. Figure 9-1 illustrates (on a high level)
the relationships among these engineering disciplines.

 Domain Model

Software
Architecture

Product
Design

 Implementation
Components

Technology
Forecasting

Requirement
Forecasting

Domain Analysis

DOMAIN ENGINEERING

SYSTEMS ENGINEERING

Create Reusable Assets
-Flexible Architecture
-Modular Software

Software
Engineering

Hardware
Engineering

Engineering
Management

Logistics
Support Analysis

Requirements
Analysis

Configuration
Management

Quality
Assurance

Information Engineering

Domain Implementation

Figure 9-1. Total Quality Engineering

9.2 What is Domain Engineering?

Domain engineering refers to the techniques (i.e., methods and processes) used to engineer a
family of similar or related systems (i.e., a domain or product-line). The focus of domain
engineering is to capture engineering knowledge (requirements, architectures, components and
other life cycle artifacts) within a particular domain for use on future or concurrent programs.
This knowledge (captured by models, architecture specifications, etc.) is then used to configure
a system architecture and develop (or select) reusable components based upon previous
requirements analyses, design, coding, integration and testing efforts.

Domains are groups of related systems sharing a set of common capabilities. Domains can be
described pictorially as having either vertical or horizontal relationships among each other, as
illustrated in Figure 9-2. A vertical domain is a specialized class of system, such as an information
system, command and control, or embedded weapon system. Horizontal domains consist of

9-5

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

general software functions applicable across multiple vertical domains. These can include user
interfaces, common algorithms (e.g., data structures, strings, matrices, lists, stacks, queues, trees,
graphs), common mathematical solutions (e.g., linear systems applications, integration, differential
equations), and software tools or graphics packages. Although the domain engineering steps are
presented here as sequential activities, in practice they are highly iterative. Major domain
engineering steps include:

• Domain identification and scoping,
• Domain analysis,
• Domain design, and
• Domain implementation.

P
LA

N
N

IN
G

P
E

R
S

O
N

N
E

L

LO
G

IS
TIC

S

IN
TE

LLIG
E

N
C

E

USER INTERFACE

S
TR

A
TE

G
IC

TA
C

TIC
A

L

TH
E

A
TE

R

E
LE

C
TR

O
N

IC
 W

A
R

FA
R

E

S
P

A
C

E
 IN

TE
R

C
E

P
T

FIR
E

 C
O

N
TR

O
L

M
O

TIO
N

 C
O

N
TR

O
L

Information
Systems

Command
& Control

Action
Systems

COMMON ALGORITHMS

FIE
LD

COMMON ALGORITHMSCOMMON ALGORITHMS

TOOLS & SIMULATIONS

COMMUNICATIONS PROTOCOLS

COMMUNICATIONS PROTOCOLS

Figure 9-2. Vertical and Horizontal Domains

9.2.1 Domain Identification

The domain identification step is critical to overall program success. Your understanding of the
subject domain and customer needs derived during this phase drive the entire engineering effort.
Domain identification defines domain boundaries, interfaces, and dependencies. The knowledge
gained during domain identification provides domain analysts with a common understanding of:

• Domain scope (inclusion or exclusion of domain applications),
• The relationship of the subject domain with other domains,
• The relationships among domain applications, and
• The inputs/outputs to and from the domain.

9-6

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

During domain identification, a number of domain-representative systems are identified. These
“exemplar” systems highlight common, variable domain requirements. The number of exemplars
must reflect the level of effort required to conduct the modeling effort with schedule constraints.
Note that domain analysis addresses more than the exemplars — it also considers other information
such as technology trends and anticipated future requirements.

9.2.2 Domain Analysis

Domain analysis captures and models requirements information across a particular domain.
Domain analysis is the process of identifying, documenting, and modeling common, variable
requirements among domain systems. Domain analysis techniques include interviews,
documentation review, and reverse engineering, to identify and categorize (i.e., model) domain
requirements. Other inputs, such as enterprise models (e.g., data models in IDEF1X and
operational models in IDEF0), are used during domain analysis. The resulting domain model(s)
form a domain problem space (or domain requirements) representation. These models provide
a domain perspective of domain systems in terms of data (or objects), functional capabilities, and
control or (behavioral aspects). Along with these perspectives, a standard domain vocabulary is
developed. The products of domain analysis vary depending on the analysis method used and
typically include the following:

• Information model. This provides the domain data (object) perspective. During this activity,
domain data requirements, essential for implementing domain applications are represented.
Variability among exemplars is represented in the information model through alternative
objects and/or attributes. Information entities are traced back to the exemplar sources from
which they are derived.

• Feature or functional model. This captures the end-user’s understanding of domain
application capabilities through a functional domain systems perspective. Alternative feature
commonality and variability among the different exemplar systems are represented in the
domain model. Features are categorized and traced back to their exemplar sources.

• Operational model. This identifies domain application control and data flow commonalities
and differences from a behavioral perspective. This activity abstracts and then structures
common domain functions, features, and sequencing into an abstract operational model from
which individual application control and data flow are derived.

• Domain dictionary. A useful product of domain analysis, this defines the terms and/or
abbreviations used in describing domain features, their textual description, and domain entities.
The dictionary helps alleviate miscommunication by providing a central location for domain
information users to search for unfamiliar terms and abbreviations or for definitions of terms
used differently or specific to the domain.

9.2.3 Domain Design

The domain-specific software architecture (DSSA) is the foundation of systematic reuse and the
maturing of software engineering maturity. The DSSA provides the high-level design for all
domain (or product-line) systems and establishes the context for high-leverage, large-scale reuse.
The domain model, created in the domain analysis step, is used during domain design to derive
the DSSA, which specifies a set of solutions to the requirements represented in the model. The

9-7

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

DSSA accommodates domain model requirements variability by capturing context drivers leading
to alternative solutions. [KOGUT94] The DSSA identifies:

• Component classes. These are derived through partitioning overall system functionality, as
captured in the domain model. A component class represents a category of components with
similar functionality (e.g., DBMS or Geographic Information Systems). Each functional
requirement captured in the domain model is allocated to one or more component classes.
Component class variability reflects the variability captured in the domain model by specifying
alternative and optional classes.

• Connections. These describe how component classes are linked. Typical connections
specifications include data flow, direction, and type (e.g., SQL query, protocol). Alternative
connections result from variability in domain requirements.

• Constraints. These describe component class characteristics allocated from the domain
model and implied by the architecture. That is, the constraints highlight functionality derived
from the domain model, as well as the functionality dictated by component class connections.
Because of the variability captured in the domain model, it is necessary to specify alternative
and optional component class constraints.

• Rationale. This facilitates selection among reusable components. For example, suppose a
more expensive DBMS will provide a faster response. This provides the rationale for choosing
the more expensive DBMS when response time is critical.

Key to domain design is maintaining traceability between the derived architectural solution and
domain modeled requirements. Domain designers can use this traceably to develop an initial
systems architecture and to select or build a set of reusable components that best fit the new
system’s requirements. This allows selection of specific architectural solutions based on user/
developer selection of specific domain requirements. This forms the basis for qualified
components composition or new component specification and development based on constraints
specified in the architecture.

9.2.4 Domain Implementation

Domain implementation refers to: (1) the process of creating new components or modifying
existing components for a DSSA component class; and (2) altering components in response to
changes in requirements or the detection of defects. These domain assets can be employed or
modified to suit new systems development within the domain. Domain implementation can also
include the development of automated tools that aid life cycle efforts, such as composition tools,
generators, and analyzers. [MAYMIR95]

There are four main strategies for domain implementation: generation; new development; re-
engineering; and identification of commercial-off-the-shelf (COTS) and government-off-the-shelf
(GOTS) software. In addition, for re-engineered software, COTS, and GOTS, there is a separate
domain-specific step for software qualification. Some combination of these strategies is employed
to complete domain implementation. The cost and applicability of these strategies depends on
tool support (especially for generation), the level of domain maturity (for re-engineering), and
the availability of COTS or GOTS software. These approaches must be analyzed to determine an
appropriate domain implementation strategy. Specific strategies are then developed to fit the
needs of the customer. A brief discussion of these strategies follows.

9-8

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

• Generation. If a component class is mature and well-defined, generative techniques may be
applied to automatically produce reusable assets that fit the generic architecture. Commercial
generators are available to support this strategy in several narrowly focused areas. An example
is the graphical user interface (GUI) builder. For component classes where commercial tools
are not available, it may be necessary to build special-purpose application generators tailored
to the class.

• New development. Reusable assets can be developed, as part of a normal software engineering
effort, to satisfy generic architecture requirements. This strategy, frequently employed by
domain engineering teams, is suitable when legacy software is nonexistent or not suitable for
reuse.

• Re-engineering. Legacy systems (e.g., exemplars used during domain analysis) may include
components close enough to the desired functionality and structure to warrant redesign and/
or re-implementation to be reusable within the domain.

• Qualification. Many domain engineering teams are using available software to satisfy
DSSA. Pre-existing software must be evaluated against DSSA requirements. Component
qualification assesses how well a particular component fits into a DSSA component class
and ensures components are reusable within a given architectural context. Qualification
criteria for evaluating reusable components are dependent on domain characteristics and
user needs.

If new software is chosen as the domain implementation strategy, DSSA requirements are used
in creating new reusable software assets. Several efforts have focused on developing generic
guidelines for creating reusable software (hence, the name “design-for-reuse”). However,
guidelines differ based on development methodology (object-oriented, functional decomposition,
etc.). An appropriate software development methodology must be used to create reusable software
assets. Domain engineering provides necessary background for tailoring design-for-reuse
guidelines for a selected development methodology.

9.2.5 Benefits of Domain Engineering

In September 1991, the Air Force and the Advanced Research Projects Agency (ARPA) selected
the Air Force Space Command’s Space Command and Control Architectural Infrastructure (SCAI)
program as the Air Force Demonstration Project for Software Technology for Adaptable and
Reliable Systems (STARS) megaprogramming concepts. Demonstration programs were also
awarded to the Army and Navy.

The demonstration program’s goals were to show the feasibility of using an architecture-based,
product-line approach to system development. The SCAI program realized benefits in the areas
of productivity, error reduction, and cost savings. Productivity went from 175 lines-of-code
(LOC) per month to over 1,700 LOC per month. Defects decreased from 3+ errors per 1,000
LOC to about 0.35 errors per 1,000 LOC. Cost per 1,000 LOC also decreased from the typical
$140+ to about $57. These benefits were realized because of the domain engineering approach.

For additional information on domain engineering, or assistance in selecting and implementing
appropriate domain engineering methods, please contact one of the following organizations [see
Volume 2, Appendix A for addresses, phone numbers, and Web addresses]:

9-9

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

• AF/Comprehensive Approach to Reusable Defense Software (CARDS) Program, and
• Software Engineering Institute (SEI).

9.3 What is Systems Engineering?

The first formalization of systems engineering for military development occurred in the mid-
1950s on ballistic missile programs. [DSMC90] Since then, the systems engineering discipline
has evolved to encompass both technical and management processes, and has expanded its
applicability to cover the entire life cycle of a software-intensive system. A technically-oriented
definition of systems engineering is:

“…an interdisciplinary approach encompassing the entire technical effort to evolve and verify an
integrated and life cycle balanced set of systems people, product, and process solutions that satisfy
customer needs.” [EIA632]

Army Field Manual 770-78, Systems Engineering (1979), provides a definition, not specific to
any particular industry segment, that emphasizes the leadership role systems engineering plays
in integrating other disciplines. It defines systems engineering as:

“The selective application of scientific and engineering efforts to:

• Transform an operational need into a description of the system configuration which best satisfies
the operational need according to the measures of effectiveness;

• Integrate related technical parameters and ensure compatibility of all physical, functional,
and technical program interfaces in a manner which optimizes the total system definition and
design; and

• Integrate the efforts of all engineering disciplines and specialties into the total engineering
effort.”

Whichever definition you prefer, both have the same goal — to effectively balance system elements
by integrating them into a complete system that meets customer needs. Systems engineering is
not a one time or single phase effort. It is an essential activity throughout the system’s life.
During the early planning phase it assures flexibility and supportability are built into the design.
In later years, it aids in smooth, effective change implementation and modification, often adding
value and prolonging the system’s life, as illustrated in Figure 9-3. [EIA632]

9-10

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Figure 9-3. Systems Engineering Process [EIA632]

Applied iteratively throughout the system life cycle, the systems engineering process has four
interrelated process steps the Electronics Industry Association (EIA) Standard 632 defines as:

1. Requirements Analysis,
2. Functional Analysis,
3. Synthesis, and
4. Systems Analysis and Control.

The exact activities of the systems engineering process should be documented in a Systems
Engineering Management Plan (SEMP), while progress towards completion of these activities
should be identified and tracked using technical performance measurements (TPMs).

NOTE: You are urged to obtain a copy of EIA Standard 632 or IEEE 1220 and follow the
guidance found there.

REQUIREMENTS ANALYSIS
- Analyze missions & environments
- Identify functional requirements
- Define/redefine performancee &
 design constraint requirements

FUNCTIONAL ANALYSIS
- Decompose to lower level functions
- Allocate performance & other limiting
 requirements to all functional levels
- Define/redefine/integrate functional
 architecture

SYNTHESIS
- Transform architectures (functional to
 physical)
- Define alternative system concepts
- Define physical interfaces (internal/
 external)
- Define product & process solutions

SYSTEMS ANALYSIS & CONTROL
- Select preferred alternatives
- Trade-off studies
- Effectiveness analysis
- Risk management
- Configuration management
- Interface management
- Performance-based progress
 measurement
 -- SEMS
 -- TPM
 -- Technical reviews

Requirements Loop

Design Loop

PROCESS INPUT
- Customer needs/objectives, requirements
 -- Mission/operations
 -- Measures of effectiveness
- Technology base
- Prior outputs
- Program decision requirements
- Requirements from tailored specs and standards

V
er

ifi
ca

tio
n

PROCESS OUTPUT
- Decision Database
 -- Decision support data
 -- System functional & physical architectures
 -- Specifications & baselines
- Balanced system solutions

9-11

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Of a system’s components (i.e., people, products, and processes), two of the more notable products
are hardware and software. Systems engineering takes both into account, giving each equal
weight in analysis, tradeoffs, and engineering methodology. In the past, the software portion was
viewed as a subsidiary, follow-on activity. The new focus in systems engineering is to treat both
software and hardware concurrently in an integrated manner. At the point in system design
where the hardware and software components are addressed separately, modern engineering
concepts and practices are employed for software, the same as they are for hardware.
[MOSEMANN921]

Figure 9-4 illustrates how systems engineering, hardware engineering, and software engineering
are concurrent processes. The primary role of systems engineering is to ensure that the many
diverse elements comprising a system are compatible and ready when needed. This avoids the
situation in which the hardware or software, when integrated into the system, fails to function
harmoniously with other system components. Systems engineering concentrates on comprehensive
planning and coordination throughout the development process to ensure integration problems
are minimized and that final system implementation fulfills all mission requirements. Different
approaches have evolved to implement the systems engineering process. One approach used by
DoD is integrated product development (IPD) that focuses on the abatement of integration issues.

Figure 9-4. Relationship between Systems, Hardware, and Software Engineering

9.3.1 Integrated Product Development (IPD)

Integrated product development is “a team approach to systematically integrate and concurrently
apply all necessary disciplines throughout the system life cycle to produce an effective and
efficient product or process that satisfies customer needs.” [WAGNER95] The key ingredient
in IPD is teamwork. IPD provides a technical-management framework for a multi-disciplinary
team (comprised of multiple specialties) to define the product. The team includes users (both
operational and support) to better address their needs and ensure developers consider all aspects
of the system life cycle. IPD emphasizes up-front requirements definition, tradeoff studies, and
the establishment of a change control process for use throughout the entire life cycle. This life
cycle emphasis is why, according to Captains Gary Warner (USAF) and Randall White (USAF),
the F-22 program refers to their IPD teams as integrated product teams (IPTs). The term
“development” is omitted because the IPT continues into the operation and support phase by
handling modifications and systems upgrades. [WAGNER95] An example of a multi-disciplined
IPD team is illustrated in Figure 9-5.

Systems
Engineering

System
Operational

Requirements

System
Requirements

Analysis
System
Design

Software
Requirements

Analysis

Hardware
Requirements

Analysis

Software
Prelim inary

Design

Hardware
Preliminary

Design

Software
Detailed
Design

Hardware
Detailed
Design

Software
- Code
- Test
- Integrate

Hardware
- Fabricate
- Test
- Integrate

System
Integration

Test

- Qualif ication Test
- Customer Acceptance
- OT&E

Continued System s Engineering Involvement

Software
Engineering

Hardware
Engineering

Integrated Logistics Support and Other Disciplines

9-12

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Figure 9-5. Example Integrated Product Team Members

Figure 9-6 illustrates the concept of IPD during the systems design phase. This figure is mainly
conceptual, as several iterations through each filter step are often required. Four integration
filters are shown in the overall process. As information is taken into the traditional discipline
filter, emphasis is placed on traditional design techniques (such as structural stress analysis)
required at any given design stage. Traditional design engineers rely heavily on current technology.
At the same time, design documentation is developed and/or modified by engineering specialists
who establish requirements independent of the emerging traditional design. They also review
and modify the traditional design output. All requirements are then filtered by the unique demands
of system products. Subsequently, requirements are described by specifications and drawings
(or in some cases, prototypes) filtered through the user group to determine whether they satisfy
needs.

9-13

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Figure 9-6. Integrated Product Development Process

9.3.2 Concurrent Engineering

Concurrent engineering [not to be confused with concurrent acquisition] is one of several systems
engineering disciplines within the IPD approach used to define requirements and manage system
acquisition and development. Concurrent engineering is “a systematic approach to the integrated,
concurrent design of products and their related processes, including manufacture and support.”
[WAGNER95] Concurrent engineering, in this context, is the coordination, integration, and
sequencing of the multi-discipline engineering activities that must occur to produce a major
software-intensive system. The following summarizes concurrent engineering benefits achieved
in three industrial applications:

“The Boeing Commercial Airplane Group is using it [concurrent engineering] to develop the
giant 777 transport and expects to release design drawings a year and a half earlier than with the
767. John Deere & Co. used it to cut 30% off the cost of developing new construction equipment
and 60% off development time. AT&T Co. adopted it and halved the time needed to make ... an
electronic switching system.” — Sammy Shina [SHINA91]

Concurrent engineering ensures that people from many disciplines collaborate throughout the
life of a product (from-cradle-to-grave) to ensure it performs to user’s needs and requirements.
For example, people from engineering, software, operations, maintenance, and manufacturing
work as a team from program onset to anticipate problems and bottlenecks and remove them

SYSTEMS
ENGINEERING

Value

Test
Safety

Human
Factors

Productivity

Packaging
QA

R & M

Other

Logistics
SYSTEMS

ENGINEERING

Thermo-
Dynamics Electronics

AerodynamicsMechanical

OtherStructural USER FILTER

SYSTEM REQUIREMENTS
Mission Objectices

Mission Environments
Mission Constraints

Measures of Effectiveness

1

2 3

4

Specialty
Discipline Filter

Product Filter

Technical
Discipline Filter

Software
Engineering

Documentation

Information
Feedback

Information
Feedback

DESIGN REQUIREMENTS OUTPUT
PROGAM SPECIFICATIONS DRAWINGS

SYSTEMS
ENGINEERING

Facility
Design

Equipment
Design

Software Programs

Procedural
DataPersonnel

9-14

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

early. This approach avoids delays in fielding the product and prevents costly operational failures.
Participation by contracts and logistics personnel also ensures a smooth acquisition process, low
product cost, and availability of reliable supplies of parts and materials.

Automated design tools, computer-aided manufacturing systems, and information management
tools are commercially available for concurrent engineering applications. A centralized graphical
representation can help the team visualize key elements and relationships to achieve a multi-
disciplinary design solution. Automated products enable the storing of supporting data so the
results of historical design efforts can be applied to the task at hand. This hastens product
improvement efforts beyond many life cycle iterations. [SHINA91]

An example of concurrent engineering in practice is the F-22 program. Colonel Robert Lyons,
Jr., former co-leader of the F-22 System Program Office Avionics Group, explained that IPD is
being employed throughout the F-22 program office, where he says they are using an expanded
version of IPD with concurrent engineering. The program office is uniting program managers,
as well as specialists in contracts, cost analysis, test, safety, logistics, and quality assurance to
oversee product development. Lyons says that, “Already in this program we [Government and
industry] have laid on the table information that in other programs people wouldn’t have heard
about for several years.” He explains that the beauty of including everyone affected by the
development in areas other than their own is that all program concerns and requirements are
identified and addressed up-front. [LYONS92] Everyone, in this case, also includes the F-22’s
customer, Air Combat Command (ACC). According to Captains Wagner and White, ACC is
active in the F-22 Weapon System concurrent engineering effort, having local representatives
who are “active team members and provide on-the-spot inputs for requirement issues.” This
inclusion of the customer into the concurrent engineering team “kept the user in the loop and
provided a quick way of obtaining guidance on requirements.” [WAGNER95] A recent
assessment of IPD on the F-22 identified several key factors needed for successful implementation:

• Implement IPD from the beginning of the program with extensive planning to make it happen;
• Train and educate the team members on IPD, including new personnel coming in mid-program;
• Enhance communications with co-location of team members and use of electronic mail;
• Structure the system program office (SPO) to reflect the IPD system breakdown;
• Have the necessary integrated management tools to do the job [these include technical

performance measurements, integrated master plans (or systems engineering management
plans), and integrated master schedules (or systems engineering management schedules)];
and

• Establish an analysis and integration (A&I) team to integrate IPD team efforts to ensure “I”
stands for integrated and not independent. [WAGNER95]

9.3.3 The Case for Software Engineering

The forces driving DoD towards engineering our software are primarily economic. Lloyd K.
Mosemann, II, former Deputy Assistant Secretary of the Air Force (Communications, Computers,
and Support Systems) explains that, “military software must be engineered. There is too much of
it and systems are too large to develop cost-effectively using the hand-tooled, cost-insensitive
‘software-as-art’ model.” [MOSEMANN922] He further states that, “The definition and
institutionalization of software engineering in the Air Force is now our highest priority.”

9-15

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

[MOSEMANN91] From the DoD perspective, Paul Strassmann, former Director of Defense
Information (ASD/C3I), reinforced the case for software engineering by declaring, “The No. 1
priority of DoD, as I see it, is to convert its software technology capability from a cottage industry
into a modern industrial method of production.” [STRASSMANN91]

To understand what we mean by software engineering, the Software Engineering Institute (SEI)
examined the mechanical and civil engineering disciplines which evolved from ad hoc solutions
to engineered ones based on scientific principle. By scientific principle we mean:

“…an attempt to explain a certain class of phenomena by deducing them as necessary consequences
of other phenomena regarded as more primitive and not in need of explanation”. [McGRAW89]

As practitioners within a discipline accept new explanations, the discipline shows a progression
from crafted, ad hoc solutions to a formal, codified body of knowledge. Scientific principles, in
the form of proven mathematical statements, are developed to explain and predict results. Initial
solutions establish the foundations for creating new instances predicated on scientific principles.
New and larger problems can then be addressed based on initial solutions. During this evolution,
the state-of-the-practice constantly improves. Software engineering involves improving the
practice through the codification of collective knowledge and experience. [HOLIBAUGH92]

In contrast to engineered solutions, crafted solutions are unique and problem-specific and the
experience base is usually limited to that of the practitioner. Eileen Quann, president of Fastrak
Training, Inc., equates the differences between software-as-art (or craft) and an engineered product
to the different approaches required when building a dog house, a family home, and a skyscraper,
as illustrated in Figure 9-7. In each case, building construction generally consists of assembly
functions. For all three structures, a floor, walls, a roof, a door, and windows must be built.

ART CRAFT ENGINEERING

Fido

Figure 9-7. Order of Magnitude Between Software Engineering and Software-as-Art

9-16

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

The differences among the construction projects are found in the skills and tools needed to
accomplish each job. Your teenage son can build a doghouse with a few nails and some wood.
However, he is not qualified to build your family home which requires craftsmen skilled in
reading blueprints, plumbing, wiring, roofing, flooring, insulation, and inspections. Similarly,
the same craftsmen are not usually qualified to build a skyscraper, which requires additional
skills in such areas as joining steel beams, installing tremendous amounts of glass and concrete
that must withstand enormous physical stresses, and electrical wiring with demands much greater
than a normal house. More importantly, while your teenage son may be able to both design and
construct the doghouse, when a program reaches the size of something like a skyscraper, design
engineers must have more experience and knowledge than is required of a normal engineer/
craftsman. To design a large-scale building containing immense walls of glass, steel beams, and
concrete, a design engineer must be an educated professional, proficient in topics such as the
physics of structural stress. They must also have expertise in additional areas such as elevator
dynamics, optimum space utilization, environmental power plants, and emergency and
handicapped access requirements. Therefore, it is just as important that your engineering design
team be appropriately trained and experienced as it is that your construction personnel have the
right skill and experience level.

Software engineering is also required for economic reasons. Consider the fact that the cost to
support deployed DoD software system comprises 60% to 80% of total life cycle costs. [Ada/
C++91] The high cost of software support stems from products often so unique and hand-
crafted no one other than the original developer can understand them. Supporting agencies have
had to start from scratch when upgrading or enhancing the software they are responsible to
maintain. Defects, not discovered until the software is deployed, are at times impossible to
correct. Strassmann warns these practices are no longer acceptable, “Because we don’t have the
cash anymore to reinvent and reinvent and reinvent exactly the same routine.” [STRASSMANN92]
Figure 9-8 illustrates how software costs have historically been disbursed when software was
developed as art. It also shows the difference in spending ratios when software is engineered.
What Figure 9-8 does not show, however, is that the cost pie shrinks when software is engineered
because software support costs are substantially reduced.

9-17

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Figure 9-8. Software Life Cycle Costs

When you use the structured discipline imposed by the engineering process, costly software
support problems are addressed up-front. Reliability, maintainability, and supportability are
designed into the system instead of being included after development and deployment. Resources
are planned and managed within a total life cycle framework. Large investments are placed in
up-front design and engineering to gain savings over the life of the system.

To state that engineering is a solution to our software problems is no revelation. Simply put,
systems and software engineering provide sound, proven discipline for achieving program success.
As An Wang, founder of Wang Laboratories, aptly stated, “Success is more a function of consistent
common sense than it is of genius.” [WANG86] By converting software production from a
cottage industry into a modern industrial process, the same benefits can be attained as those
gained through the engineering and mass production of hardware:

• Lower unit price,
• Lower maintenance costs,
• Reusable and interchangeable parts, and
• Greater reliability.

9.3.4 Domain Engineering and the Software Engineering Process

Mature engineering disciplines support clear separation of routine problem solving from the
research and development required to address unprecedented aspects of systems within a well-
defined product-line. Fundamental to such a discipline is the leveraging of a publicly-held,
experience-based, and formally transitioned technology base that includes product models (e.g.,
designs, specifications, performance ranges) and practice models (tools and techniques to apply

9-18

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

the product models). A critical characteristic of mature engineering is that the products built
from these models are well-understood and predictable before they are produced. Software
engineering state-of-the-practice has yet to reach this level of maturity. Instead of basing new
development on a technology base of well-understood models, current software engineering
practice tends to start each new application development from scratch with the specification of
requirements, and moves directly into design and implementation. By contrast, disciplined
software engineering relies on a stable technology base of reusable assets, including requirements,
designs, architecture, and software.

Figure 9-9 illustrates the role of domain engineering in establishing a mature, disciplined software
engineering process and a product-line development strategy. The stable technology base, specific
to the product-line, called the product-line asset base, is created and maintained by domain
engineering, which while distinct and separate from the application engineering activity, defines,
drives, and constrains application engineering. Domain engineering analyzes, selects, and
produces the assets to populate the product-line asset base, which captures the commonality and
variability across an entire product-line and includes models that facilitate understanding and
specialization to a particular system. The application engineering process then uses these products
and processes to develop software systems within the product-line. The application engineer
draws upon these assets to develop reuse-based products (i.e., software systems). By using well-
understood requirements, architecture models, well-documented processes, and high-quality
reusable software, the engineer is able to quickly and cost-effectively build more reliable and
predictable software systems for the product-line.

Domain
Engineering

Application
Engineering

Reuse-Based
Products

Product-Line
Asset Base

application

validation

insert
domain models
domain architectures
product-line assets
(components, tools,
processes)

experience
in use

experience
in practice

develop

system-specific requirements

Figure 9-9. Domain Engineering and Software Engineering Discipline

The separation of domain engineering from application engineering highlights the need and
significance of developing reusable corporate assets including domain models, architectures,
processes, and components. The application engineering function then focuses on using,
validating, and extending this technology base, instead of beginning with a blank sheet. In

9-19

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

addition to creating the initial set of domain assets, domain engineering processes continue to
add and enhance the technology base according to the requirements associated with application
engineering.

9.3.5 Relationship Among Enterprise Engineering, Domain

Engineering, and Application Engineering

There has been a service-wide effort to develop organizational enterprise models, which combined
comprise the DoD Enterprise Model. While the synergy between domain and application
engineering has become better understood, the connection to enterprise engineering has remained
weak. Domain engineering represents an intermediate level of abstraction between knowledge
captured at the enterprise level and the array of systems developed at the application engineering
level. Domain engineering reduces the complexity (and hence the risks) of leveraging enterprise-
wide common data and functions in the development of individual applications using classical
divide-and-conquer techniques. Figure 9-10 illustrates the basic methods (at a very high level)
associated with the three major software engineering processes: enterprise engineering, domain
engineering, and application engineering. Each of these processes attacks the problem space,
the solution space, and the implementation space at different levels of abstraction. Application
engineering is concerned with a single system/application, whereas domain engineering takes
into account multiple similar or related systems; and enterprise engineering looks at an entire
enterprise’s (organization’s) high-level data and operational needs.

Figure 9-10. Three-tiered View of Organizational Engineering Processes

Enterprise
Analysis

Enterprise
Design

Enterprise
Implementation

Domain
Analysis

Domain
Design

Domain
Implementation

Requirements
Analysis

Application
Design

Implementation

Enterprise Engineering

Domain Engineering

Application Engineering

Enterprise Model Ent Architecture

Domain Model Domain Architecture Domain Assets

9-20

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Viewed top-down, the enterprise for an individual organization can be broken down into multiple
domains, which in turn can be broken down into multiple applications. Managing and engineering
software from these three different levels helps mitigate risks. It also ensures that information
and insight developed at higher-levels of abstraction are leveraged at lower levels.

9.4 What is Software Engineering?

Mosemann defines software engineering in a meaningful context for software managers when he
explains,

“By software engineering, I mean simply the application to software of the traditional engineering
process, which encompasses the following kinds of activities:

• Iteration between formal analysis and design,
• Heavy use of earlier designs,
• Tradeoffs between alternatives,
• Handbooks and manuals,
• A pragmatic approach to cost-effectiveness, and
• Attention to economic concerns.” — Lloyd K. Mosemann, III [MOSEMANN923]

DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and
Major Automated Information System (MAIS) Acquisition Programs, applies the traditional
engineering process to software. It states that,

“Software shall be managed and engineered using best processes and practices that are known to
reduce cost, schedule, and technical risks. It is DoD policy to design and develop software systems
based on systems engineering principles...”

The principles include:

• Use of open system concepts;
• Exploiting software reuse opportunities;
• Use of appropriate programming languages in government-supported applications;
• Use of DoD standard data;
• Selecting contractors with domain experience, a successful past performance, and a

demonstrable mature software development capability and process; and
• Use of software metrics.

Additionally, software engineering structures the complexity of software development with a
defined set of techniques and methods to measure and control the process. [ZRAKET92]
Pressman identifies methods, tools, and procedures as the basic elements necessary to ensure a
quality product:

“[Software engineering is]...an outgrowth of hardware and systems engineering. It encompasses
a set of three key elements—methods, tools, and procedures—that enable the manager to control
the process of software development and provide the practitioner with a foundation for building
high-quality software in a productive manner.” — Roger S. Pressman [PRESSMAN92]

9-21

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

• Software engineering methods define the technical how-to’s for software development.
Methods cover a range of tasks that include:
− Program planning and estimation,
− System and software requirements analysis,
− Architecture design,
− Algorithm procedure and data structure development, and
− Coding, testing.

• Software engineering tools give automated (or semi-automated) support to the methods. A
variety of tools support each of the methods listed above. Computer-aided software engineering
(CASE) is an integration of different tools where information created by one tool can be used
by other tools. CASE combines software, hardware, and a software engineering database of
information about analysis, design, code, testing, and metrics.

• Software engineering procedures merge the methods and tools for rational, timely software
development. Procedures establish the order in which the methods are applied, deliverables
(reports, documents, capabilities, functions) are required, and controls (ensuring quality and
coordinating change) are enacted. They also define the milestones needed to evaluate software
development progress.

• Software engineering discipline consists of defined steps combining the methods, tools, and
procedures forming the basis for process improvement activities. These steps are often referred
to as software engineering paradigms (or models). Paradigms must be selected based on
your type of program and application, the methods and tools used, and the constraints and
deliverables required. [PRESSMAN92] Figure 9-11 summarizes the components of software
engineering.

Figure 9-11. Software Engineering Elements

As with systems engineering, numerous approaches have evolved for implementing the software
engineering process. For weapon systems, various approaches are integrated within the systems
engineering process. The IPD example is one such approach. For Management Information
Systems (MIS), information engineering (IE) and Integrated Computer-Aided Manufacturing
Definition Language (IDEF) are approaches that implement the software engineering process.
What brings the methods, tools, and procedures of software engineering together are its goals
and a set of principles that must be accomplished to achieve engineered software. The defined

Broad-based
TQM

Philosophy

Procedures
Training
People

Methods

Case
Tools - Measurement/metrics

- Analysis
- Design
 -- data design
 -- architectural design
 -- procedural design
- Coding
- Testing
- Re-engineering (Maintenance)
 -- restructuring
 -- reverse engineering
 -- forward engineering
- Reuse

- Project management tools
- System support tools
- Methods support tools
- Coding support tools
- Architecture tools
- Reuse repository

- Project plan and process framework
 documented and followed
- Measurement program
- Reuse program
- Software quality assurance (SQA)
- Change control (configuration
 management)
- Size/cost/schedule est imat ion and tracking
- Requirements established and controlled
- Peer inspections of process and product
- Activities coordinated by functional group
- Project-specific t raining program
- Dedicated process improvement group

9-22

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

set of principles, transcending all engineering efforts, support and implement the key goals.
They also help with the complexity of managing the development of a major software-intensive
system.

9.4.1 Software Engineering Goals

Remember, the primary goal for all software engineering efforts is for the software solution to
meet user needs by fulfilling stated requirements. However, in many large, complex software-
intensive systems, requirements often evolve over the life of the system with the greatest costs
incurred during the maintenance phase. Given that change is a constant in the life cycle, the
discipline of software engineering is founded on six main goals. The main software engineering
goals are functionality, supportability, reliability, safety, efficiency, and understandability.

9.4.1.1 Functionality

If the software doesn’t provide a solution to user needs, it has no purpose. Functionality of the
software is its primary goal. If this is not met, all other goals are moot. If the functionality goal
of a car is transportation, then the car must be able to take you where you want to go before other
goals, like color, fuel efficiency, comfort, etc. are worth considering. Because we tend to specialize,
we sometimes put too much emphasis on specialty goals, while forgetting to overall purpose of
the project.

9.4.1.2 Supportability

Supportability [discussed in detail in Chapter 12, Software Support] is the ability to perform
maintenance and enhance, upgrade, or otherwise change the software. Component aspects of
supportability include maintainability, adaptability, and modifiability. Weapon system software
requires a high degree of supportability, as it must be changed to keep pace with evolving threats.
Both weapon system and MIS software must also be regularly altered to keep up with the evolution
of user, operational, and support requirements. These environmental and evolutionary factors
result in controlled software changes. Defect correction is viewed as a controlled software change.

To effectively support a software system, all the explicit and implied design decisions comprising
the solution must be honored. This requires that the design rationale be captured in a manner
that software support personnel can use during the system’s normal 10 to 30 year operational life
of the system. If this information is not captured and considered, new software will end up being
patched into the original code by breaking apart the logical basis of the design. Also, if the
software is initially poorly designed and constructed, after several block updates the original
structure will tend to deteriorate and get lost, complicating future software support efforts. Well-
engineered software systems are easily supportable and can accommodate changes without
increasing the complexity of the original design.

9.4.1.3 Reliability

Reliability is a determinant of system quality and a critical goal where the cost of failure is high
(e.g., in terms of equipment replacement or human lives). Software Reliability is the probability
that the software in a system will perform without failure under specified conditions or use.

9-23

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Critical software reliability issues must be addressed early in the design process. Reliability
must be built in up-front to prevent errors during conception, design, and development, as well
as to recover from failures during operations. Reliability can only be designed in! It cannot be
tested in nor can it be included as a retrofit due to an after thought. The goal of optimum system
performance is well-engineered software which is 100% reliable. If the software can be repaired
instantaneously without disrupting its operation, it also has 100% availability, regardless of how
often it fails. [HUMPHREY89]

9.4.1.4 Safety

Software safety is closely tied to software reliability, and is the guarantee that the system will not
fail under stressed operational conditions. Like software reliability, the issues of software safety
must be addressed squarely during program planning and development. Ideally, this means the
software will be free of defects. However, because software is created by humans, no matter
how carefully the system is designed, coded, and tested, the probability for defects caused by
human error are always be present. Until we have conquered the human factor through techniques
such as highly automated development environments, safeguards must be built into all software
upon which human safety, and indeed survival, are dependent. The cost for building in these
safeguards must, therefore, be factored into your cost, schedule, and resource estimates.

While Defense Nuclear Agency regulations cover the area of software safety for nuclear weapons,
software safety must be a topic of concern especially for all weapon system and C3 systems. One
technique for enhancing safety is to employ software fault-tolerance methods in critical applications
or application segments. One example of software fault-tolerance is the recovery block technique,
where a failure in the primary program is bypassed by executing an independent alternate program
that, hopefully, will execute successfully. Other fault-tolerance techniques are multi-version
programming and exception handling. It is essential to require stringent fault-tolerance methods
such as exception handling for flight control systems, C3 surveillance and sensor systems, and
other systems where system aborts requiring restarts are unacceptable and potentially life-
threatening.

9.4.1.5 Efficiency

Efficiency is an important software capability which refers to the highest and best use of critical
resources. Processor cycles and memory locations are considered critical resources. Efficiency
is a performance requirement that must be addressed during software requirements analysis.
Efficiency can also be achieved during the coding phase — the last point where nanoseconds or
bits can be squeezed out of software performance. Three factors should be considered when
addressing efficiency requirements: (1) software should be as efficient as required — not as
efficient as possible; (2) good design can improve efficiency; and (3) code efficiency and code
clarity go hand-in-hand and should not be sacrificed for nonessential improvements in
performance.

Source code efficiency is a direct result of algorithm efficiency defined during detailed design.
Many compilers have optimizing features that automatically produce efficient code by breaking
down repetitive expressions, using fast arithmetic, and applying efficiency-related algorithms.

9-24

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

In the MIS world, memory efficiency is not equated to the minimum memory used. Memory
efficiency takes into account the paging characteristics of an operating system. Code location or
maintenance of functional domains by way of structured components is one way well-engineered
software reduces paging, and hence, increases efficiency. In the weapon system software world,
memory restrictions are a real and critical concern, although low-cost, high-density memory is
rapidly evolving. [History has shown, ironically, that whatever memory is available is how much
the software will need!] Memory restrictions are generally a product of the size and weight
limitations for housing and shielding processors. If system requirements demand minimal memory,
compilers must be carefully evaluated for memory compression, or as a last resort, assembly
language may have to be used. Unlike other software system characteristics that must be juggled
against each other, techniques for run-time efficiency can sometimes lead to memory efficiency.
The key to well-engineered software with high memory efficiency is keep it simple.

There are two classes of input/output (I/O) efficiency, external and internal. External I/O efficiency
measures the user interface. Input supplied by the user and output produced for the user are
efficient when the information supplied is easily understood. Internal I/O efficiency evaluates
the I/O directed from one device to another device (e.g., from a computer to a disk or to another
computer) or among modules within the same system. This measure is usually expressed in
terms of hardware speeds, but the true measure is in throughput that includes processing time
required to process data and transmit it from one module to another. [PRESSMAN92]

9.4.1.6 Understandability

Understandability is an important goal for the management of complexity. It is the link between
the statement of the problem and the corresponding solution. For software to be understandable,
it must reflect a natural view of the world. Achieving of this goal involves producing a solution
to the stated problem in the form of an effective, understandable architecture. Capturing such a
structure in software is necessary for it to be supportable, efficient, and reliable.

Different factors make software understandable. Well-engineered software is readable as a result
of proper coding and proper documentation (including interface documentation). Well-engineered
software also represents an accurate, understandable model of the real world. Understandability
is achieved when the data structures (objects) and algorithms (operations) in the software solution
are easily distinguished from one another. Understandability is also dependent on the programming
language chosen to express the solution. [BOOCH94]

9.4.2 Software Engineering Principles

The goals discussed above are generic in nature and applicable to any software system — large
or small. Once you understand these goals, you must employ a structured, disciplined development
approach to achieve them. Administering sound engineering practices, based on the following
principles, produces solutions that are functional, supportable, reliable, safe, efficient, and
understandable.

9-25

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

9.4.2.1 Abstraction and Information Hiding

• Abstraction. One reason major software-intensive acquisitions fail is our inability to deal
with software complexity. Abstraction is the software engineering principle for managing
complexity. The purpose of abstraction is to separate the essential characteristics of a process,
or its data dependencies, from all nonessential details. Abstraction is also performed during
software design where the problem is decomposed into increasing levels of detail (or decreasing
levels of abstraction). A analogy can be made from the road map example. When you plan
a trip across country you start with a map of the United States (high-level). As you go
through each state you use a map of the state in which you are traveling (mid-level). As you
approach your destination and are looking for a particular address, you use a city map (low-
level).

The software engineering process is, itself, an example of the abstraction principle. Each
step in the process is a refinement of the abstraction level of the end product — the solution.
During systems engineering, software is abstracted to a component of a software-intensive
system. During software requirements analysis, the software solution is defined in terms that
relate to the problem environment or function it must perform. The level of abstraction is
reduced further as you proceed from architectural design to detailed design. Ultimately, the
lowest level of abstraction is reached when the source code is written.

As the solution is decomposed into its component parts, each module in the decomposition
becomes a part of the abstraction at a given level. Abstraction can be applied to both the
algorithms and data in the solution. Thus, the logic of a software solution can be expressed
in terminology that describes the problem domain rather than in software-dependent terms.
Eventually, the details of expressing the problem will have to be addressed in software
terminology — and ultimately in code. However, they can be deferred to lower levels where
attention to essential details can be worked and/or reworked without impact on other system
levels. Thus, the number of items tackled at one time are reduced to a manageable amount
because attention is focused on the current level of decomposition. Abstraction promotes the
goals of understandability and maintainability.

• Information hiding. Where abstraction separates essential and nonessential details at any
given level, the purpose of information hiding is to make inaccessible those details that do
not affect other parts of the software system. The principle of information hiding is to design
modules such that the information contained within a module is inaccessible to other modules
having no use for it. Hiding means that modularity can be effectively accomplished by defining
a set of independent modules. The only information passed among the modules is that which
is necessary to achieve functionality.

Abstraction promotes software maintainability and understandability by reducing the number
of details a developer is required to know at any given level. It also details the procedural (or
informational) entities making up the software. Hiding defines and governs access limitations
to procedural information within a given module and any local data structure used by the
module. By including information hiding as a design criterion for modular systems, well-
engineered software reaps the greatest benefits when modifications are made during testing
and later during software maintenance. With most data and procedures hidden from other
parts of the application, reliability is enhanced. In addition, inadvertent defects introduced
during modifications are less likely to spread to other modules. [BOOCH94]

9-26

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

The benefits of abstraction and information hiding apply to all software engineering goals.
Abstraction supports modifiability and understandability by reducing the amount of detail at
any given level. Information hiding enhances software reliability, because at each level of
abstraction, only essential operations are permitted. Operations that obstruct or confuse the
logical structure are also hidden.

9.4.2.2 Modularity and Localization

• Modularity. The principle of modularity has been around for almost 40 years and applies to
the physical software architecture. Organizing very large applications into discrete, separately
named and addressable modules allows us to intellectually manage software complexity.
Also, with the right selection of module contents, the physical architecture can be made to
correspond with the logical architecture, making the overall system more supportable and
extendable.

Modules can be functional (procedure-oriented) or declarative (object-oriented). Because
reliability must be built in, well-engineered software has well-defined interfaces connecting
its modules. No matter how well-defined a module is, it must be able to interact with other
modules. Coupling is the measure of interface tightness between modules. Loosely coupled
modules can be treated relatively independently from others, and are easier to interface once
integrated. How tightly bound or related the internal module elements are to one another is
called cohesion. Modules with strong cohesion are desirable because their internal components
have similar functionality and logical interdependence, making the modules basically self-
contained. Self-contained modules are conceptually easier to handle and permit teams of
programmers to work independently from each other.

• Localization. Applying the principle of localization helps create modules with loose coupling
and strong cohesion. The principle of localization deals mainly with physical location. A
module that has strong cohesion has a collection of logically-related resources physically
located within it. Localization also implies that modules are as independent of other modules
as possible (i.e., well-engineered software has a loosely coupled organization among its
modules).

The principles of modularity and localization support the goals of modifiability, reliability,
and understandability. In well-structured software, any given module is understandable —
independent of other modules. Since design decisions are localized in given modules,
modification can be limited to a small set of modules. In addition, if modularization has been
successful, there will be limited and looser interconnections among modules. [BOOCH94]
This results in greater reliability as defects in loosely coupled modules do not impact the
performance of neighboring modules to the extent that tightly coupled ones do.

9.4.2.3 Uniformity, Completeness, and Confirmability

Abstraction and modularity are the most important principles used to control software complexity.
But they alone do not ensure that the software is consistent and accurate. Uniformity, completeness,
and confirmability provide these properties.

9-27

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

• Uniformity. The principle of uniformity directly supports the goal of understandability by
ensuring modules use consistent notation and are free from unnecessary differences.
Uniformity results from good coding practices with a consistent control structure and calling
sequences for operations where logically-related objects are represented the same at any
level.

• Completeness. The principles of completeness and confirmability support the goals of
reliability, efficiency, and modifiability by aiding in the development of solutions that are
accurate. Where abstraction extracts the essential details of a given problem set, completeness
ensures that all important elements are included. Abstraction and completeness guarantee
that the modules developed are necessary and sufficient. Efficiency can be improved because
lower-level implementation can be fine-tuned without affecting higher-level modules.

• Confirmability. The principle of confirmability means the software is decomposable so it
can be readily tested, thus enabling modifiable software. The principles of completeness and
confirmability are not easily applied. A programming language with strong typing (such as
Ada) facilitates the production of confirmable software. Software management tools are also
used to ensure software is complete and confirmable.

9.5 Managing Software Engineering

Management is the key element in the engineering process as it permeates the entire life cycle.
To conduct a successful software acquisition program, you must understand the scope of the
work to be accomplished, the risks you will incur, the resources required, the tasks to be performed,
the milestones to be tracked, the effort (including cost) to be expended, and the schedule to be
observed. To be a successful manager, you must understand all facets of your program and rely
on educated, experienced software professionals who understand and can implement software
engineering process complexities. Sound management starts before the technical work begins,
continues as the software matures from a concept to a functional reality, and only ends when you
or the system is retired. [PRESSMAN92]

There are three basic activities you must perform as a manager to ensure program success. These
activities are:

• You must plan;
• You must manage; and
• You must measure, track, and control.

Having made the software engineering commitment, as policy prescribes, the following items
must be addressed to ensure your program is on the right track and that your developer is
engineering your software. These software engineering management activities include the
following [discussed in the indicated chapters]:

• Risk Management [Chapter 6],
• Software Development Maturity [Chapter 10],
• Software Estimation, Measurement and Metrics [Chapter 13],
• Reuse,
• Software Tools, and
• Software Support [Chapter 12].

9-28

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Figure 9-12 illustrates how the software engineering management activities discussed here flow
into the software life cycle. As you can see, process improvement and risk management are
performed continuously throughout the system’s life. Consideration of software development
maturity and the contractor’s commitment to continuous improvement is essential during source
selection. As process improvement succeeds, software development maturity will advance. Once
requirements are specified, an architecture can be defined that addresses the system from a domain
perspective with regards to the need for open systems. The detailed design concentrates on
building in quality attributes which include the optimum implementation of reuse and COTS.
Prototyping and demonstrations are used to reduce risk and validate that the design addresses
user and technical requirements. An appropriate design language should be chosen and used for
coding. Models are used throughout the life cycle to define development procedures and analyze
metrics data, which are collected throughout. Software engineering tools encompass the entire
spectrum of development, and should be used to aid in the implementation of software engineering
methods and life cycle activities.

Figure 9-12. Software Engineering Relationship to the Software Life Cycle

9.5.1 Software Engineering Information

An excellent source of information on software engineering is CrossTalk, the monthly publication
of the Software Technology Support Center (STSC). [See box below for information on how to
subscribe.] The need for continued advances in software engineering management and methods
is magnified as our reliance on commercial practices and products increases, which also compete
in the global marketplace. Timely, topical articles are a means of keeping informed and up-to-

9-29

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

date on the latest developments in technology and professional practices amid the momentum of
change within the software industry. CrossTalk is a high-quality, accurate information link between
software managers and practitioners throughout the field. Distributed without charge, CrossTalk
is highly recommended reading for its currency and technical content.

Another periodical, Chips, is a DoD magazine sponsored by the Navy. It has a different focus
than CrossTalk, covering microcomputer issues, including contracting, networking, software
development, policy, training, etc. However, it occasionally has some software engineering-
related articles. Chips is distributed free to all government users. Contact the Naval Computer
and Telecommunications Area Master Station LANT through e-mail at
chips@email.chips.navy.mil or view Chips electronically on the Internet at
http://www.chips.navy.mil.

TO SUBSCRIBE: For more information on a free subscription to CrossTalk, contact the
Software Technology Support Center (STSC), Attention: Customer Service, OO-ALC/
TISE, 7278 Fourth Street, Hill AFB, Utah 84056. Phone: (801) 775-5555 or DSN 775-5555,
Fax: (801) 777-8069, or DSN 777-8069. E-mail: consulting@stsc1.hill.af.mil or Internet at
http://www.stsc.hill.af.mil.

9.6 What is Information Engineering?

If you have ever visited the sunny Silicon Valley in California, one of the most popular local
curiosities is an enormous house built around the turn of the century by the rifle heiress, Sarah
Winchester. As Sarah grew older, she believed she was being haunted by the ghosts of people
killed by her husband’s rifles. Terrified of meeting these angry souls in the hereafter, she employed
two full-time spiritualists who advised her that she would never die as long as her house kept
living and changing. For 38 years, the construction of towers, wings, chimneys, rooms, and
gardens was nonstop. Sarah’s vast fortune was employed to guarantee the constant sound of
workers pounding nails, laying cement, digging holes, and chiseling wood. Everything needed
to keep the operation going was on-site — wood shops, cement mixers, warehouses, and supply
yards. Because the construction engineers never had a set of overall blueprints showing where
the house was going, some rooms were remodeled more than a dozen times. Over the years,
throughout this frenzy, oddities began to appear. The house has stairways leading into ceilings,
windows blocked by walls, more halls and passages than rooms to connect, a three-story chimney
that fails to meet the roof, and many rooms that serve the same purpose.

Like the Winchester Mystery House, the information systems of many large organizations and
corporations are under perpetual construction — growing, changing, duplicating, multiplying.
There are expanding databases here, new input screens there, spreadsheets everywhere — some
systems are changed, updated, and enhanced more than a dozen times. Often vast fortunes are
spent keeping these activities going with everything needed to do the job on-site. Over the years
oddities begin to appear. The collection of software systems contains masses of unused reports,
more bridges and interfaces than systems to connect, data that are inconsistent, redundant,
inaccessible, and in incompatible formats, with many systems serving the same purpose. These
enormous mystery systems live and change without a set of overall blueprints for the data, systems,
and technology needed to support the enterprise. [SPEWAK93]

www.chips.navy.mil
www.stsc.hill.af.mil

9-30

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

In the early 1980s, to help stop the constant custom building and replacing of systems with costly
odd features, James Martin developed the information engineering methodology. [MARTIN81]
Intending it to contrast with, and complement, software engineering, Martin defined IE as,

“The application of an interlocking set of formal techniques for the planning, analysis, design,
and construction of information systems on an enterprise-wide basis across a major sector of the
enterprise.” [MARTIN89]

Information engineering is a form of domain engineering oriented towards the MIS domain,
which has also proven successful in analyzing C2 systems. IE is predicated on the realization
that the procedures for conducting business are in constant flux due to frequent restructuring and
changes in organizational focus; whereas, the data requirements of the enterprise are stable. In
traditional approaches, database design is dictated by application data requirements developed
to automate specific procedures. Every time procedures change, the database must be redesigned.
Changing database design to accommodate a change in one procedure has a snowball effect
requiring maintenance on all other system components accessing the changed part.
Understandably, systems designed this way have extremely high maintenance costs. The goal of
IE is to capture the stable data requirements of the enterprise in a database design that remains
stable throughout the software life cycle. Dynamic elements are captured in those applications
(modules) always subject to change. This process results in substantial maintenance cost savings.
[MICAH90] Because IE focuses first on data rather than on procedures, it is called a data-driven
method.

9.6.1 Information Engineering Process

According to Finkelstein, Martin’s co-author, the IE process is characterized by two distinct
stages: a technology-independent and a technology-dependent stage, as illustrated in Figure 9-
13. The starting point is strategic business planning which allows for continual evaluation and
refinement of the Strategic Plan at all stages of development, as illustrated in Figure 9-14. Using
this method, feedback is quick, exact, and effective, with clear communication links and precise
implementation. [FINKELSTEIN92]

9-31

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Figure 9-13. Information Engineering Phases [FINKELSTEIN92]

STRATEGIC BUSINESS PLANNING

DATA MODELING

Strategic Tactical Operational

PROCESS MODELING

T
ec

hn
ol

og
y

In
de

pe
nd

en
t

SYSTEM DESIGN

SYSTEM IMPLEMENTATION

DatabaseApplication

T
ec

hn
ol

og
y

D
ep

en
de

nt

Figure 9-14. Strategic Management Planning [FINKELSTEIN92]

9.6.2 Information Engineering Architecture

IE addresses four architectural levels which separate data and process, thus creating databases
and applications that are flexible and facilitate rapid changes and enhancements in response to
competitive pressures. These levels are illustrated in Figure 9-15.

9-32

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Figure 9-15. Information Engineering Four-Level Architecture [FINKELSTEIN92]

• Level 1: Business. This reflects the corporate vision because data based on strategic planning
statements are defined at all management levels. The business plans operate on these data,
based on planning statements and business events which process the data.

• Level 2: Logical. Planning statements based on the corporate vision are used to develop
technology-independent data models. Process models, represented by the business model,
are developed from data models and business events based on the Business Plan.

• Level 3: Physical. Technology-dependent database designs are developed based on the data
and process models. These database designs and relevant process models (representing the
system models) provide input to application design (which also feeds back to database design).

• Level 4: Platform. The database design is physically implemented as site-dependent databases.
Application code operating against them implements the databases and application design.
Databases can be implemented and applications executed on specific platforms that employ
the best available hardware, software, and communications technologies. [FINKELSTEIN92]

NOTE: Make sure someone in your program office understands IE well enough to
interpret and review contractor IE products. Otherwise, there is the risk that the stacks
of paper produced by this process will be incorrect or ignored.

IE is discussed as an example of one method for modeling data. Other methods for MIS are also
viable, such as essential systems analysis [McMENAMIN84], Enterprise Architecture Planning
[SPEWAK93], object-oriented analysis [COAD90], and IDEF [described next]. The approach
you adopt requires research and an understanding of your program to determine which is most
applicable to your program-specific needs.

9.6.3 IDEF

Integrated Computer-Aided Manufacturing Definition Language (IDEF) is a modeling technique
that supports IE. It was initially developed in the 1970s for Air Force Logistics Center support
programs in the manufacturing environment. [See FIPS Pub (Federal Information Processing

Business

Level

Logical

Level

Physical

Level

Platform

Level

Corporate
Vision

Business
Model

Technology-
Independent

System
Model(s)

Technology-
Dependent

Implementation(s)
Site-

Dependent

Business
Plan

Planning Statements Business Events

Process ModelData Model

Application DesignDatabase Design

Application CodeDatabase

DATA PROCESS

9-33

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Standards Publication) 183: Integration Definition For Function Modeling (IDEF0)] In 1989,
an IDEF users’ group was formed to establish a methodology for implementing the IDEF approach
which provides a framework for classifying important information about an enterprise. The
main goal of the IDEF exercise is to identify areas for process improvement. Improvements can
be in the areas of:

• Manual procedures and techniques,
• Product and service quality,
• Industrial processes and factory automation,
• Information systems and computer automation,
• System development methods, and
• Business procedures, to name a few.

IDEF activity modeling captures and graphically depicts the specific steps, operations, and data
elements needed to perform an enterprise activity. An activity is defined as a named process,
function, or task that occurs over time and has recognizable results. As illustrated in Figure 9-16,
each activity is represented by a rectangle. Entering, exiting, or linking activities are those factors
that change the activity. These fall into the categories of:

• Input data or material for the activity (e.g., program requirements),
• Controls that regulate the activity (e.g., engineering principles, existing policies),
• Output data or materials produced by the activity (e.g., quality software), and
• Mechanisms comprised of people or machines that perform the activity (e.g., new technology).

Figure 9-16. IDEF (Level A0) for Nominal Program

The interrelationships among activities are modeled by using node trees, as illustrated in Figure
9-17. An activity can be decomposed into subactivities which can be further decomposed into
sub-subactivities. Context diagrams and decomposition diagrams are used to provide both overall
and more detailed breakdowns of activities. In a typical program, the scope and requirements
are defined first. Then the information required to support the activities is gathered through a
series of working sessions that include users and systems experts. These data are finally captured
in an automated tool for documentation.

Program Requirements
User Wants/Needs

Engineering
Principles

Existing
Policies

Quality Software
Applied Technology

Build
Quality

Software

 A0

Infrastructure
New Technology

9-34

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

Figure 9-17. IDEF (Decomposition of A0) Model for a Nominal Program

The IDEF approach is recommended before starting new MIS programs. It aids in mission area
analysis, functional analysis, and the strategic planning. IDEF can be also used to model alternative
views of the enterprise. The IDEF approach uses hierarchically decomposed function models
and entity-relationship (E-R) diagrams. [An E-R diagram identifies data objects and their
relationships through a graphical notation.] These views then become the baseline upon which
to plan and implement process improvement. The IDEF modeling approach leads to an
understanding of the total enterprise by integrating business tasks, rules, and objectives to work
together in a productive way.

9.7 Success Through Engineering

Mosemann summarized why engineering is the solution for successful software-intensive systems
acquisition and management when he emphasized that,

“...we’ve got to adopt an engineering focus. We have got to concentrate on cost-effective solutions,
solutions that are built from models, and on using capable, defined processes, rather than focusing
on perfect systems that meet 100% of our wishes. Again, this is a management challenge, not a
technical challenge. There’s just no way to manage or to control the configuration, to control the
side-effects, in these kinds of large software developments unless we use engineering discipline.”
[MOSEMANN921]

As illustrated in Figure 9-18, software engineering requires more emphasis and resources up-
front during the development effort. This change from a traditional software-as-art approach
(where most of the resources are spent in the support phase) to a software engineering approach
reduces the total amount of resources necessary, since the resultant software support costs are
substantially reduced. Well-engineered software lays a solid foundation for the system to evolve

Program Requirements
New Technology

Engineering
Principles

Existing
Policies

Quality Software

Infrastructure

Lessons-learned

User
Wants/Needs Applied Technology

Suggested
Technology

Engineer
Software

 A1

Engineer
Software

 A1

9-35

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

into its operational environment by employing sound development practices and procedures.
Through the software engineering discipline you will have available to you:

• Comprehensive methods for all software development phases,
• Better tools for automating these methods,
• More powerful building blocks for software implementation, and
• An overriding philosophy for coordination, control, and management. [PRESSMAN92]

Figure 9-18. Software Engineering Builds a Solid Foundation Up-front

The challenge is to acquire and develop systems that meet the user’s needs given the usual
performance, life cycle cost, and schedule criteria. However, the only way to meet this challenge
and achieve acquisition success is to use engineering discipline in all aspects of software
development. Anything less will only produce schedule slips, cost overruns, and systems that do
not meet user needs.

Software
as Art

Engineered
Software

0

20

40

60

80

Software
as Art

Engineered
Software

Development Phase

Support Phase

Percent of
Resources
Required

9-36

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

9.8 References

[Ada/C++91] Ada and C++: A Business Case Analysis, Office of the Deputy Assistant Secretary of the
Air Force, Washington, DC, June 1991

[BOOCH94] Booch, Grady and Doug Bryan, Software Engineering with Ada, Third Edition, Benjamin/
Cummings Publishing Company, Redwood City, California, 1994

[COAD90] Coad, Peter and Edward Yourdon, Object-Oriented Analysis, Yourdon Press, Prentice Hall,
Englewood Cliffs, New Jersey, 1990

[DSMC90] Systems Engineering Management Guide, Defense Systems Management College, U.S.
Government Printing Office, Washington, DC, 1990

[EIA632] Electronic Industry Association (EIA), Interim Standard 632, (draft), Systems Engineering,
September 20, 1994

[FINKELSTEIN92] Finkelstein, Clive B., “Information Engineering: Strategic Systems Development,”
Jessica Keyes, editor, Software Engineering Productivity Handbook, Windcrest/McGraw-Hill, New
York, 1992

[HOLIBAUGH92] Holibaugh, Robert, “STARS Domain Analysis Survey” briefing, Software Engineering
Institute, June 15, 1992

[HUMPHREY89] Humphrey, Watts S., Managing the Software Process, Software Engineering Institute,
Addison-Wesley Publishing Company, 1990

[KERSH90] Kersh, Pvt Gerald, as quoted by Robert A. Fitton, ed., Leadership: Quotations from the
Military Tradition, Westview Press, Bolder, Colorado, 1990

[KOGUT94] Kogut, Paul, Kurt Wallnau, and Fred Maymir-Ducharme, “Software Architecture and Reuse,”
TriAda ‘94, Baltimore, MD

[LYONS92] Lyons, Lt Col Robert, as quoted by David Hughes, “Digital Automates F-22 Software
Development with Comprehensive Computerized Network,” Aviation Week & Space Technology,
February 10, 1992

[MARTIN81] Martin, James, and Clive B. Finkelstein, Information Engineering, Savant Institute, Carnforth,
Lancs, United Kingdom, 1981

[MARTIN89] Martin, James, Information Engineering, Book 1 (of 3): Introduction, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1989

[MAYMIR95] Maymir-Ducharme, Fred and David Weisman, “US Air Force Comprehensive Approach to
Reusable Defense Software (CARDS) Technology Transition Program: Reuse Partnerships,” Reuse
‘95, Morgantown WV 1995

[McGRAW89] Dictionary of Scientific and Technical Terms, Fourth Edition, Sybil P. Parker, Editor-in-
Chief, McGraw-Hill Book Company, New York, 1989

[McMENAMIN84] McMenamin, Steve and John Palmer, Essential Systems Analysis, Yourdon Press,
Prentice-Hall, Englewood Cliffs, New Jersey, 1984

[MICAH90] “Micah Systems, Inc. and Information Engineering,” October 24, 1990
[MOSEMANN91] Mosemann, Lloyd K., II, “Air Force Software in the Year 2000,” keynote luncheon

address, STSC-HQ USAF/SC Joint Software Conference, Salt Lake City, Utah, April 16, 1991
[MOSEMANN921] Mosemann, Lloyd K., II, “Comments on MIL-STD-499B,” October 23, 1992
[MOSEMANN922] Mosemann, Lloyd K., II, “Software Management,” keynote closing address, Fourth

Annual Software Technology Conference, Salt Lake City, Utah, April 16, 1992
[MOSEMANN923] Mosemann, Lloyd K., II, “Software Measurement and Quality,” keynote address, Fourth

Annual REVIC User’s Group Conference, Fairfax, Virginia, March 25, 1992
[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition,

McGraw-Hill, Inc., New York, 1992
[SHINA91] Shina, Sammy G., “Concurrent Engineering,” IEEE Spectrum, July 1991

9-37

Chapter 9: Engineering Software-Intensive Systems GSAM Version 3.0

[SPEWAK93] Spewak, Steven H., with Steven C. Hill, Enterprise Architecture Planning: Developing a
Blueprint for Data, Applications, and Technology, QED Publishing Group, Boston, 1993

[STRASSMANN91] Strassmann, Paul A., as quoted by Bob Brewin, “Corporate Information Management
White Paper,” Federal Computer Week, September 1991

[STRASSMANN92] Strassmann, Paul A., “Joining Forces to Engineer Success: The DoD Context,”
opening keynote address, Fourth Annual Software Technology Conference, April 14, 1992

[WAGNER95] Wagner, Capt Gary F., and Capt Randall L. White, “F-22 Program Integrated Product
Development Teams: How One Major Aircraft Program Developed Integrated vs. Independent Product
Teams,” Program Manager, Defense Systems Management College Press, July-August 1995

[WANG86] Wang, An, as quoted in Boston Magazine, December 1986
[ZELLS92] Zells, Lois, “Learn from Japanese TQM Applications to Software Engineering,” G. Gordon

Schulmeyer and James I. McManus, eds., Total Quality Management for Software, Van Nostrand
Reinhold, New York, 1992

[ZRAKET92] Zraket, Charles E., “Software Productivity Puzzles, Policy Changes,” John A. Alic, ed.,
Beyond Spin-off: Military and Commercial Technologies in a Changing World, Harvard Business
School Press, Boston, Massachusetts, 1992

Part 2: Engineering GSAM Version 3.0

Chapter 10

Developing
Software Maturity

Chapter 10: Developing Software Maturity GSAM Version 3.0

10-2

Contents

10.1 Process Maturity: an Essential for Success .. 10-3
10.2 Benefits of Moving Up the Maturity Scale .. 10-5
10.3 How to Measure ROI ... 10-9

10.3.1 Maturity Models... 10-11
10.3.2 Capability Maturity Model (CMM) .. 10-14
10.3.3 People — Capability Maturity Model (P-CMM) 10-16

10.3.3.1 P-CMM Structure ... 10-17
10.3.4 Software Acquisition — Capability Maturity Model (SA-CMM).... 10-18
10.3.5 Systems Engineering — Capability Maturity Model (SE-CMM) 10-20
10.3.6 ISO/IEC Maturity Standard: SPICE... 10-22

10.3.6.1 SPICE Product Suite .. 10-22
10.3.6.2 Baseline Practices Guide .. 10-23
10.3.6.3 BPG Capability Levels ... 10-23

10.3.7 Common Features and Generic Practices .. 10-24
10.4 Lessons Learned in Implementing the Software Development
 CMM ... 10-26
10.5 Software Development Capability Assessment Methods 10-26

10.5.1 Software Development Capability Evaluation (SDCE) 10-28
10.5.2 Software Engineering Institute (SEI) Software Capability
 Evaluation (SCE) ... 10-28
10.5.3 Addressing Maturity in the Request for Proposal (RFP).................. 10-29

10.6 References .. 10-31

10-3

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.1 Process Maturity: an Essential for Success

“The development of a weapon system requires integrating technical, administrative, and
management disciplines into a cohesive, well-planned, and rigorously controlled process. As a
critical component of a weapon system, software must be developed under a similarly disciplined
engineering process.” [DSMC90]

The above statement identifies the need for capability and maturity in software acquisition and
development — we must have a disciplined, engineering approach to software acquisition and
development, while maintaining a grasp on the process and product. If we cannot achieve either
of these, we have introduced unnecessary risk in meeting end customer needs within cost and
schedule constraints.

What constitutes capability and maturity? Capability is the ability to do something. Maturity is
the state of being fully developed. Thus, one may conclude that to have “capability maturity,” an
organization would be capable of acting in a fully developed manner.

Mark C. Paulk describes the differences between immature and mature organizations in this
manner:

“The immature … organization is reactionary, and managers are usually focused on solving
immediate crises (better known as fire fighting). Schedules and budgets are routinely exceeded
because they are not based on realistic estimates. When hard deadlines are imposed, product
functionality and quality are often compromised to meet the schedule.

In an immature organization, there is no objective basis for judging product quality or for solving
product or process problems. Therefore, product quality is difficult to predict. Activities intended
to enhance quality such as reviews and testing are often curtailed or eliminated when projects fall
behind schedule.”

On the other hand, a mature … organization possesses an organization-wide ability for managing
… processes. The … process is accurately communicated to both existing staff and new employees,
and work activities are carried out according to the planned process. The processes mandated are
fit for use and consistent with the way the work actually gets done. These defined processes are
updated when necessary, and improvements are developed through controlled pilot-tests and/or
cost benefit analysis. Roles and responsibilities within the defined process are clear throughout
the project and across the organization.

In a mature organization, managers monitor the quality of the … products and customer satisfaction.
There is and objective, quantitative basis for judging product quality and analyzing problems with
the product and process. Schedules and budgets are based on historical performance and are
realistic; the expected results for cost, schedule, functionality, and quality of the product are
usually achieved. In general, a disciplined process is consistently followed because all of the
participants understand the value of doing so, and the necessary infrastructure exists to support
the process.” — Mark C. Paulk [PAULK93]

10-4

Chapter 10: Developing Software Maturity GSAM Version 3.0

Notice the use of the term “process” throughout the description above. Having and using a
defined process, while continuously improving that process, is directly related to capability
maturity. The following are quotations from two of many authors who have commented on the
importance of processes:

“Not having a system [process] is like doing every job for the first time, every time – including the
accompanying errors and false starts. Without the regularity and repetition of work that characterize
a system [process], it becomes much more difficult to learn because we are deprived of time-
ordered process data. Without a system [process], workers, teams, and departments would act
independently of one another, without synchronization or division of labor.

If we have no system [process] we have no opportunities for progress and productivity
improvements.” — Kenneth T. Delavigne and J. Danie Robertson [DELAVIGNE94]

“Since I first coined the term [“reengineering”] in the late 1980s, I have consistently used the
same definition for it: Reengineering is the radical redesign of business processes for dramatic
improvement. Originally, I felt that the most important word in the definition was ‘radical.” The
clean sheet of paper, the breaking of assumptions, the throw-it-all-out-and-start-again flavor of
reengineering – this is what I felt distinguished it from other business improvement programs.

I have now come to realize that I was wrong, that the radical character of reengineering, however
important and exciting, is not its most significant aspect. The key word in the definition of
reengineering is “process”: a complete end-to-end set of activities that together create value for
a customer.”

[American managers] were getting nowhere because they were applying task solutions to process
problems.

The difference between a task and process is the difference between part and whole. A task is a
unit of work, a business activity normally performed by one person. A process, in contrast, is a
related group of tasks that together create a result of value to a customer.

The problems that afflict modern organizations are not task problems. They are process problems.”
— Michael Hammer [HAMMER96]

Webster defines process as, “A series of operations performed in the making or treatment of a
product, e.g., a manufacturing process.” A software process is the series of operations performed
in acquiring, developing, or maintaining of a software product. A software process definition is
the description of that process. The process definition guides teams of software acquisition
personnel or development engineers in the performance of their work. Thus, a defined, disciplined
process is one that is documented, taught, applied, measured, used by everyone in the organization,
and accessible to all team members (e.g., an organization’s procedures manual). A defined
process does the following:

10-5

Chapter 10: Developing Software Maturity GSAM Version 3.0

• It provides the basis for examining and improving the process;
• It aids in establishing predictability;
• It improves understanding of roles and dependencies;
• It guides software personnel through orderly decisions,
• It provides a smooth working framework; and
• It helps staff members to readily transition from one program to another. [CLOUGH92]

Without a defined, disciplined software process, each team member’s work rests on intuition,
and the quality of the product on blind faith. Team members are left to arrive at their own
operational processes, methods, procedures, and standards without the direction and support
professionals in other disciplines consider essential (e.g., in sports, the arts, or science).

Watts Humphrey explains that a software process is the technical and management framework
for applying engineering methods, tools, procedures, and people to software development, while
the process definition identifies roles and specifies tasks. The definition also establishes measures
and provides entry and exit criteria for every major step in the process. [HUMPHREY95]

Software acquisition and development organizations are more successful when they have processes
they can effectively communicate, manage, and evolve. A well-defined process is also easier to
improve. For instance, if some steps in the process are skipped, or if the process is inefficient,
problems may occur. Steps, or the process itself, may not be used if the definition is poor,
communication is unclear, or team members are not motivated. Improvements can be made
once these problems are identified. The process, its definition, and the supporting infrastructure
all evolve and mature with use and experience. [HUMPHREY95]

10.2 Benefits of Moving Up the Maturity Scale

Published studies of software engineering improvements measured by the Software Engineering
Institute’s Capability Maturity Model (CMM) indicate significant cost savings and return on
investment (ROI). Thus, software testing and maintenance costs are decreased, because quality
requirements are more readily met. Of the companies studied, a distinction is made between the
one time CMM —compliance costs of achieving a higher maturity level and the cost of continuing
to perform software engineering at that higher level. The latter has been found to actually represent
a cost reduction when compared to software production costs at the former lower level. Some
studies show that the onetime cost of achieving a higher level are quickly recouped by significant
savings in producing higher-quality software that requires less rework and is easier to maintain.

All companies studied report that process improvement works best when employees and employer
agree to accept the required extra effort and expense. One such arrangement is to have some
meetings and training sessions conducted during the lunch hour, with the company providing
lunch. Other variations on employer/employee compromises include shared time, when training
is conducted on 50% company time and 50% employee time.

It is generally easy to quantify the benefits of increased maturity at the company level. Production
costs go down — quality goes up — time to market is shortened. How employees benefit is
subtler. The higher level in which an employee works, the more valuable he is to the software
industry — i.e., the techniques learned are very marketable, useful professional skills. In addition,

10-6

Chapter 10: Developing Software Maturity GSAM Version 3.0

employee pride and management respect cannot be overlooked as an employee benefit, reward,
and motivating force. Those companies having achieved higher maturity levels agree that a good
reputation with their customers is primarily based on product quality and agreeable customer
interrelations. Higher maturity levels lead to higher quality software, and therefore, increased
company reputation. It also tends to change the manner in which companies interact with their
customers. For example, the formality of a higher maturity level lessens ad hoc contractor
tendencies to give into volatile government requirements; it also contributes to more reliable,
mutually-beneficial contractor-government relationships. Above all, the most compelling benefit
is also the most basic one: higher quality software, at lower cost, with improved company
reputation, is a powerful formula for competing, winning, and keeping contracts. [SAIEDIAN95]

In the August 1994 report, Benefits of CMM-Based Software Process Improvement: Initial Results
(CMU/SEI-94-TR-13), the SEI collected and analyzed data from 13 organizations (both industry
and Government) to obtain process improvement results of efforts associated with the CMM.
Table 10-1 summarizes these results. A 35% median productivity gain, a 19% schedule reduction,
a 39% post-release defect reduction, and a 5:1 return on investment ratio bear convincing
testimony of the value of process improvement. The SEI stated that if these CMM process
improvements had been combined with more robust software engineering environments, the use
of automated process control tools, or the implementation of methodology improvements, the
results would have been even more dramatic.

Table 10-1. Summary of SEI CMM Software Process Improvement (SPI) Study

In this report, quality was defined as the state of software when released or delivered to customers.
The most common measure of quality among the data submitted was the number of post-release
field defect reports. Figure 10-1 illustrates yearly reductions in that number. The letter values on
the Y-axis are arbitrary designations for organization anonymity. The number values in parentheses
on the Y-axis indicate the number of years the organization invested in software process
improvement (SPI) programs. Organization P sustained a remarkable defect report reduction
rate of 39% per year over a 9-year period. That rate represents successive releases with substantial
amounts of new and modified code — all of which completed its entire life cycle throughout that
period. Organization P’s last release had no defects reported in new and modified code.
Organizations S and T also experienced substantial reductions for a significant period.

CATEGORY RANGE MEDIAN

Total yearly cost of SPI activities $49,000 to $1,202,000 $245,000

Years engaged in SPI 1 to 9 3.5

Cost of SPI per software engineer $490 to $2,004 $1,375

Productivity gain per year 9% to 67% 35%

Early detection gain per year (pre-
test defects discovered)

6% to 25% 22%

Yearly reduction in time to market 15% to 23% 19%

Yearly reduction in post-release
defect reports

10% to 94% 39%

Business value of investment in SPI
(value returned on each dollar
invested)

4.0:1 to 8.8:1 5.0

10-7

Chapter 10: Developing Software Maturity GSAM Version 3.0

Figure 10-1. Reduction per Year in Post-release Defect Reports [SEI94]

Productivity data were gathered on lines-of-code (LOC) produced per unit of time. As illustrated
in Figure 10-2, the largest gain, organization G, was based on a comparison of two programs,
only one of which adopted the SPI. The superior productivity of the second program was due to
clear requirements definition and management. Organization H had a large productivity gain
due to a reuse program supported by tools and an environment adapted to promote reuse.

39%

94%

70%

10% 11%

0%

20%

40%

60%

80%

100%

P
(9)

Q
(1.5)

R
(1)

S
(3.5)

T
(3.5)

Quality Results
Reduction in field

error reports per year

Organization
(Years of SPI)

45% (Average)

Figure 10-2. Gain per Year in Productivity [SEI94]

9%

67%
58%

12%

0%

10%

20%

30%

40%

50%

60%

70%

F
(3)
1.3

G
(1)

1.67

H
(4)
6.3

I
(5)
1.8

Productiv ity R esu lts
Gain per year in
LOC/unit of tim e

Organization
(Years of SPI)

37% (Average)

10-8

Chapter 10: Developing Software Maturity GSAM Version 3.0

ROI data were reported in terms of the ratio of measured benefits to measured costs, as illustrated
in Figure 10-3. Benefits included savings from productivity gains and fewer defects. The benefits
did not, however, include the value of enhanced competitive position from increased quality and
shorter time to market. The cost of SPI included the cost of the Software Engineering Process
Group (SEPG), assessments, and training, but did not include indirect costs such as incidental
staff time to put new procedures in place.

Figure 10-3. Return on Investment Ratio of SPI Efforts [SEI94]

In 1997, Karl Williams reported the following experience at Motorola based on 176 groups in 11
different countries:

• Overtime down 20X
• Released defects down 20X
• Cycle time improved 2X
• Productivity up 3.4X
• Development cost down 3X
• Schedule and cost overruns down more than 100X
• Return on investment ranging from 4X to 16X with an average of 8X. [WILLIAMS97]

John Vu of Boeing Space Transportation Systems reported the following:

• Later phase defects reduced from 31% to 4%
• Improved productivity by 62%
• Improved cycle time by 36%
• Improved customer satisfaction by more than 10%. [VU97]

Some individuals are probably thinking, “Why spend all the effort on process improvement
when I can buy a few application development tools, save a lot of bucks, and be done with it.”

4.0
5.0

4.2

6.4

8.8

0
1
2
3
4
5
6
7
8
9

U
(3.5)

V
(6)

W
(6)

X
(5)

Y
(3.5)

Return o n In v e stm en t Results
ROI

Organizat ion
(Years of SPI)

5 .7 (Average)

10-9

Chapter 10: Developing Software Maturity GSAM Version 3.0

Researchers at IBM spent four years studying the impact of application development tools. They
concluded that for teams with well-structured processes, the use of such tools enhanced the
process and improved performance. However, for teams with more informal or ad hoc processes,
tool use abetted chaos. [GUINAN97] Or to quote an often heard phrase, “A fool with a tool is
still a fool.”

NOTE: Refer to past issues of CrossTalk (published by the Software Technology Support
Center (STSC)) for timely, pertinent articles on the subject of process improvement and
moving up the maturity scale.

Other sources with information regarding the benefits of software process improvement are:

• University of Texas
• European Software Institute
• Standish Group Report
• Software Engineering Institute

10.3 How to Measure ROI

Most managers will want to know what financial benefit their organization or company is reaping
from their investment in process improvement. In order to obtain that information the organization
must have baseline data from which to measure change. As a minimum, the cost per unit of
production, such as the cost per line of code, is needed. A very mature organization using
quantitative methods for process management will probably have all the data needed down to the
development process phase. Most, however, will be fortunate to know their bottom line costs
and quantity of software produced.

Since most organizations haven’t matured to the point where quantitative methods are being
used to manage their processes, an example of a relatively simple method of computing return on
investment is included here. In adopting a simplified approach, several assumptions must be
made to proceed. These assumptions are:

1. Any change to processes will require time to be implemented and mature to the point of
effectiveness.

2. Changes made at different times, say a year apart, may each be improving productivity over
the same period of time. This will make attribution of any improvement to a given change or
investment very difficult.

3. Simple, end to end measures, which are easy to implement and which are needed for CMM
level 2 estimating & feedback, are the best for bottom-line evaluations of ROI.

4. Since no evidence exists to the contrary, the organizational capability will be assumed to be
steady state and any changes to productivity will be attributed to the investment in process
improvement.

5. The benefit to the organization due to improvements in productivity can take the form of cost
avoidance (reduced developmental staff) or increased capability (more software requirements
met for the same cost).

www.stsc.hill.af.mil
www.utexas.edu.coe/sqi/archive/krasner/spi.pdf
www.esi/es/information/collections/benefitsSPI/welcome.html
www.standishgroup.com/chaos
www.sei.cmu.edu/

10-10

Chapter 10: Developing Software Maturity GSAM Version 3.0

6. All cost benefits can be calculated from the baseline cost per unit of production, the cost per
unit of production at measurement points and the volume of units produced or expected to be
produced at each measurement point.

7. Most organizations deal with more than one product line (eg. Operational Flight Programs
and Automatic Test Equipment (ATE) Test Program Set development as well as bug fixes in
ATE programs.) The savings realized for each product line must be calculated separately.
The total savings will be the summation of the savings for each product line.

8. It is a common business practice to use a five year period to calculate the payback for investment
in new equipment or processes. We will use the same period in evaluating the return on
investment in process improvement.

Using the these assumptions, the savings obtained by productivity improvements in the
development of a given product line for a given period would be equal to the fractional reduction
in cost per unit times the volume produced for that product line in dollars adjusted for inflation.
The total savings will include actual savings shown for past performance increases and projected
savings five years into the future. However, the projected savings should be based on the per unit
cost reduction to the present, multiplied by the volume of projected production for the next five
years

In this example, the calculated ROI will be based on a sliding window of time no more than 11
years in length. The calculations are based on a period measured back no more than five years
from the present and projected for 5 years into the future. For those organizations that do not
have a five-year history of data from which to work, the baseline year should be the first year
from which data is available. For some, that may be the current year.

In order to be consistent, all calculations of cost and savings should be based on direct labor
costs, burdened only by organizational overhead. All calculations should also be done in constant
year dollars calculated against the current baseline year.

The method of calculating ROI using the above logic is as follows:

ROI = Total Savings ÷ Total Investment

Total Savings: ∑= SS PLTotal
 (The sum of all product line savings) where:

Product line savings: SSS ojectedTDPL Pr
+= (The sum of savings to date and projected savings)

Savings to date:)*)1((
1

EC
CS X

P

Bx X

B
TD ∑

+=

−= (The sum of savings for the product line from the

first year after process improvement investments began to the present)

P = Present year

B = Baseline year

10-11

Chapter 10: Developing Software Maturity GSAM Version 3.0

CB = Baseline Cost per Unit of Production. i.e. The cost per unit at the beginning of process
improvement

CX = Cost per Unit of Production during year X.

EX = Direct and organizational overhead expense of production for year X.

Projected Savings: ∑
+

+=

−=

5Pr

1Pr
Pr

*1
esent

esentX
X

P

B
ojected EC

CS

CP = Present Cost per unit of Production

EX = Projected direct and organizational overhead expense of production for each year.

Total Investment includes the sum of all costs for manpower, training and tools expended for the
process improvement effort from the beginning of the calculation window to date.

10.3.1 Maturity Models

Many organizations have embarked on organizational improvement efforts that focus on software
process improvement. The Capability Maturity Models (CMM) provides a means for assessing
current practice and guiding process improvement efforts. [The CMM is a registered Service
Mark of Carnegie Mellon University.] The International Standards Organization/International
Electrotechnical Commission (ISO/IEC) has developed a version of the CMM framework, the
Software Process Improvement Capability dEtermination (SPICE) model. The models discussed
here include:

• Capability Maturity Model (CMM) for Software (CMU/SEI-TR-93-24 and CMU/SEI-TR-
93-25),

• People — Capability Maturity Model (P-CMM) (CMU/SEI 95-MM-001 and CMU/SEI-95-
MM-002),

• Software Acquisition — Capability Maturity Model (SA-CMM) (CMU/SEI-96-TR-20),
• Systems Engineering — Capability Maturity Model (SE-CMM) (CMU/SEI-95-MM-003),
• Software Process Improvement Capability dEtermination (SPICE) (The ISO/IEC 15504).

Other maturity models have been developed for other domains. The proliferation of models has
led to the effort to integrate several domain models into a single model. The Federal Aviation
Administration integrated CMM (iCMM) model combines the CMMs for Software, Software
Acquisition, and Systems Engineering into a single model (available at www.faa.gov/ait/ait5/
FAA-iCMM.htm). There is an ongoing effort by the Office of the Secretary of Defense, industry,
and the Software Engineering Institute to create a model that combines the CMMs for Software,
Systems Engineering and Integrated Product Development into a single model. This is known as
the CMMi project. The models are based on one of two architectures, either a staged architecture
or continuous architecture. For example the CMM for Software, People — Capability Maturity
Model (P-CMM) , and Software Acquisition — Capability Maturity Model (SA-CMM) all use a

www.sei.cmu.edu/publications/documents/93.reports/93tr.024.html
www.sei.cmu.edu/publications/documents/93.reports/93tr.025.html
www.sei.cmu.edu/publications/documents/93.reports/93tr.025.html
www.sei.cmu.edu/publications/documents/95.reports/95.mm.001.html
www.sei.cmu.edu/publications/documents/95.reports/95.mm.002.html
www.sei.cmu.edu/publications/documents/95.reports/95.mm.002.html
www.sei.cmu.edu/publications/documents/96.reports/96.tr.020.html
www.sei.cmu.edu/publications/documents/95.reports/95.mm.003.html
www.iese.fhg.de/spice/resources/spice_resources/iso_doc_frames.html

10-12

Chapter 10: Developing Software Maturity GSAM Version 3.0

staged architecture while the Software Engineering — Capability Maturity Model (SE-CMM)

and SPICE use continuous architectures. To date, a model combining the CMMs for software
and system engineering has been developed in both a staged and continuous representation.

Figure 10-4 describes the architecture for the staged models. The maturity levels or stages are
composed of several key process areas. Each key process area is organized into five sections
called common features. The common features specify the key practices that, when collectively
addressed, accomplish the goals of the key process area. The five common features are:

• Commitment to perform,
• Ability to perform,
• Activities performed,
• Measurement and Analysis, and
• Verifying implementation.

The practices in the common feature Activities Performed describe what must be implemented
to establish a process capability. The other practices, taken as a whole, form the basis by which
an organization institutionalize the practices described in the Activities Performed common feature.
[PAULK93]

Figure 10-4. Staged Model Architecture [PAULK93]

10-13

Chapter 10: Developing Software Maturity GSAM Version 3.0

The architecture for the Continuous Model was developed by the SPICE committee. It is based
on the philosophy that improvement is a continuum, not separate distinct stages. It doesn’t
dictate the order in which organizational activities or processes should be addressed. It leaves
that up to the organization to decide which is most important to their situation. Figure 10-5 is an
example of a continuous model. The architecture has domain specific process areas with capability
levels and associated common features or generic practices that are common to all process areas.
The capability levels provide a recommended improvement path within a process area.

 Examples of domains are engineering, project and organizational domains. Examples of process
areas within the project domain are Project Planning, Project Monitoring and Control and
Coordination. Each process area is characterized by a set of base or process specific practices.

Examples of capability levels are Performed, Managed, Quantitatively Managed and Optimizing.
Each is characterized by a set of “generic” goals and practices which define a common level of
sophistication or capability for the implementation of process areas. By applying the capability
level ladder with associated generic goals and practices to a given process area, the organization
has a road map for the improvement of one segment of its business practices

Figure 10-5. Continuous Model Architecture [SEI95]

10-14

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.3.2 Capability Maturity Model (CMM)

Like habitual and subconscious actions, software development processes are difficult to establish
and even more difficult to break. Improvement seldom occurs by simply defining a more efficient
process. Software engineers must understand the need to change, be convinced the new process
will, indeed, improve performance, and be supported while they learn and implement it. The
development processes for major software-intensive systems are often large and extremely
complex. Therefore, they are difficult to define, comprehend, and especially, to implement. To
aid organizations in determining the capabilities of their current process and to establish priorities
for improvement, the SEI developed the software process maturity framework, as illustrated in
Figure 10-6.

Figure 10-6. Software Process Maturity Framework

The framework provides a benchmark of sound, proven principles for quality, recognized by
both engineering and manufacturing disciplines to be effective for software. The purpose of the
model is to help organizations determine their current capabilities and identify their most critical
issues. The model characterizes the level of an organization’s maturity based on the extent to
which measurable and repeatable software engineering and management practices are
institutionalized. This method can also be used to identify areas for improvement. Software
managers usually know their problems in excruciating detail, but lack clear improvement priorities
that can be understood and agreed upon by the team. By establishing a limited set of priorities
and working aggressively to achieve them, more rapid progress can be made than with an
unfocused effort. The CMM is organized into five maturity levels:

10-15

Chapter 10: Developing Software Maturity GSAM Version 3.0

• Level 1 — Initial. The software process is characterized as ad hoc, and occasionally even
chaotic. Few processes are defined and success depends on individual effort and heroics.

• Level 2 — Repeatable. Basic program management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place to repeat earlier
successes on programs with similar applications.

• Level 3 — Defined. The software process for both management and engineering activities is
documented, standardized, and integrated into a standard software process for the organization.
All programs use an approved, tailored version of the organization’s standard software process
for developing and maintaining software.

• Level 4 — Managed. Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively understood and controlled.

• Level 5 — Optimizing. Continuous process improvement is enabled by quantitative feedback
from the process and from piloting innovative ideas and technologies. [PAULK93]

Figure 10-7 shows the key process areas for each maturity level for the CMM for Software.

Figure 10-7. Key Process Areas and Maturity Levels for the CMM for Software
[PAULK93]

Except for Level 1, each maturity level is decomposed into several key process areas (KPAs) that
indicate the areas on which an organization should focus to improve its software process. The
KPAs at Level 2 focus on establishing basic program management controls. The KPAs at Level
3 address both program and organizational issues, as the organization establishes an infrastructure
that institutionalizes effective software engineering and management across all programs. The

10-16

Chapter 10: Developing Software Maturity GSAM Version 3.0

KPAs at Level 4 focus on establishing a quantitative understanding of software process and work
products under development. The KPAs at Level 5 cover issues that the organization and programs
must address to implement continuous and measurable process improvement. Each KPA is
described in terms of the key practices that contribute to satisfying its goals, and the infrastructure
and activities contributing most to their effective implementation and institutionalization as the
organization moves toward higher maturity levels.

10.3.3 People — Capability Maturity Model (P-CMM)

Organizations trying to improve their capability often discover a number of interrelated components
must be addressed. Three key components for improvement are: people, process, and technology,
as illustrated in Figure 10-8.

Figure 10-8. Three Key Components for Improvement [HEFLEY95]

Despite the importance of a talented staff, human resource practices are often ad hoc and
inconsistent, and managers are insufficiently trained in performing them. Consequently, software
managers often rely on their human resource departments for human resource practices
administration (such as training, professional development, mentoring). Thus, these practices
are applied with regard to how they impact performance. In many cases, even when software
organizations are aware of the problem and want to improve these practices, they do not know
where or how to begin.

The SEI’s People — Capability Maturity Model (P-CMM) provides guidance on how to improve
human resource management. The P-CMM is an adaptation of the CMM that focuses on
developing organizational talent. It can be used to radically improve an organization’s ability to
attract, develop, motivate, organize, and retain the talent needed to increase software development
maturity. The P-CMM helps software organizations to:

• Characterize people management maturity,
• Set priorities for improving the level of talent,
• Integrate talent growth with process improvement, and
• Establish a culture of software engineering excellence that attracts and retains the best and

the brightest.

10-17

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.3.3.1 P-CMM Structure

The P-CMM is fashioned after the CMM in structure and format. The P-CMM will evolve to stay
synchronized with architectural changes made in the CMM and other maturity standards, such as
SPICE. It provides the same type guidance as the CMM, but in a different dimension. People
management maturity describes an organization’s ability to consistently improve the knowledge
and skills of its staff and align their performance with organizational objectives. The P-CMM
addresses a broad range of people management issues, including:

• Recruiting (attracting talent),
• Selection (choosing talent),
• Performance management (coaching talent),
• Training (enhancing talent),
• Compensation and reward (rewarding talent),
• Career development (developing talent),
• Organization and work design (organizing talent), and
• Team and culture development (integrating talent).

As illustrated in Figure 10-9, the P-CMM consists of five maturity levels. Each maturity level is
a well-defined evolutionary plateau that institutionalizes a level of capability within the
organization. Each level contains numerous KPAs designed to satisfy a set of goals set in the
context of how people management practices are defined.

Figure 10-9. P-CMM Key Process Areas by Maturity Level [HEFLEY95]

10-18

Chapter 10: Developing Software Maturity GSAM Version 3.0

For instance, the KPAs at Level 2 focus on instilling basic discipline into people management
activities. The KPAs at Level 3 address the issues of identifying primary competencies and
aligning people management activities with them. The KPAs at Level 4 focus on quantitatively
managing organizational growth in people management capabilities and in establishing
competency-based teams. The KPAs at Level 5 cover continuous improvement methods for
developing competency at the organizational and individual level. The KPAs are internally
organized by common features (i.e., those attributes indicating whether KPA implementation
and institutionalization is effective, repeatable, and lasting). The five common features are:
commitment to perform, ability to perform, activities performed, measurement and analysis, and
verifying implementation. [HEFLEY95]

10.3.4 Software Acquisition — Capability Maturity Model (SA-

CMM)

The SEI’s Software Acquisition — Capability Maturity Model (SA-CMM) was developed to
assess the government’s internal software acquisition management process maturity. It reflects a
collaborative team effort by acquisition experts from DoD, federal agencies, the SEI, and industry,
and provides a framework for benchmarking and improving the software acquisition process. Its
users are those organizations with responsibility for acquiring and supporting software-intensive
products, e.g., government Project Managers/Program Executive Officers (PMs/PEOs),
government Software Support Activities, industry PM/PEO equivalents, and senior executives.
The purpose of the SA-CMM is to:

• Support senior management goal setting (i.e., each level of maturity represents an increased
software acquisition process capability); and

• Support prediction of potential performance (includes accounting for factors significantly
contributing to process capability).

The SA-CMM is based on the premise that, as we mature and improve our capabilities, our
probability of success increases, and we are able to make better predictions. The purpose of
assessing an acquisition organization’s maturity level is to identify areas for process improvement.
To make improvements, an organization must have an ultimate goal, know what is required to
achieve that goal, and be able to measure progress towards achieving it. The SA-CMM provides
the information and guidance needed to facilitate those activities.

The SA-CMM defines KPAs for four of five maturity levels. While the SA-CMM describes the
acquirer’s role (in contrast to the CMM which focuses on the developer’s process), it includes
certain pre-contract award activities, such as software Statement of Work preparation and
documentation requirements, and source selection participation. The SA-CMM has the same
architecture as the CMM, as illustrated in Table 10-2. SA-CMM maturity levels are described as:

10-19

Chapter 10: Developing Software Maturity GSAM Version 3.0

• Level 1 — Initial. The software acquisition process is characterized as ad hoc, and occasionally
even chaotic. Few processes are defined and success depends on individual effort. For an
organization to mature beyond the initial level, it must install basic management controls to
instill self-discipline.

• Level 2 — Repeatable. Basic software acquisition project management processes are
established to plan all aspects of the acquisition, manage software requirements, track project
team and contractor performance, manage the project’s cost and schedule baselines, evaluate
the products and services, and successfully transition the software to its support organization.
The project team is basically reacting to circumstances of the acquisition as they arise. The
necessary process discipline is in place to repeat earlier successes on projects in similar
domains. For an organization to mature beyond the level of self-discipline, it must use well-
deifined processes as a foundation for improvement.

• Level 3 — Defined. The acquisition organization’s software acquisition process is documented
and standardized. All projects use an approved, tailored version of the organization’s standard
software acquisition process for acquiring their software products and services. Project and
contract management activities are proactive, attempting to anticipate and deal with acquisition
circumstances before they arise. Risk management is integrated into all aspects of the project,
and the organization provides the training required by personnel involved in the acquisition.
For an organization to mature beyond the level of defined processes, it must base decisions
on quantitative measures of its processes and products so that objectivity an be attained and
rational decisions made.

• Level 4 — Quantitative. Detailed measures of the software acquisition processes, products,
and services are collected. The software processes, products, and services are quantitatively
and qualitatively understood and controlled.

• Level 5 — Optimizing. Continuous process improvement is empowered by quantitative
feedback from the process and from piloting innovative ideas and technologies. Ultimately
an organization recognizes that continual improvement (and continual change) is necessary
to survive. [FERGUSON96]

10-20

Chapter 10: Developing Software Maturity GSAM Version 3.0

Table 10-2. Synopsis of the SA-CMM [FERGUSON96]

10.3.5 Systems Engineering — Capability Maturity Model (SE-

CMM)

The Systems Engineering — Capability Maturity Model (SE-CMM), developed by the Enterprise
Process Improvement Collaboration (EPIC), expresses essential characteristics of the basic
technical, management, and support processes for systems engineering, and provides guidance
in applying process management and institutionalization principles to the systems engineering
process. The SE-CMM architecture (Table 10-3) adopts that of the SPICE program’s Baseline
Practices Guide (BPG).

Level Focus Key Process Areas

5
Optimizing

Continuous
Process

Improvement

• Continuous Process Improvement
• Acquisition Innovation Management

4
Quantitative

Quantitative
Management

• Quantitative Process Management
• Quantitative Acquisition Management

3
Defined

Process
Standardization

• Process Definition and Maintenance
• Project Performance Management
• Contract Performance Management
• Acquisition Risk Management
• Training Program

2
Repeatable

Basic Project
Management

• Software Acquisition Planning
• Solicitation
• Requirements Development and Management
• Project Management
• Contract Tracking and Oversight
• Evaluation
• Transition to Support

1
Initial Competent People and Heroics

10-21

Chapter 10: Developing Software Maturity GSAM Version 3.0

Table 10-3. SE-CMM Architecture [SEI95]

Similar to the BPG, the SE-CMM architecture separates actual domain process characteristics
— systems engineering — from the practices related to managing those processes. It provides
generic and domain specific-guidance for process management. A base practice is defined as an
engineering or management practice that addresses the purpose of a particular process area.
Base practices are contained in 18 process areas (see Table 10-4), divided into three process area
categories: program, engineering, and organization. For example, the SE-CMM contains the
engineering process area “integrate system,” the purpose of which is to ensure all system elements
work together. One base practice in this process area is to develop detailed interface descriptions
implied by the systems architecture. Base practices provide state-of-the-practice type guidance.
Systems engineering functions are described in the base practices exhibited in the process.

Capability Level Common Features

Continually Improving • Improving organizational capability
• Improving process effectiveness

Quantitatively
Controlled

• Establishing measurable quality goals
• Objectively managing performance

Well Defined • Defining a standard process
• Perform the standard process

Planned and Tracked • Planning performance
• Disciplined performance
• Verifying performance
• Tracking performance

Performed Informally • Best practices performed

Engineering Process Areas Project Process Areas Organizational Process Areas

Analyze Candidate
Solutions

Ensure Quality Coordinate with Suppliers

Derive and Allocate
Requirements

Manage
Configurations

Define Organization’s Systems
Engineering Process

Evolve System Architecture Manage Risk Improve Organization’s Systems
Engineering Processes

Integrate Disciplines Monitor and Control
Technical Effort

Manage Product Line Evolution

Integrate System Plan Technical Effort Manage Systems Engineering
Support Environment

Understand Customer
Needs and Expectations

Provide Ongoing Knowledge and
Skills

Verify and Validate
Systems

Table 10-4. Base Practices of the SE-CMM [SEI95]

10-22

Chapter 10: Developing Software Maturity GSAM Version 3.0

Generic practices [defined above] are divided into common features [also defined above] which
are contained in process capability levels. For example, in Level 2 (Planned and Tracked), the
common feature “planning performance” contains practices to allocate adequate process
resources, assign responsibilities for product development, and provide adequate tools to support
the process. As illustrated in Figure 10-5, the advantage of the SE-CMM architecture is that
principles upon which the CMM is based are abstracted and expressed in such a way that they
can be used to assess any organization’s processes — i.e., its generic practices. On the other
hand, essential process characteristics from a particular domain are also clearly expressed — i.e.,
its base practices. This architecture, isolates both types of practices and looks at them separately.
They are then merged back together to build and design processes. In this way, enterprise domain
and process management needs are addressed and supported. [KUHN95]

10.3.6 ISO/IEC Maturity Standard: SPICE

The International Standards Organization/International Electrotechnical Commission (ISO/IEC)
is creating a set of international standards under the Software Process Improvement Capability
dEtermination (SPICE) Program. One objective of the ISO/IEC effort is to create a framework
for assessment approaches, while avoiding any specific approach to improvement, such as CMM
maturity levels. Organizations will be able to use this standard for:

• Self-assessment (to help determine an organization’s ability to implement a new software
program);

• Process improvement (to help an organization improve its own software development and
maintenance processes); and

• Capability determination (to help a purchasing organization determine the capability of a
potential software supplier).

10.3.6.1 SPICE Product Suite

The core set of SPICE products comprising the software process assessment standard include:

• ISO/IEC TR 15504-1:1998 Part 1: Concepts and introductory guide.
• ISO/IEC TR 15504-2:1998 Part 2: A reference model for processes and process capability
• ISO/IEC TR 15504-3:1998 Part 3: Performing an assessment
• ISO/IEC TR 15504-4:1998 Part 4: Guide to performing assessments
• ISO/IEC DTR 15504-5:1998 Part 5: An assessment model and indicator guidance (informative)
• ISO/IEC TR 15504-6:1998 Part 6: Guide to competency of assessors
• ISO/IEC TR 15504-7:1998 Part 7: Guide for us in process improvement
• ISO/IEC TR 15504-8:1998 Part 8: Guide for use in determining supplier process capability
• ISO/IEC TR 15504-9:1998 Part 9: Vocabulary

Field trials of SPICE-based assessments began in January 1995 and will continue until ISO/IEC
15504 is published as a full international standard, scheduled by 2001.

10-23

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.3.6.2 Baseline Practices Guide

Early in the SPICE effort, a Baseline Practices Guide (BPG) was developed. The BPG defined,
at a high level, the goals and fundamental activities essential to good software engineering practices.
The BPG described what activities are required — not how to implement them. BPG practices
may be extended through Practice Guides that address a specific industry, sector, or other
requirements. [The CMM is an example of a sector-specific Practice Guide for large, software-
intensive programs and organizations.] The BPG defined five process categories:

• Customer-supplier. This category consists of processes that directly impact the customer,
support development, support transition of the software to the customer, and provide for its
correct operation and use.

• Engineering. This category consists of processes to directly specify, implement, or maintain
a system, a software product, and its user documentation.

• Program. This category consists of processes to establish the program and coordinate and
manage its resources to produce customer satisfactory products or services.

• Support. This category consists of processes enabling and supporting performance of other
program processes.

• Organization. This category consists of processes establishing organizational business goals
and developing process, product, and resource assets to achieve business goals.

Each process in the BPG can be described in terms of base practices unique to software engineering
or management activities. Process categories, processes, and base practices provide a grouping
by type of activity. These processes and activities characterize performance of a process, even if
it is not systematic. Performance of base practices may be ad hoc, unpredictable, inconsistent,
poorly planned, and/or result in poor quality products, but those work products are, at least
marginally, usable in achieving process purpose. Implementing only process base practices of a
process may be of minimal value and represent only the first step in building a process capability.
However, the base practices represent unique, functional process activities when implemented
in a particular environment.

10.3.6.3 BPG Capability Levels

The BPG expressed evolving process maturity in terms of capability levels, common features,
and generic practices. A capability level is a set of common features (sets of activities) that,
when applied together, increase a developer’s ability to perform a process. Each level represents
a major process capability improvement and process performance growth. They constitute a
rational way for practice progression and harmonize different software process rating approaches
(i.e., the CMM). Capability levels provide two benefits: (1) they acknowledge dependencies
among process practices; and (2) they help identify which improvements might be performed
first, based on a plausible process implementation sequence. The BPG lists six capability levels:

• Level 0 — Not performed. This level has no common features and there is a general failure
to perform base practices. There are no easily-identifiable process work products or outputs.

• Level 1 — Performed informally. Base practices are generally performed and process work
products testify to performance.

10-24

Chapter 10: Developing Software Maturity GSAM Version 3.0

• Level 2 — Planned and tracked. Process base practice performance is planned, tracked,
and verified. Work products conform to specified standards and requirements. The primary
distinction from the previous level is that process performance is planned, managed, and
progressing towards being well-defined.

• Level 3 — Well-defined. Base practices are performed according to a well-defined process
using approved, tailored versions of standard, documented processes. The primary distinction
from the previous level is that the process is planned, managed, and standardized throughout
the organization.

• Level 4 — Quantitatively controlled. Detailed measures of performance are collected and
analyzed. This leads to a quantitative understanding of process capability and an improved
ability to predict and manage performance. The quality of work products is quantitatively
known. The primary distinction from the previous level is that the defined process is
quantitatively understood and controlled.

• Level 5 — Continuously improving. Quantitative process effectiveness and performance
efficiency goals (targets) are established based on organizational business goals. Continuous
process improvement against these goals is enabled by quantitative feedback from defined
process performance and the piloting of innovative ideas and technologies. The primary
distinction from the previous level is that the defined, standardized process undergoes
continuous refinement and improvement based on a quantitative understanding of the impact
of process changes.

10.3.7 Common Features and Generic Practices

A common feature in the BPG is a set of practices (called generic practices) that address the
aspects of process implementation and institutionalization. The words “common” and “generic”
convey the idea that these features and practices are applicable to any process, with the goal of
enhancing the capability to perform that process. For example, “planning” is a feature common
to improved management of any process. Table 10-5 lists BPG common features and generic
practices by capability level.

10-25

Chapter 10: Developing Software Maturity GSAM Version 3.0

Table 10-5. BPG Capability Levels, Common Features, and Generic Practices
[KONRAD95]

BPG capability levels and CMM maturity levels are similar, yet distinctly different. BPG capability
levels are applied on a per process basis, while CMM organizational maturity levels are a set of
process profiles. Also, the BPG architecture does not prescribe any specific organizational
improvement path. Improvement priorities are left completely up to the software organization,
as determined by its business objectives. Individual processes, at either organization or program
level, can be measured and rated using the BPG continuous improvement architecture.
[KONRAD95]

CAPABILITY
LEVEL

COMMON FEATURE GENERIC PRACTICE

LEVEL 5
Continuously

Improving

Improving Organizational
Capability

• Establish process effectiveness goals
• Continuously improve the standard

process

Improving Process
Effectiveness

• Perform casual analysis
• Eliminate defect causes
• Continuously improve the defined

process

LEVEL 4
Quantitatively

Controlled

Establishing Measurable
Quality Goals

• Establish quality goals

Objectively Managing
Performance

• Determine process capability
• Use process capability

LEVEL 3
Well-Defined

Defining a Standard Process • Standardize the process
• Tailor the standard process

Performing the Defined
Process

• Use a well-defined process
• Perform peer reviews
• Use well-defined data

LEVEL 2
Planned

and
Tracked

Planning Performance • Allocate resources
• Assign responsibilities
• Document the process
• Provide tools
• Ensure training
• Plan the process

Disciplined Performance • Use plans, standards, and procedures
• Do configuration management

Verifying Performance • Verify process compliance
• Audit work products

Tracking Performance • Track with measurement
• Take correcitve action

LEVEL 1
Performed
Informally

Performing Base Practices • Perform the process

10-26

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.4 Lessons Learned in Implementing the
Software Development CMM

The Software Engineering Division of the Technology and Industrial Support Directorate at Hill
AFB, UT was assessed at CMM Level 5 in July 1998. Patrick W. Cosgriff, a member of their
Software Engineering Process Group (SEPG), offers the following as lessons learned
[COSGRIFF991], [COSGRIFF992]:

• Understand the practices one level above the implementation level. Give some thought to
how the practices interrelate and build off each other. This may save some rework in the long
run.

• Enforcement and implementation are basically the same thing, especially in large organizations.
Or perhaps a softer way to state this would be that enforcement is the most effective
implementation strategy. For my money, objective audits done by capable, well trained people,
with a clear set of audit requirements is the most effective enforcement/implementation strategy.

• If you are a large diverse organization you may want to coordinate the developing of project
processes with the development of your organizational processes right from the start. Again,
this may reduce rework associated with fundamental style and design differences between
different product lines.

• Emphasize performance of project planning activities, not creation of documents that gather
dust.

• Don’t ignore intergroup coordination. It is kind of hard to get your hands on but it is very
important. Think of it as a characteristic you want integrated into all your activities, not a
discrete set of activities unto themselves.

• Consider the data requirements of the Software Quality Management KPA when implementing
peer reviews. It is not that difficult to gather the extra data needed to support Software
Quality Management and Defect Prevention. Having historical data on defects will give you
a big jump on implementing these higher maturity practices.

• Level four and five KPAs can be implemented together, in fact defect prevention is the logical
extension of software quality management, and Process Change Management is the logical
extension of Quantitative Process Management.

• Don’t limit your solutions to the activities and sub-practices listed in the CMM.
• Package plans, processes, and procedures in a usable way.
• Make the CMM fit your organization, not the other way around.
• Integrate common activities from different KPAs as much as possible.
• Data complements common sense, it doesn’t replace it.

10.5 Software Development Capability Assessment
Methods

Now that software acquisition and development capability maturity have been defined and the
relationship of capability maturity to processes has been explained, how is this information to be
used in improving the acquisition and development of software intensive systems? Until recently,
this information has been applied exclusively to software development organizations. If applied

10-27

Chapter 10: Developing Software Maturity GSAM Version 3.0

by an acquisition organization, it was usually in the form of a Software Development Capability
Evaluation or Software Capability Evaluation. If applied by a development organization for
internal process improvement, it was usually applied as a CMM Based Appraisal for Internal
Process Improvement, SPICE audit, or ISO 9001 audit.

Software development capability assessments are an effective method for determining the maturity
of an organization’s process. They provide a performance rating system that was established to
be fair, accurate, and enforce uniform procedures, clear definitions, consistent measurements,
and reliable information to keep vendors from challenging negative ratings. These assessments
involve visits to bidders’ facilities to determine their readiness to perform on a contract and their
software development maturity. They are used to ascertain whether the developer has a mature
software process in place that is predictable, repeatable, and manageable in terms of cost and
schedule. The purpose of these assessments is risk mitigation. They are used to determine what
risks are associated with contracting a given organization to perform your development task. An
award to a contractor with a mature, well-defined, standardized process can translate into
substantially lower program risk and cost savings for the Government through reduced
documentation, oversight, review, and auditing requirements.

REMEMBER: In addition to having a mature software development process, the
developer should also have experience in the application domain being developed.
Although a developer might have a high-level process maturity, the lack of domain
expertise could have a drastic impact on product development (i.e., performance, cost
and schedule). You need both process maturity and domain expertise to minimize software
development risk. This chapter addresses development maturity, and assumes the software
developer has the necessary domain experience.

Two software development capability assessment methods are available for source selection
evaluations. The Air Force Materiel Command’s Aeronautical Systems Center Software
Development Capability Evaluation (SDCE) is best used for developers of weapon systems with
embedded software or any application requiring substantial systems engineering. The SEI Software
Capability Evaluation (SCE) is appropriate for management information systems (MIS) developers,
and has been used for command, control, communications, computers and intelligence (C4I)
developers. However, with the substantial systems engineering required by C4I programs, you
should consider performing a SDCE to ensure the developer has a mature systems engineering
capability. The objective of these methods is to provide structured, consistent, and comprehensive
approaches for evaluating the software process. A high rating on the review does not guarantee
software development success, but the evaluation does isolate areas needing closer consideration
during source selection (and if selected, after contract award).

NOTE: For questions about command, control, and communications (C3) and ground
electronics systems acquisitions capability assessments, contact Electronic Systems Center
[see Volume 2, Appendix A]. For MIS acquisitions contact the Standard Systems Group
(SSG) [see Volume 2, Appendix A]. For avionics and embedded systems contact
Aeronautical Systems Center. Air Force in-house software development organizations
with questions on Software Process Improvement and Software Maturity Assessments
should contact the Software Technology Support Center.

10-28

Chapter 10: Developing Software Maturity GSAM Version 3.0

Once your program is assessed, it is of little or no use if you are not committed to improvement.
No matter how often the assessment is performed, it is only a starting point. Each time an
assessment is performed, it identifies your current level of capability — but more importantly —
it identifies a point from which to begin your next round of improvement. Those few organizations
who have achieved a CMM Level 3 or above claim they got there, and stay there, because they
have an organization-wide quality attitude. Always looking for ways to improve, they develop
an extensive set of measures that they perpetually re-evaluate.

10.5.1 Software Development Capability Evaluation (SDCE)

The SDCE evaluates a contractor’s ability to develop software for a specific weapon system
program, as defined in the RFP. It also helps to decide whether the contractor has the capacity
and sufficient qualified personnel available to complete the proposed software development.
Assessing capability during source selection accomplishes three related objectives:

• The offeror’s capability and capacity to develop the required software within the program
baseline is determined;

• The review process elicits a contractual commitment by the offeror, if selected, to implement
the methods, tools, practices, and procedures making up their software development process;
and

• Insight is gained into each offeror’s systems and software engineering development methods
and tools to be applied to your program.

The SDCE concentrates on five areas: management approach, management tools, development
practices, personnel resources, and programming language technology. The review is normally
performed during the Engineering and Manufacturing Development (EMD) request for proposal
(RFP) preparation and source selection acquisition phase. However, when software developed
during Demonstration/Validation (Dem/Val) is planned to be carried through to EMD, an SDCE
should be performed during the Dem/Val source selection phase. Your RFP must state that
offerors provide specific information describing their software development methods, including
examples of how their methods have been applied on past or on-going programs. If an open
discussion is conducted, an in-plant review of the offeror’s team is performed by the Government.
The evaluation can also be based solely on the material submitted with the proposal, with the in-
plant portion of the SDCE conducted after contract award. [Aeronautical Systems Center policy
requires the use of SDCE results in all weapons systems software source selections.]

10.5.2 Software Engineering Institute (SEI) Software Capability

Evaluation (SCE)

The SCE is described in SCE Version 3.0 Method Description (CMU/SEI-96-TR-002, April
1996) and the SCE Verion 3.0 Implementation Guide for Supplier Selection, (CMU/SEI-95-TR-
012, April 1996) by the SEI.

SCE is a method for evaluating the software process of an organization to gain insight into its
software development capability. This insight can be a valuable input to process improvement
activities. Hence, the SCE Method helps evaluate the software process capability of a software

10-29

Chapter 10: Developing Software Maturity GSAM Version 3.0

development organization (an organization that develops and/or maintains software products).
Software process capability refers to the range of expected results that can be achieved by following
a process. The processes evaluated by SCE include decision-making processes (such as project
planning), communication processes (such as intergroup communication), and technical support
processes (such as peer reviews and product engineering)—but not technical production processes
(i.e. processes required by a particular methodology, such as object oriented design). The SCE
Method does not evaluate technical production processes such as requirements analysis,
specification, and design, but instead focuses on the management of the technical production
processes and on other key processes. [BARBOUR95]

A WORD OF CAUTION! An SCE investigates areas generally limited to the processes
used. For example, this includes the process of selecting appropriate tools and methods,
and training personnel to use them. However, an SCE does not evaluate whether the
processes themselves are effective or efficient, nor does it address the appropriateness of
the tools and methods used by the developer. Therefore, a proposal by a mature software
development organization to use new, state-of-the-art tools and methods could be a
significant risk if the developer does not have an experience base to handle them.
[HOROWITZ95]

SEI transition partners train source selection teams on conducting Software Capability Evaluations
(SCEs). SEI instructor personnel do not lead or formally participate in SCEs. However, they
may observe SCE teams while they conduct evaluations on site. These observation trips, lessons-
learned reports, and experiences have been major contributors to the SCE method’s evolution
into its current form. [BARBOUR93]

NOTE: ESC can provide SCE evaluation teams upon request for Air Force procurements.
Contact ESC for more information [see Volume 2, Appendix A]. For more information on
the SEI Transition Partners, contact the SEI [see Volume 2, Appendix A].

10.5.3 Addressing Maturity in the Request for Proposal (RFP)

To ensure the software process enacted for your program is predictable, repeatable, and manageable
in terms of quality, cost, schedule, and performance, you should evaluate the offeror’s software
development capabilities prior to (or during) source selection. Remember, you are buying the
process as well as the product! Performing a software development capability assessment will
help you identify risks associated with the offeror’s approach. Risk identification is possible,
since you will have:

1. An understanding of how the organization managed software development efforts in the
past; and

2. The opportunity to compare past performance with the proposed software development
process.

Therefore, you must pay due attention to the offeror’s software development processes, starting
with overall assessments like the SCE or SDCE, which focus on the details of tools, metrics,
personnel facilities, management control, and language experience. Based on the maturity level
of the selected contractor, you should consider customizing your contract to adapt that offeror’s

10-30

Chapter 10: Developing Software Maturity GSAM Version 3.0

strengths and weaknesses. For example, if the contractor has achieved a high level of maturity (3
or above), you may decide that online access to the contractor’s development environment and
management status reports (e.g., cost, schedule, risk management and metrics data) is an effective
alternative to the traditional oversight mechanisms of formal reviews and submission/approval
of data items. Alternatively, if an offeror’s process for coordinating the efforts of different
engineering disciplines and stake holders is relatively weak, you may add a requirement for an
on-site liaison to support coordination with users and the contractors developing interfacing
systems.

10-31

Chapter 10: Developing Software Maturity GSAM Version 3.0

10.6 References

[BARBOUR93] Barbour, Rick, Software Capability Evaluation Version 1.0 Implementation Guide, CMU/
SEI-93-TR-18, Software Engineering Institute, Carnegie Mellon University, Pittsburgh PA, 1993

[BARBOUR95] Barbour, Rick, Software Capability Evaluation Version 3.0 Implementation Guide for
Supplier Selection, CMU/SEI-95-TR-12, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh PA, 1995

[CLOUGH92] Clough, Anne J., “Software Process Technology,” CrossTalk, June/July 1992
[COSGRIFF991] Cosgriff, Patrick W., “The Journey to CMM Level 5: How Long Does It Take?”, draft

article submitted to CrossTalk, March 1999
[COSGRIFF992] Cosgriff, Patrick W., and David Haakenson, “The Right Things for the Right Reasons,”

briefing given to USPIN, 1999
[DELAVIGNE94] Delevagne, Kenneth T. and J. Daniel Robertson, Deming’s Profound Changes, PTR

Prentice Hall, Englewood Cliffs, New Jersey, 1994
[DSMC90] Defense Systems Management College, Systems Engineering Management Guide, US

Government Printing Office, Washington, RUN-TIME, 1990
 [FERGUSON96] Ferguson, Jack R., et al, “Software Acquisition Capability Maturity Model (SA-CMM)

Version 1.01, CMU/SEI-96-TR-020, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh PA, December 1996

[GUINAN97] Guinan, P. J., J. G. Cooprider, and S. Sawyer, “The Effective Use of Automated Applicatioin
Development Tools,” IBM Systems Journal, Vol 36, No. 1, 1997

[HAMMER96] Hammer, Michael, Beyond Reengineering, HarperCollins, New York, New York, 1996
[HEFLEY95] Hefley, William E., et al., “People Capability Maturity Model (P-CMM) Incorporating

Human Resources into Process Improvement Programs,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 1995

[HOROWITZ95] Horowitz, Barry M., personal communication to Lloyd K. Mosemann, II, December
1995

[HUMPHREY95] Humphrey, Watts S., A Discipline for Software Engineering, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1995

[KONRAD95] Konrad, Michael D., and Mark C. Paulk, “An Overview of SPICE’s Model for Process
Management,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania,
1995

[KUHN95] Kuhn, Dorothy A., and Suzanne M. Garcia, “Developing a Capability Maturity Model for
Systems Engineering,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 1995

[PAULK93] Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, Charles V. Weber, Capability Maturity
Model for Software, Version 1.1 (CMU/SEI-93-TR-24), Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 1003

[SAIEDIAN95] Saiedian, Hussein, and Richard Kitzara, “SEI Capability Maturity Model’s Impact on
Contractors,” IEEE, January 1995

[SEI94] Benefits of CMM-Based Software Process Improvement: Initial Results (CMU/SEI-94-TR-13),
Software Engineering Institute, Carnegie-Mellon University, August 1994

[SEI95] A Systems Engineering Capability Maturity Model, Version 1.1 (CMU/SEI 95-MM-003), Software
Engineering Institute, Carnegie-Mellon University, November 1995

[VU97] Vu, John D., Presentation at 1997 National SEPG Conference
[WILLIAMS97] Williams, Karl, “The Value of Software Improvement,” SPIRE97, 1997

Part 2: Engineering GSAM Version 3.0

Chapter 11

Understanding
Software
Development

Chapter 11: Understanding Software Development GSAM Version 3.0

11-2

Contents

11.1 Software Development from the Acquirer View Point 11-4
11.1.1 Requirements ... 11-4

11.1.1.1 Requirements Determination... 11-4
11.1.1.2 Requirements Management ... 11-5
11.1.1.3 Prototyping ... 11-6

11.1.1.3.1 Prototyping Benefits ... 11-6
11.1.1.3.2 Cautions About Prototypes ... 11-7

11.1.2 Hardware ... 11-7
11.1.2.1 Hardware Requirements ... 11-7
11.1.2.2 Hardware Selection .. 11-8

11.1.3 Software Documentation .. 11-9
11.1.4 Project Planning ..11-11
11.1.5 Solicitation ..11-11
11.1.6 Project Tracking and Oversight ..11-11
11.1.7 Acceptance Testing ...11-11

11.1.7.1 Government Testing...11-11
11.1.8 AFOTEC Testing Objectives .. 11-12

11.1.8.1 Usability ... 11-12
11.1.8.2 Effectiveness .. 11-13
11.1.8.3 Software Maturity .. 11-13

11.1.9 AFOTEC Software Evaluation Tools .. 11-14
11.1.10 AFOTEC Lessons-Learned ... 11-14

11.2 Software Development from the Supplier View Point 11-17
11.2.1 Requirements Analysis ... 11-17

11.2.1.1 Analysis ... 11-17
11.2.1.2 Software Requirements Specification (SRS) 11-18
11.2.1.3 Interface Requirements Specification (IRS) 11-19
11.2.1.4 Prototyping ... 11-19

11.2.2 Project Planning ... 11-20
11.2.3 Test Planning .. 11-20
11.2.4 Preliminary Design ... 11-21

11.2.4.1 Design .. 11-21
11.2.5 Design Simplicity ... 11-22
11.2.6 Architectural Design ... 11-23

11.2.6.1 Preliminary Design Review (PDR) ... 11-25
11.2.6.2 Detailed Design .. 11-27
11.2.6.3 Functional Design ... 11-27

Chapter 11: Understanding Software Development GSAM Version 3.0

11-3

11.2.6.4 Data-Oriented Design ... 11-27
11.2.6.5 Object-Oriented Design .. 11-28

11.2.7 Problem Domains and Solution Domains .. 11-28
11.2.8 Critical Design Review (CDR) .. 11-29
11.2.9 Coding ... 11-31
11.2.10 Testing.. 11-31

11.2.10.1 Testing Objectives .. 11-32
11.2.10.1.1 Defect Detection and Removal 11-32
11.2.10.1.2 Defect Removal Strategies .. 11-34

11.2.10.2 Unit Testing .. 11-34
11.2.10.3 Integration Testing .. 11-36
11.2.10.4 System Testing ... 11-36

11.3 Building Secure Software ... 11-36
11.3.1 Security Planning.. 11-36
11.3.2. Operations Security (OPSEC).. 11-37

11.4 The Bottom Line ... 11-41
11.5 References ... 11-42

11-4

Chapter 11: Understanding Software Development GSAM Version 3.0

Software development, from the viewpoint of an acquisition organization, includes the following
phases:
• requirements determination,
• project planning,
• solicitation,
• project tracking and oversight,
• acceptance testing.

The phases the supplier follows are similar:
• requirements analysis,
• project planning,
• preliminary design,
• test planning,
• detailed design,
• coding,
• unit testing,
• integration testing,
• system testing.

Software acquirers need to be familiar not only with their own process phases, but also with the
supplier’s phases.

NOTE: IEEE/EIA 12207.0-1996, “IEEE Standard for Industry Implementation of
International Standard ISO/IEC 12207: 1995 (ISO/IEA 12207) Standard for Information
Technology – Software Life Cycle Processes” and IEEE/EIA 12207.1, “Guide for ISO/IEC
12207, Standard for Information Technology – Software life cycle processes – Life cycle
data,” were adopted on May 27, 1998 for use by the Department of Defense. They contain
additional information regarding software development and should be reviewed in
conjunction with this chapter.

11.1 Software Development from the Acquirer
View Point

11.1.1 Requirements

11.1.1.1 Requirements Determination

Paul Paulson, president of Doyle, Dane and Bernbach, a large New York brokerage firm, was
quoted in the New York Times as saying,

“You can learn a lot from the client. Some 70% doesn’t matter, but that 30% will kill you.” —
Paul J. Paulson [PAULSON79]

11-5

Chapter 11: Understanding Software Development GSAM Version 3.0

The first task an acquisition organization must undertake is to determine the needs of the client
or user. This is best accomplished by involving the user in defining the needs. One must take
care to separate needs from wants. Needs are those items essential to mission accomplishment.
Wants are the bells and whistles that, while making life easier, are not essential to mission
accomplishment. The requirements should be conveyed to the developer in a manner that clearly
emphasizes that the developer must satisfy all the needs, while potential satisfaction of wants
will be evaluated using cost/benefit analysis. Requirements should be stated in terms of
performance, i.e., what the system is to accomplish, not how the system is to accomplish the
task. Requirements must be clearly documented and able to be implemented. They must also be
well stated so they are easily understood by the designer and programmer. One measure of clarity
is that requirements must be testable. If requirements are satisfied, you should be able to
quantitatively test them. Classic examples of requirements that cannot be tested are those that
state the system must be “user friendly” and provide “rapid response.” Such requirements are
ambiguous to the designer, and are a potential source of endless arguments when the software is
delivered.

11.1.1.2 Requirements Management

Management of technical requirements is the most important, and often overlooked, software
management issue. Ideally, requirements should be fully identified before the statement of work
(SOW) is written. In practice, this is almost never the case. In large, complex software-intensive
systems, requirements continually evolve throughout the system’s life. Therefore, they must be
constantly managed because they significantly impact total system development cost and schedule.
“Requirements creep” often occurs on long procurements. The users have time to see the
possibility of all the features they can have, or want changes to their original vision of the product.
The operational environment changes or technology advances. The software contractor may
want to accommodate the user, but through requirements creep, may loose control of the cost,
schedule, and product. It is your job to hold the line on requirements. Failure to draw a line in the
sand on user requirements can be fatal for your program. Freezing requirements through firm
baselines is essential. It does not, however, make it impossible for the user to make changes.
Evolutionary/incremental buildup of functionality is possible if it is planned and budgeted to
occur at milestone decision points where requirements are re-baselined. Version control and
tracking, including updating documentation, are other essential parts of the requirements
configuration management task.

It is the acquisition organization’s responsibility to manage the requirements given to the contractor.
The contractor should never be asked to implement requirement changes that have not been
evaluated and approved by the acquisition organization’s configuration control board. This
approval process includes requesting the contractor to provide cost and schedule impacts of the
proposed change. If cost and/or schedule is negatively impacted, the contract may need to be
modified. This process must also identify major stakeholders (or viewpoints) of the system. You
must ensure that individual stakeholder needs are consistently collected, analyzed, and
documented. A formalized process must also be used to make all stakeholders part of the
requirements team.

Your contractor’s Software Development Plan (SDP) should address their understanding of the
requirements stability issue, how well they will manage the requirements change process and
evolutionary requirements. Your contractor’s management of requirements must stress a

11-6

Chapter 11: Understanding Software Development GSAM Version 3.0

commitment to an iterative process that utilizes structured requirements methods and appropriate
tracking and analysis tools. Traceability from original, identified needs to their derived
requirements, designs, and implementations must be assured. A two-way requirements traceability
matrix should be used to ensure completeness and consistency of requirements among all levels
of development (from top-level down to code-level). A requirements team includes multiple
working groups, such as:

• An Operational Requirements Document Support Team,
• A Program Requirements Team, and
• An Operational Requirements Working Group.

11.1.1.3 Prototyping

Prototyping is a shortcut for demonstrating software functions/capabilities and for eliciting user
buy-in. It is a quick-and-dirty way to evaluate whether the proposed design meets user needs and
is generally produced with throwaway code. Prototypes are also not developed with supportability,
readability, and usability in mind, and bypass normal configuration management, interface controls,
technical documentation, and supportability requirements. Quality control and assurance (testing)
and supportability issues (e.g., technical documentation) are seldom addressed, as these activities
negate the benefits of the prototype.

11.1.1.3.1 Prototyping Benefits

Major prototyping benefits include: clearer understanding of requirements, particularly if a user-
interface prototype is demonstrated; quicker identification of design options and how they may
be implemented into code; and resolution of high-risk technical issues in areas where the system
may be pushing software state-of-the-art. Prototyping also has a high impact on a certain class of
defects and can be used as an effective defect prevention technique. Although with large, complex
software developments it is usually not possible to derive all the functional requirements up
front, there is evidence that software developments using prototyping tend to reach functional
stability quicker than those that do not. With prototyping, on the average, only 10% or fewer
functions are added after the requirements phase; whereas, without prototyping 30% or more
functions are added after requirements analysis. This leads to unanticipated and unfunded cost
and schedule overruns. Also, defect correction costs associated with these late, rushed functions,
exacerbate the problem, as they are more than twice as high as those made in earlier phases of
development.

A pre-award prototype can be used to determine the offerer’s understanding of the requirement,
which in turn helps the offeror project a more realistic estimate of system development cost and
schedule. While prototyping involves time and resources, experience shows that the lead-time
to a fully operational system is generally less when prototyping is used. The prototype allows
users and designers to know what is wanted, and having already built a simplified version, the
fully developed system is less expensive and time-consuming. The final product is also more
likely to perform as desired with fewer surprises when delivered.

You must make sure your contractor’s SDP addresses coordinating prototype development with
the system end-user to ensure a realistic requirements validation process occurs. As a minimum,
the user must review and approve all prototypes of critical components. Reiteration of this

11-7

Chapter 11: Understanding Software Development GSAM Version 3.0

process is often necessary to include additional requirements analysis, specification, and validation
if the prototyping exercise falls short of user expectations. The approval of the prototype(s)
constitutes a baseline for system requirements to be incorporated in the Software Requirements
Specification (SRS).

11.1.1.3.2 Cautions About Prototypes

Do not mistake a prototype for more than what it is — a shortcut for demonstrating proof-of-
concept. Deming talked about the “burn-and-scrape” method of quality control for toast,
comparing it to getting it right the first time. [DEMING82] The requirements for toast are
certainly easier to understand than the requirements for most software systems, so some scraping
is understandable. However, uncontrolled prototyping can result in an endless, unproductive
sequence of burn-and-scrape developments. Because prototypes are not produced within normal
development constraints, you must refrain from expanding a prototype without baselines,
interfaces, capacity studies, and thorough documentation.

NOTE: Refrain from forcing coding standards on prototype development as they can
adversely impact the benefits of prototypes.

Another caution about prototypes is they must be well planned and designed to address significant
sources of risks you have thoroughly identified and documented in your Risk Management Plan.
You must make sure every effort has been made to understand the requirements before building
any prototype, and then ensure that the prototyping effort is converging on a requirement(s)
validation. To benefit from the prototyping exercise, require that each prototyping effort concludes
with the delivery of a written report stating what was done, the results, their implications, and the
degree to which the prototype met stated objectives.

If supportability (or reliability, portability, interoperability, etc.) are high-risk drivers, these
capabilities can be included in your functional description of offerors’ prototype demonstrations.
However be aware, without a sound software engineering process to back it up, source selection
prototype demonstrations can be deceptive with false-positive results.

11.1.2 Hardware

A major concern during software development is how to get the most advanced computer hardware
technology available. The goal is to get the most crunch (computer power) -for-the-buck. The
question to be answered is how to have the most efficient, advanced equipment possible throughout
the system life cycle. Because computer hardware improves at an exponential rate, and user
requirements grow and change with technology’s leading edge, hardware technology is a major
source of change over the system’s life.

11.1.2.1 Hardware Requirements

Computer hardware requirements definition (e.g., digital systems, digital line replacement units/
modules, digital circuit cards, complex digital components) is often a considerable management
challenge. The translation of hardware requirements through the design specification down to

11-8

Chapter 11: Understanding Software Development GSAM Version 3.0

gate-level schematics requires that designers work across a wide range of abstraction. The rush
to lock into hardware designs before completing essential tradeoffs is often a source of substantial
program risk.

11.1.2.2 Hardware Selection

Ideally, computer hardware selection should be delayed until completing sufficient requirements
analysis and prototyping to predict the processing power and throughput necessary for successful
execution of the planned software. Delaying hardware selection might be feasible if contract
support is provided through a systems integrator on a cost-reimbursable basis, and flexibility is
allowed in timing and selection. More importantly, selecting computer hardware late in the
software development process encourages the development of portable software that can be
easily migrated among different hardware platforms.

In reality, the recommended hardware is often not only part of the winning contractor’s proposal,
but an integral part of their cost estimate. If you receive a proposal keyed to a specific hardware
set, this can be considered a weak proposal. Studies have shown that in major software-intensive
systems acquisitions (e.g., weapons systems and command, control, communications and
intelligence (C3I) systems) the cost of developing software can be as much as 80% of the cost of
the hardware and software combined. If an offeror bases their cost estimates on a specific hardware
set, they may not have a very good understanding of the proposed system.

NOTE: Modifying a system performance requirement is not necessarily a bad thing or a
sign of failure. Lessons-learned show that it is often not worth paying 30% more to get
the last 5% of originally-specified performance. In software terms, it may be frivolous
to spend another million dollars on hardware to reduce terminal response time from 2.1
seconds to the specified 2.0 seconds.

Too often hardware acquisition is conducted separately from the software development process.
In this case, the software effort cannot be delayed and completed out of context from its eventual
operating environment. Hardware selection must proceed in concert with the software effort,
which must be completed within hardware environmental constraints (e.g., centralized versus
distributed environment, specific database management system, compilers, etc.).

NOTE: In recent years, lessons-learned have shown that hardware is procured too early.
Hardware sits around and waits for the software to be developed, and is effectively
obsolete when finally implemented. Another common occurrence is that hardware is
often budgeted too early. If hardware is not purchased within the fiscal period for which
it was budgeted, the funds are removed from the program.

Factors to consider in hardware selection are quantitative performance requirements (QPRs),
especially if command, control, and communication (C3) requirements are being defined. To
properly determine/simulate loading for a QPR measurement, an assessment of how the proposed
software/hardware will perform together is essential. Operating system upgrades (projected by
commercial-off-the-shelf (COTS) hardware vendors) must also be considered as they affect future
system growth needs. There are three principles to follow in the initial stages of computer
hardware selection (which also apply to software architecture design):

11-9

Chapter 11: Understanding Software Development GSAM Version 3.0

• Follow standards, either de facto or specifically defined,
• Follow an open systems architecture, and
• Plan for evolutionary change over the software life cycle.

In integrated airborne avionics environments, severe physical and connectivity constraints may
exist. Nevertheless, every effort must be made to use standard computer hardware configurations
with well-understood performance characteristics. Although not similarly affected by physical
constraints, some intelligence systems, command and control (C2) systems, and MISs must operate
with large existing suites of hardware and software. The technical and cost benefits/penalties of
compatibility with these pre-existing systems must be assessed. Even when analysis indicates
continuing a sole source, proprietary environment is cost-effective, DoD’s preference is an open
systems architecture.

CAUTION! “Every vendor with an open mouth claims to have an open system.”
[THOMPSON91] Unless vendors follow industry/government-approved standards, the
system is not truly open. On the other hand, the considerable time it takes to develop
and validate industry standards often leads vendors to use de facto standards. THE
POINT IS TO SELECT SYSTEMS THAT ARE “COMPATIBLE” AND
“INTERCHANGEABLE” WITH PRODUCTS FROM A WIDE VARIETY OF VENDORS!

11.1.3 Software Documentation

Documentation must support the entire life cycle. Most importantly, it provides fundamental
guidance for post deployment software support (PDSS). Documentation can be categorized as
being either technical or managerial. Technical (or engineering) documentation is necessary as
it records the engineering process and helps software engineers know where they are, what they
have produced, and how it was done. It also helps maintainers and other engineers understand
the code developed by others. Management documentation is that produced for the Government
or the development organization to aid in monitoring the contractor’s development progress in
achieving program milestones and in fulfilling performance requirement specifications.

Although it often represents the foundation of a successful software development, documentation
can also represent a significant source of cost and schedule risk. Excessive paperwork will ruin
software development. Overloading your contractor with excessive documentation requirements
takes away from engineering activities — costing valuable time and money.

Conversely, too few requirements for technical documentation may cause loss of program visibility
and control. Design documentation that does not adequately reflect the delivered software’s
current state is worse than no documentation at all. It translates into high maintenance costs
when attempts to enhance or upgrade the system are hampered by insufficient information on the
delivered source code. Allocating operational functional requirements to configuration items
should be both a management and a technical decision as it establishes the framework for collecting
information on software requirements, design, code, and testing. Shortcuts on maintaining/
updating technical documentation should be avoided at all costs. Whenever the developer
makes changes to data flow, the design architecture, module procedures, or any other software
artifact, supporting technical documentation must be periodically updated to reflect those changes.
This requirement must be clearly stated in the contract data requirements lists (CDRLs). No

11-10

Chapter 11: Understanding Software Development GSAM Version 3.0

matter how well your software product performs in fulfilling user requirements, if its supporting
technical documentation is inadequate, your system is not a quality product. Without quality
documentation the product can neither be adequately used nor maintained. Documentation (either
in paper copy or electronic format) that confuses, overwhelms, bores, or generally irritates the
users is of little or no value to you or your customers. [DENTON92]

Documentation is one of those activities that requires experience to determine a proper balance
between too much and too little. Too little technical documentation can create the proverbial
“maintenance man’s nightmare;” whereas, too much effort expended on producing unnecessary
management documentation can waste precious development time and dollars.

Even where program management documentation is kept to a minimum, management and quality
metrics reporting is essential and should be a contract requirement. Metrics reports describe the
contractors’ progress against their plan. They reveal trends in current progress, give insights into
early problem detection, indicate realism in plan adjustments, and can be used to forecast future
progress. If not required, software developers are often reluctant to commit to paper their
deficiencies and/or accomplishments. Your contractor may be agreeable to your suggestions and
direction early in the game. However, as the development progresses and problems are
encountered, this agreeability can deteriorate and the contractor may increasingly ask, “Where in
the contract (or other documentation) does it say the software has to do that?” Once the
honeymoon is over, the documented word (either in the contract, through delivered metrics
documentation, or on-line access) has the most influence on contractor actions. By stressing the
importance of metrics reporting early, you can avoid many problems later on.

From the user’s perspective, the software is only as good as the documentation (both written and
interactive) that tells how to use it. Failure to include in the user’s documentation changes made
to the executable software before delivery can have profoundly negative effects. For example,
changes in the order or format of the interactive input to a management information system
(MIS), if not documented, can cause significant problems through confusing error messages —
or even system crashes.

Software documentation can provide a vehicle for early user involvement in the development
process. User visibility is necessary to ensure that user requirements are addressed early, rather
than added later at much greater expense. Specification and design documents give the user the
opportunity to review requirements before the system is designed or coded. If user documentation
is not available for user review until program completion, design changes resulting from that
review can cause significant schedule slips and additional costs. Software requirements and
designs must be clearly documented so they can be evaluated and deficiencies can be discovered
and corrected. Remember, the best software design is of little value if it is incomprehensible to
those who must translate it into code.

NOTE: Touch-and-feel demonstrations are more effective mediums for user review of
requirements than written specifications and design documents.

Technical documentation should never be produced after the fact, nor for bureaucratic reasons.
Like metrics, documentation should be an outgrowth of the normal development process, not an
end in itself. It must be produced to capture the engineering process so that you and others can
understand and benefit from what has occurred. Clear documentation prevents developers from
getting lost in production activities, and helps maintainers in understanding what the software

11-11

Chapter 11: Understanding Software Development GSAM Version 3.0

does and how it was built. Documentation must be prepared throughout the development process
to capture the results of each engineering activity. Documentation, used as a reference tool to aid
new personnel, users, and maintainers in becoming familiar with the software product, must be
kept up to date. If not kept current, it will impede operational and maintenance efforts resulting
in a needless waste of time, effort, and money. (Robust Ada code with its narrative characteristics
is almost self-documenting. However, the architecture and concept of operations must be clearly
described.) Online access to (or delivery of) technical documentation in electronic format saves
development time and dollars.

CAUTION! The time and money saved by delaying or foregoing immediately needed
documentation actually wastes time and money later in the program.

11.1.4 Project Planning

Project planning is begun once requirements have been sufficiently identified and validated to
establish an acquisition program. Planning (or replanning) continues throughout the life of the
system. [See Chapter 7, Acquisition Planning].

11.1.5 Solicitation

Solicitation is the act of providing requirements to prospective contractors, evaluating their
responses, and awarding a contract. [See Chapter 8, Contracting for Success.]

11.1.6 Project Tracking and Oversight

Project tracking and oversight covers the activities of the acquisition organization from the time
of project inception through project termination.

11.1.7 Acceptance Testing

11.1.7.1 Government Testing

Operational system testing of major Air Force software-intensive systems is conducted by an
interdisciplinary, independent testing agency. The Air Force Operational Test and Evaluation
Center (AFOTEC) is a separately operated agency that reports directly to the Chief of Staff of the
Air Force. The Center is comprised of a headquarters at Kirtland AFB, New Mexico, detachments
at operational locations, and AFOTEC test teams at designated test sites. AFOTEC plans, directs,
controls, independently evaluates, and reports on the operational test and evaluation (OT&E) of
all major Air Force weapon systems, weapon system support systems, C2, and MISs. It supports
system development and production decisions by providing operational assessments and initial
OT&E to determine operational effectiveness (how well the system performs) and suitability
(including reliability, maintainability, and supportability). Table 11-1 lists the AFOTEC
publications you should consult for guidance on software OT&E procedures.

11-12

Chapter 11: Understanding Software Development GSAM Version 3.0

Table 11-1. AFOTEC Software OT&E Pamphlets

NOTE: AFOTECP 99-102 Volumes 2, 4, 5, 6, and 8 are available on the Defense Acquisition
Deskbook CD and web site.

11.1.8 AFOTEC Testing Objectives

AFOTEC cites six objectives in testing system software.

• Usability,
• Effectiveness,
• Software maturity,
• Reliability
• Safety and
• Supportability.

NOTE: Reliability and Safety are discussed in Chapter 9, Engineering Software-Intensive
Systems, and Supportability is discussed in Chapter 12, Software Support.

11.1.8.1 Usability

Usability evaluations concentrate on the operator’s interaction with a software-intensive system.
Observation of test events should reveal strengths and limitations of the system’s operator-machine
interface and its supporting software. A usability questionnaire is used to assess the usability
characteristics of conformability, controllability, workload suitability, descriptiveness, consistency,
and simplicity. [See AFOTECP 99-102, Volume 4, Software Usability Evaluator’s Guide.]

PAMPHLET TITLE

AFOTECP 99-102,
Volume 1

Management of Software Operational Test and
Evaluation

AFOTECP 99-102,
Volume 2

Software Support Life Cycle Process Evaluation
Guide

AFOTECP 99-102,
Volume 3

Software Maintainability Evaluator’s Guide

AFOTECP 99-102,
Volume 4

Software Usability Evaluation Guide

AFOTECP 99-102,
Volume 5

Software Support Resources Evaluation Guide

AFOTECP 99-102,
Volume 6

Software Maturity Evaluation Guide

AFOTECP 99-102,
Volume 7

Software Reliability Evaluation Guide

AFOTECP 99-102,
Volume 8

Software Operational Assessment Guide

11-13

Chapter 11: Understanding Software Development GSAM Version 3.0

11.1.8.2 Effectiveness

Effectiveness evaluations concentrate on ensuring all critical software is exercised in operationally
representative scenarios. Software effectiveness is determined by (and dependent on) system
effectiveness.

11.1.8.3 Software Maturity

Software maturity [as opposed to software development maturity discussed in Chapter 10, Software
Development Maturity] is a measure of the software’s evolution towards satisfying all documented
user requirements, as illustrated in Figure 11-1. [Refer to AFOTECP 99-102, Volume 6, Software
Maturity Evaluation Guide.] The main AFOTEC indicator of software maturity is the trend in
accumulated software changes to correct deficiencies, provide modifications, and accommodate
hardware changes. The software maturity test objective considers software fault trends, severity,
and test completeness while taking into account planned software modifications.

SOFTWARE
MATURITY

Accumulated
Software
Problems

Average
Closure

Time

Average
Point/

Problem

Measure of the software’s
progress in its evolution toward
satisfaction of all documented

user requirements

Figure 11-1. OT&E Process for Software Maturity

Software maturity uses a severity point system to track unique problems. A weighted value is
assigned based on the severity of the failure as defined in the Data Management Plan. Software
faults of higher severity are assigned a higher value than those of less severity. As the test
progresses and new fault data are collected, they are plotted against a time line. Ideally, the slope
of the curve should decrease with time. This maturity assessment method is illustrated in Figure
11-2.

11-14

Chapter 11: Understanding Software Development GSAM Version 3.0

Figure 11-2. Software Maturity

11.1.9 AFOTEC Software Evaluation Tools

The AFOTEC software evaluation tools [AFOTECP 99-102, Volumes 1-8] should be used
throughout the acquisition and development phases of major systems software. They are based
on COTS software metrics, ensure credible evaluations, and help to reduce life cycle costs and
schedule. Software evaluation approaches differ among programs; however, the AFOTEC mission
is to evaluate software as an integral part of the overall system (as opposed to evaluating it as a
separate entity). It uses the same fundamental OT&E processes for MIS and embedded weapon
systems software based on the premise that if the system works, the software works!

NOTE: To be effective, software operational test planning must take place throughout
the development process. Often, the developer and the SPO are reluctant to provide the
operational tester with the documentation and materials needed to perform an effective
evaluation of software maturity, reliability, supportability, usability, and effectiveness.
Achieving cooperation among the system developer, the SPO, and the operational tester
is an essential management prerequisite.

11.1.10 AFOTEC Lessons-Learned

AFOTEC has provided a list of lessons-learned based on the experiences of programs having
completed the OT&E process.

C
H
A
N
G
E

P
O
I
N
T
S

Time

Problems Discovered x Severity Levels = Change Points

Problems Corrected x Severity Levels = Change Points

11-15

Chapter 11: Understanding Software Development GSAM Version 3.0

• Deputy for Software Evaluation (DSE). A DSE should be assigned as early as possible to
the SPO to become familiar with the system and to assist in detailed software OT&E planning.
The DSE should be onboard at least 6 months prior to the first OT&E test event. (Larger
programs may require even more lead-time.) The DSE, a software systems engineer, serves
as the software evaluation team leader, is assigned to the test program, and coordinates and
controls the completion of OT&E test plan objectives pertaining to software and software
support resources.

• Documentation. The DSE and software evaluators must be provided current documentation
and source code listings in time to perform evaluations. Promised deliveries not received
can cause problems; therefore, it is to everyone’s benefit to deliver requested documentation
on time. You must also identify early the requirement for special sorties, equipment, and
analysis support so that test requirements are accommodated.

• Testing terminology. Your team must be conversant with terminology and definitions (software
faults, defects, errors, bugs, etc.). Industry-accepted definitions of software errors and defects
(faults), found in the ANSI/IEEE, Glossary of Software Engineering Terminology, are listed
in Table 11-2. [IEEE90] A failure is an observable event (an effect). A fault is the cause of
a failure. A fault may be caused by software or hardware. A software defect is the human-
created element that caused the fault, such as those found in specifications, designs, or code.
The bottom line with AFOTEC is, if an action is required of the operator due to a failure —
it must be documented.

11-16

Chapter 11: Understanding Software Development GSAM Version 3.0

Table 11-2. IEEE Software Engineering Terminology [IEEE90]

• Final test reports. Striving for correct technical content, software test teams often write final
test reports but are frustrated when OT&E headquarters personnel rewrite them for format
and content. Time constraints and pride-of-authorship can strain tensions between the test
team and headquarters. One solution is to have the two teams work together to review final
report drafts early in the process. Also make sure that the report is written for a wide spectrum
of readers, computerese is kept to a minimum, and that it is tailored for a senior officer
audience with emphasis on results and recommendations.

NOTE: “Timing” is more important in real-time systems than in any other software
development. The Software Engineering Institute (SEI) has developed a method, Rate
Monotonic Analysis (RMA), for managing the scheduling and execution of tasks for
real-time systems.

Category Definition

Error • The difference between a computed, observed, or measured value or condition and
the true, specified, or theoretically correct value or condition

Fault • An incorrect step, process, or data definition in a computer program

Debug • To detect, locate, and correct faults in a computer program.

Failure • The inability of a system or component to perform its required functions within
specified performance requirements. It is manifested as a fault.

Testing • The process of analyzing a software item to detect the differences between existing
and required conditions (that is, bugs) and to evaluate the features of the software
items.

Dynamic
analysis

• The process of evaluating a system or component based on its behavior during
execution.

Static
analysis

• The process of evaluating a system or component based on its form, structure,
content, or documentation.

Correctness • The degree to which a system or component is free from faults in its specification,
design, and implementation

• The degree to which software, documentation, or other items meet specified
requirements

• The degree to which software, documentation, or other items meet user needs and
expectations, whether specified or not.

Verification • The process of evaluating a system or component to determine whether the products
of a given development phase satisfy the conditions imposed at the start of that
phase.

• Formal proof of program correctness.

Validation • The process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements.

11-17

Chapter 11: Understanding Software Development GSAM Version 3.0

11.2 Software Development from the Supplier
View Point

11.2.1 Requirements Analysis

11.2.1.1 Analysis

The development team must approach the requirements analysis task with strong leadership that
emphasizes risk reduction through evolutionary development and prototyping to ensure quality
issues are translated into functional requirements. The software system must, in addition, be
analyzed within its environmental framework. This analysis may be performed in accordance
with one, or several, structured analysis techniques (such as functional decomposition, hierarchy
diagrams, object-oriented analysis, data flow analysis, or state transition charts). Methods include:
object-oriented (data-oriented) [COAD90], process-oriented (functional or structured analysis)
[YOURDON90], and behavior-oriented (temporal, state-oriented, or dynamic; e.g., essential
systems analysis) [McMENAMIN84]. Each of these techniques view the system being developed
from a different perspective.

The approach selected by the development team depends on the type of software system being
defined, and the approach that most clearly states the problem. Further analysis involving user
scenarios, transaction modeling, performance modeling, and consistency checking among
viewpoints must also be performed. This ensures overall requirements consistency. Requirements
so derived must then be validated with the users prior to development to guarantee that the
system can, and will in fact, be built. Validation approaches include performance modeling and
prototyping of those software components deemed critical to software success. Another good
litmus test for the validity of a requirements package, used on the F-22 Program, is to check
whether designers from two different development team organizations have identical
understanding of a set of bottom-level elements in the requirements hierarchy. If not, your team
process is flawed, and the chances the pieces produced by various team members will integrate
smoothly is close to zero.

Many techniques have been developed to assist in specifying and documenting requirements,
such as integrated computer-aided manufacturing definition language (IDEF) and computer-
aided software engineering (CASE) tools. Whatever the tools or methods used, the analysis
should include a basic series of requirements activities.

• If requirements are uncertain, build a prototype, or model the information domain,
• Create a behavioral model that defines the process and control specializations,
• Define performance, constraints, and validation criteria,
• The Software Requirements Specification must be written or depicted, and
• Conduct regular formal technical reviews. [PRESSMAN93]

Figure 11-3 illustrates the requirements definition and analysis process performed for the F-22.
A joint relationship among all stakeholders must continue throughout development. Eventually,

11-18

Chapter 11: Understanding Software Development GSAM Version 3.0

this effort will result in documentation or data that directly cross-references test cases to
requirements and code. At the same time, developers and testers should independently plan,
design, develop, inspect, execute, and analyze software test results.

Figure 11-3. F-22 Requirements Process

11.2.1.2 Software Requirements Specification (SRS)

The successful completion of the requirements phase results in a Software Requirements
Specification (SRS). Common sense must be used when writing these specifications so that they
are realistic, achievable, and not just bells-and-whistles. It must be kept simple and short. Quality
attributes should be defined such that the designer knows how to go about achieving them, and
the user knows whether they have been achieved when the software is delivered. [GLASS92]
Remember, quality must be testable and measurable. To achieve this, there must be an open,
honest, and cooperative free exchange of information between the Government and the developer
(contractor) as reflected in the SRS.

The specification process is one of representation. Requirements must be represented in such a
way as to facilitate their successful implementation into software. The characteristics of a good
specification are:

• Functionality is separated from the implementation. Specifications must be expressed entirely
in the “what” form, rather than the “how.”

• The specification language must be process-oriented — the process to be automated and the
environment in which it is to function and interact must be defined.

• The specification must describe the software within the context of the entire system.
• The specification must be an empirical representation, rather than a design or implementation

representation, of the system.

System Function

Avionics Function

Sensor Function

Rapid prototyping model
provides the tool for

analysis and optimization
of design alternatives

Sensor Mode

Analysi s of Alternativ es

Trac eable Fl ow
dow

n

DETAILED
HW/SW

REQUIREMENTS

11-19

Chapter 11: Understanding Software Development GSAM Version 3.0

• A specification must be comprehensive and formal enough to determine if the implementation
fulfills randomly selected test case requirements.

• The specification must be flexible, enhanceable, and never totally complete.
• The specification must be localized, loosely coupled, and dynamic. [PRESSMAN93]

Dobbins claims that as long as developers insist on writing software requirements in prose form,
requirements will continue to be the source of expensive software defects. He recommends the
acquisition and use of one or more of the emerging specification generation techniques, many of
which require the use of CASE tools. The tools selected should be based on ease-of-use and the
ability to perform comprehensive real-time analysis and evaluation of the requirements package
as it is being developed. [DOBBINS92]

11.2.1.3 Interface Requirements Specification (IRS)

Never lose sight of the fact that hardware and software development are intimately related.
Although they are developed in unison, for major programs, software is always on the system’s
critical path. Early consideration of how the software is to interface with the system and other
software is necessary to achieve the benefits of cohesive, interoperable systems. Proper integration
of hardware and software can be assured through carefully identified interface requirements and
prudently planned reviews, audits, and peer inspections. Such systems provide improved accuracy,
currency, and quality. Early identification of integration and interface requirements also prevents
redundancy.

Software interface requirements are documented in the IRS. In complex system developments,
with multiple developers, each contractor must have a baselined IRS to ensure interface discipline.
There must also be a requirement that each contractor’s software system interface with other
designated systems. Otherwise, each contractor can change their interface at will, affecting other
contractors’ efforts. Not baselining Interface Control Documents (ICDs) also gives contractors
a mechanism to shift the schedule continuously. While ICD changes can lead to additional
expense, uncontrolled change is even more dangerous. A more acceptable method is to develop
to a given version of an ICD while still having the contractor maintain and update that ICD. The
contractor then assumes the responsibility of maintaining current ICDs and of meeting the
requirement. Program milestones should be used to determine which ICD is being used to
develop any given phase of the system.

NOTE: Refer to Requirements Determination Process by EDS.

11.2.1.4 Prototyping

Prototyping, along with a structured analysis process and performance modeling, is an effective
means to evolve and clarify user expectations. They can be used to resolve conflicts among cost,
schedule, performance, and supportability; to ensure users and developers have the same
understanding; and to validate requirements. Prototypes provides a better way for resolving the
statement, “I’ll know it when I see it,” than documenting requirements in English, with all its
ambiguities. Prototypes, which include the results from rapid prototyping techniques, executable
models, and quantitative descriptions of behavior (such as structured prototyping languages or
graphical representations), are powerful tools for deriving correct hardware/software partitioning,

11-20

Chapter 11: Understanding Software Development GSAM Version 3.0

for performance testing, and for eliminating significant sources of risk. Remember, prototypes
must be useful, not just demonstrations or models of the system.

Prototyping involves the early development and exercise of critical software components (e.g.,
user interfaces, network operating systems, resource managers, and key algorithm processors).
They are comprised of the user interface, its interaction details with the proposed system, and
executable functional models of critical algorithms. They are different from demonstration systems
that provide usable evolutionary increments. Normally, in MIS and C3 systems, prototypes
demonstrate screens and limited functions — not actual software that works!

One method for developing a prototype to is build it from reusable components. Because the
components already exist, a prototype built from reusable parts is the easiest, cheapest, and
quickest to build. It can provide rapid functionality since it is built from previously coded and
tested components. Another way to build a working prototype is through a tool such as UNAS,
which can generate a demonstrable level of functionality in Ada code. An ability to plug-in,
plug-out COTS products can also greatly speed up the prototyping process. The least desirable
prototyping approach is one which uses HOLs and/or rapid prototyping tools that only build a
quick-and-dirty skeleton of the system. While the external facade (e.g., front-end screens with
no code behind them) may give the user a touch-and-feel for what the final system will be like,
there is nothing behind that front-end prototype (i.e., no functionality that the user can execute to
determine if it will do something useful). [YOURDON92]

11.2.2 Project Planning

Project planning begins during requirements analysis, but the majority of project planning cannot
be accomplished until the requirements are understood. A thorough understanding of the
requirements leads to better estimates of the skills, effort, and time required to satisfy the
requirements. Project planning is never really finished. A software development plan and
project plan may be developed early in the project, but they should be reviewed and updated as
required throughout the project life cycle.

11.2.3 Test Planning

A description of requirements tests (or measures) must be included in the software requirements
specification. Testing must demonstrate that, if successfully completed, the delivered software
will satisfy the requirement. The need for testable requirements demands that testing issues are
addressed early in the program. Software test personnel (in addition to the developers, users,
and maintainers) must take an active role in the requirements definition, analysis, and software
design phases. The formal assessment of quality objectives should be an integral part of this
effort. Unless a user need is correctly and completely stated, it is unlikely that either quality code
will be written or a test can be performed to determine if the software satisfies the need and
quality requirements.

11-21

Chapter 11: Understanding Software Development GSAM Version 3.0

11.2.4 Preliminary Design

11.2.4.1 Design

The importance of software design can be stated simply: design is where the quality goes in.
This is the critical activity where your choice of a developer pays off. Skills, experience, ingenuity,
and a professional commitment to process improvement and excellence are necessary to ensure
your product has quality built-in.

Software design is the pad from which development and maintenance activities are launched.
Software design is the process through which requirements are mapped to the software architecture.
Design is also divided into two phases so architecture and requirements allocations are in place
before components are detailed. Partitioning the process into two (or more) phases provides the
Government with an opportunity to formally review the design as it evolves [e.g., Preliminary
Design Review (PDR) and Critical Design Review (CDR)]. Remedial actions can be taken
before the design becomes too detailed. The two-phase process also gives you a chance to
subject the high-level design to external review (e.g., by systems and hardware engineering team
members). This ensures compatibility with other system software and hardware with which the
software must interact.

The architectural design defines the highest-level relationship among major software structural
components, representing a holistic view of the system. Refinement of the architecture gives
top-level detail, leading to an architectural (preliminary) design representation where computer
software units (CSUs) are identified. Further refinement produces a detailed design representation
of the software, very close to the final source code. [Bottom-up design is this process in reverse.]
Detailed design involves refinements of the architecture CSUs leading to algorithmic
representations, controls, and data structures for each architectural component. It may be possible
to produce poor code from a good design — but seldom is it possible to produce good code from
a poor design. Design is the “make-it-or-break-it” phase of software development. [GLASS92]

Within the context of architectural and detailed design, a number of activities occur. All the
information gathered and analyzed during requirements definition flows into the design activities.
The software requirements expressed in the form of information, functional, and behavioral
models are synthesized into the design. The design effort produces an architectural design and a
detailed design (comprised of a procedural design, a data design, and an interface design). The
procedural design translates structural components into a procedural representation of the software.
The data design transforms the domain model (created during requirements definition) into the
data structures required to implement the software. Interface design not only defines how the
software is to interface with other system software and hardware, but with the human-machine
interface. Figure 11-4 illustrates how information about the software product, defined during
requirements analysis, flows into the design which in turn flows into the coding and testing
phases.

11-22

Chapter 11: Understanding Software Development GSAM Version 3.0

Figure 11-4. Ingredients of Software Design

For software to achieve a high degree of excellence, it must be defect free; i.e., reliable. Adding
the dimension of reliability to the quality equation (especially for weapon system software)
translates into a design requirement for fault-tolerance. Software designed to be fault-tolerant
possesses the following characteristics:

• Defect confinement. Software must be designed so that when a defect occurs, it cannot
contaminate other parts of the application beyond the module where it occurred.

• Error detection. Software must be designed so that it tests itself for, and reacts to, errors
when they occur.

• Error recovery. Software must be designed so that after a defect is detected, sufficient internal
corrective actions are taken to allow successful execution to continue.

• Design diversity. Software and its data must be designed so fallback versions are accessible
following defect detection and recovery. [GLASS92]

11.2.5 Design Simplicity

When your developer decomposes the solution from the high-level design to lower-levels of
detail, it must be kept simple. Whatever design methods employed, the underlying issue is to
keep it within human limitations for managing complexity. Since automatic software design has
still to evolve as a practical reality, you must apply sound engineering discipline to support your

Procedural

Design

A r chi tec ture

D
esi gn

D
ata D

esign

TEST

Program Modules

Integrated
and Validated

Software

Information
Domain
Model

Behavioral
Model

Functional
Model

Other
Requirements

DETAILED
DESIGN

ARCHITEC-
TURAL

DESIGN

CODE

Interface D
esign

11-23

Chapter 11: Understanding Software Development GSAM Version 3.0

quality design goals. Thus, the design solution must be broken down into intellectually manageable
pieces (modules). Ideally, modules should contain no more than 100-200 lines-of-code.
Remember,

Throughout the design process, the quality of your developer’s evolving design should be assessed
though a series of informal in-house walkthroughs, formal technical reviews, and peer inspections.
To evaluate design quality, the criteria for a good design must be established in the SRS. Applying
software engineering to the design process encourages the use of fundamental quality design
principles, a systematic methodology, and thorough review of the connections between modules
and with the external environment.

During design, the skills of your software developer are put to the acid test. Quality software
must achieve the goals of software engineering by fulfilling the quantifiable principles of well-
engineered. To refresh your memory, these include:

• Abstraction and information hiding,
• Modularity and localization, and
• Uniformity, completeness, and confirmability.

11.2.6 Architectural Design

A good software architecture should reflect technical certainties and be independent of variants,
such as performance, cost, and the specific hardware selection. It must also address higher-level
concepts and abstractions. Lower-level details are dealt with during the detailed design phase,
which defines the particular modules built under the architecture at the software engineering
level. By defining only essentials (or certainties), rather than incidentals (or variants), a good
architecture provides for the evolution of the system and for the incremental or evolutionary
upgrading of components. A sound approach for the software architect is to address (and to
commit to) certain essentials and to be independent of variable incidentals. The hallmark of a
good architecture is the extent to which it allows freedom and flexibility for its implementers.

Architectures must address the relationships among system components (i.e., the interfaces
between them). Standardization of data interfaces, their implementation, access, and
communication improves the quality and consistency of data and the overall effectiveness of the
system. Data and system interfaces for MIS and C3 systems should be compliant with DISA’s
Technical Architecture Framework for Information Management (TAFIM). A standards-based
architecture reflects a managed environment (based on defined standard interfaces) that describes
the characteristics of each architectural component. It is depicted through classes of architectural
platforms that are, by definition, modular, highly reusable, and inherently flexible. It provides a
high degree of interoperability in that the architecture is owned by the user — not the vendor.
[DMR91]

In building a standards-based architecture you should also make sure your software architecture
is built using lateral vision (i.e., from an agency, command, and user perspective). Once standards-
based architectures are built, they must then be integrated into reuse. A rule of thumb is to use
the standards that are out there; e.g., Government Open Systems Interconnect Profile (GOSIP),
Portable Operating System Interface for Unix Computer Environments (POSIX), Structure Query

11-24

Chapter 11: Understanding Software Development GSAM Version 3.0

Language (SQL), etc. You should also ensure that your developer makes sound decisions about
user interface standards. For MISs, a framework should be picked from the TAFIM. The
“Command Center Store” of Electronic Systems Command provides a generic architecture and
reusable components common to many C2 systems.

A user interface, such as OSF/Motif for XWindows, should also be considered. Client/server
roles, a migration strategy application (or model layer), and binary application portability with
purchased software are also important factors. National Institute of Standards and Technology
(NIST), Federal Information Processing Standard (FIPS), and commercial standards should be
used, when appropriate. Figure 11-5 illustrates the standards-based architecture planning process.
[DMR91]

Implementation
Opportunity
Identification

4

Reality
Testing of

Architecture

7
Harvesting

Benefits

6
Mirgration
Options

5

Architectural
Framework

1

Target
Architecture

Definition

3
Baseline
Definition

2

(Architectural
Framework
Vision and

Issues
Document)

(Architectural
Assessment
Document)

(Implementation
Project
Plans)

(Architectural
Construction

Plan)

(Opportunity
Identification
Document)

(Target
Architecture

Blueprint
Document)

(Architectural
Baseline
Study

Document)

Figure 11-5. Standards-Based Architecture Planning Process [DMR91]

The baselined architecture and plans for the system’s evolution impact your developing application
in significant and important ways. You must pay close attention to the architectural design
process because it is critical to the success of your program. Management considerations include:

• Creating a clear vision of requirements and functionality early,
• Relentlessly eliminating unnecessary complexity from systems and software, and
• Careful control of requirements.

During architectural design, requirements are allocated to a number of components, such as
objects or functional requirements. Derived requirements are also defined and allocated. Derived
requirements may reflect the need to reuse existing components, to design components for reuse,
to take advantage of available COTS software, or other factors such as security and safety design
constraints. While not originally stated in the requirements specification, derived requirements
impact on quality and performance and must be reflected as functions (or objects), mapped from
the SRS to the architecture.

The product of the architectural design phase is the software architecture. The architecture
reflects two characteristics of the software solution: (1) the hierarchical structure of procedural
components and objects (modules), and (2) the structure of data. It evolves from partitioning
related elements of the software solution. To achieve openness to COTS, government-off-the-

11-25

Chapter 11: Understanding Software Development GSAM Version 3.0

shelf (GOTS), and non-developmental item (NDI) solutions, two forms of system partitioning
should be achieved. First, systems interfaces, functionality, and data schema must be partitioned
within the software architecture such that there are no barriers to the inclusion of the best available
technology which requires an awareness of available technology and probable technological
progress. Second, the architecture must be partitioned such that those modules that will not
change are divorced from the path of those modules slated for evolutionary improvements. In
addition, the requirement for an open systems architecture requires that designers possess an
early and knowledgeable awareness of market evolution (and indeed revolution) in the burgeoning
software technology arena. The architecture should reflect a tradeoff between needs and currently
available technology, whereas interfaces must be designed such that a change within one element
of the architecture has minimal impact on other elements.

These related software elements were derived from related elements of the real-world problem
domain, implicitly defined during requirements analysis. The architecture also defines the
underlying software structure. It gives a representation of how the software is partitioned (not
allocated) into components and their interconnection. It provides a picture of the flow of data
(including database schema, message definitions, input and output parameters, etc.) and the flow
of control (including execution sequencing, synchronization relationships, critical timing
constraints or events, and error handling). It outlines the rules for integration of system components
which involves timing and throughput performance attributes and interconnection layers,
standards, and protocols. The architecture also distinguishes between hardware structure and
software structure, and provides for the future allocation of software components to hardware
components. [PAYTON92]

NOTE: See Volume 2, Appendix F, Tab 1, “The Importance of Architecture in DoD
Software,” and Tab 2, “A New Process for Acquiring Software Architecture.”

In unprecedented, major software-intensive systems, certain software components often must be
custom designed to meet specialized requirements. CASE tools should be used to partition and
layer the architecture to isolate those functions which are necessarily unique. One of the biggest
issues in integrating uniquely developed software with multiple COTS software packages is
interoperability. A solution to this problem is the introduction of a “middle layer” of software
that isolates the interface between the unique infrastructure and the COTS. The advantage to
using such a middle layer is that it encapsulates unique protocols so new COTS products can be
plugged-in as they become available. Mission-unique software must be designed such that the
components of the software infrastructure are transparent to the application code. An analogy to
the software middle layer can be made to adapting an electrical appliance to a wall plug. If your
radio has a 3-prong plug but your wall circuit only accepts a 2-prong, you can place a 3-prong/2-
prong adapter between the two without having to modify either the wall circuit or the radio.

11.2.6.1 Preliminary Design Review (PDR)

The PDR is a formal government/contractor review conducted for each computer software
configuration item (CSCI) to verify that the top-level software architecture design is consistent
with defined software requirements and suitable for the detailed design. The following topics
are covered during the PDR:

11-26

Chapter 11: Understanding Software Development GSAM Version 3.0

• The overall software structure to the computer software component (CSC) but not in all
cases to the lowest unit level in the software hierarchy [structure charts are one method for
depicting the software architecture];

• Functional flow showing how SRS allocated requirements are accomplished.
• Control function descriptions explaining how the executive control of CSCs will be

accomplished. Start, recovery, and shutdown features are described for each major function
or operating mode.

• Storage allocation, timing, and resource utilization information describing how the loading,
response, and scheduling requirements will be met by the selected digital hardware and the
software design.

• Software development facilities and tools that will be used for the detailed design, coding,
and testing of the software. These facilities and tools include compilers, simulators, data
reduction software, diagnostic software, a host computer, and test benches.

• Plans for software testing, with emphasis on integrating CSCs in a phased manner. In particular,
top-down, bottom-up, or combination strategies are considered, and an effective strategy for
the hierarchical software design selected.

• Human engineering of software-controlled control and display functions. Preliminary versions
of user’s manuals are reviewed to verify that human factor and training considerations are
correctly addressed.

The contractor should answer following questions at the Preliminary Design Review (PDR):

• What is the software design structure, the resulting major input/output flows, and the
relationships between CSCs?

• Is the overall software structure consistent with a structured, top-down, object or other design
and implementation concept?

• Are all common functions identified, and units or subroutines designed to implement these
functions?

• Is the interface between CSCs and the operating system or executive clearly defined? Are the
methods for invoking each CSC’s execution described?

• Has a CSC been designed to satisfy every system requirement?
• Is the traceability relating each CSC to specific software requirements documented?
• Is software being designed in a manner that provides for ease of modification as planned for

in the SDP?
• How will the software be integrated with the hardware during full-scale engineering

development?
• When will the system and software designs be baselined?
• Are sufficient memory and timing growth capacity being incorporated in the system and

software design?
• How will software testing be performed? What levels of testing will be employed? Will an

independent analysis and evaluation be accomplished?
• How will testing be used to clearly identify deficiencies as either software or hardware related?

How will it be determined if errors/defects are caused by either the hardware or software?
How will regression testing be performed?

• How will the software be supported in the field? What hardware and software will be needed
for the support base? How will it be procured?

11-27

Chapter 11: Understanding Software Development GSAM Version 3.0

11.2.6.2 Detailed Design

The detailed design is a description of how to logically fulfill allocated requirements. The level
of detail in the design must be such that software coding can be accomplished by someone other
than the designer. The design of each functional unit (module) is performed based on the software
requirements specification and the software test plan. The unit’s function, its inputs and outputs,
plus any constraints (such as memory size or response time) are defined. The detailed design
specifies the logical, static, and dynamic relationships among units. It also describes module and
system integration test specifications and procedures.

Software engineering techniques can then be used to evaluate and make tradeoffs among the
different approaches, which are eventually narrowed down to an optimum solution. As the
exploratory process proceeds, the design process becomes more formal. From a quality
perspective, the design approach used by your developer must be determined by the nature of the
application problem. Your design architecture might be based on functions, data, objects, or a
combination thereof.

11.2.6.3 Functional Design

For heavily logic-oriented applications (such as real-time systems) where the problem involves
algorithms and logic, a function-oriented approach is often used. Function-oriented design depicts
information (data and control) flow and content, and partitions the system into functions and
behaviors. From the single highest-level system description, the system is partitioned into functions
and sub-functions with ever increasing levels of detail. The value of a function-oriented design
is that it provides manageable levels of complexity at each phase of the design process. It also
identifies and separates the functions performed at each phase of application execution. However,
this hierarchical decomposition by function leaves the question as to what is the most abstract
description of the system.

The design focuses on those requirements most likely to change (i.e., around functionality). But,
if the specification is poorly written, designers are faced with the problem of having to deal with
a top-down design for which they are unable to locate the top. Another problem with hierarchical
methods is, as decomposition occurs by defining one level at a time, it can delay the discovery of
feasibility problems lurking at lower levels. This can be dealt with by using an iterative process
in which low-level problems are addressed with a redesign starting from the top-down. [GLASS92]
Another drawback with functional design methods is they have limited software reuse benefits.
They can lead to the redundant development of numerous partial versions of the same modules
— decreasing productivity and creating configuration management overloads. [AGRESTI86]

11.2.6.4 Data-Oriented Design

For heavily data-oriented applications (such as MISs) where the problem involves a database or
collection of files, a data-oriented design approach is often used. This approach focuses on the
structure and flow of information, rather than the functions it performs. A data-oriented design
is a clear cut framework: data structure is defined, data flow is identified, and the operations that
enable the flow of data are defined. A problem often encountered with a data-oriented approach
is a “structure-clash,” where the data structures to be processed are not synchronized (e.g., input
file is sorted on rank, whereas output file is sorted on time-in-grade). Solutions to the clash

11-28

Chapter 11: Understanding Software Development GSAM Version 3.0

problem can be the creation of an intermediate file or the conversion of one structure processor
into a subroutine for the other. [GLASS92]

11.2.6.5 Object-Oriented Design

A variety of object-oriented (OO) methodologies and tools are available for software development.
Each approach emphasizes different phases and activities of the software life cycle using various
terminologies, products, processes, and implementation techniques. The impact of a methodology
on the conduct and management of a software development effort can be extensive. Therefore,
if you decide to employ an OO approach, you should encourage your developer to investigate
and select the OO approach that best fits your specific program needs. An object-oriented design
(OOD) method focuses on interconnecting data objects (data items) and on processing operations
in a way that modularizes information and processing rather than processing alone. The software
design becomes de-coupled from the details of the data objects used in the system. These details
may be changed many times without any effect on the overall software structure. Instead of
being based on functional decomposition or data structure or flow, the system is designed in
terms of its component objects, classes of objects, subassemblies, and frameworks of related
objects and classes. Strassmann explains that component-level software objects can be quickly
combined to build new applications. These objects are then candidates for reuse on multiple
applications — lowering development costs, shortening the development process, and improving
testing. Because objects are responsible for a specific function, they can be individually upgraded,
augmented, or replaced — leaving the rest of the system unchanged. [STRASSMANN93]

Object-oriented technology lets software engineers take a kind of Velcro (or rip-and-stick) approach
to software development. The idea is to encase software code into objects that reflect real-world
entities, such as airplanes, crew chiefs, or engineering change orders. The internal composition
of objects is hidden from everyone but the programmer of the object. Once molded into objects,
the encapsulated code can be stored in repositories that are network-accessible by other designers.
As needed, component-level objects can be quickly grafted with other objects to create new
applications.

Using a familiar graphical user interface, such as windows and icons, the object-oriented approach
lets developers visualize and design applications by pointing-and-clicking on the objects they
wish to use. This approach cultivates reuse because objects can be used in multiple applications,
lowering development costs, speeding up the development process, and improving testing.
Because objects are responsible for a specific function, they can be individually upgraded,
augmented, or replaced, leaving the rest of the application unaffected. [STRASSMANN93]
OOD has the added benefit of allowing users to participate more closely in the development
process. It is very difficult to describe in writing what a software application is supposed to do,
whereas a graphical representation is easy to visualize and manipulate. Objects help all involved
in the development process (the systems/software engineers, programmers, and users) to
understand what the application should do.

11.2.7 Problem Domains and Solution Domains

Object-oriented development pioneer, Grady Booch, explains how OOD methodology facilitates
developers in solving real-world problems through the creation of complex software solutions.
The problem domain has a set of real-world objects, each with its own set of appropriate operations.

11-29

Chapter 11: Understanding Software Development GSAM Version 3.0

These objects can be as simple as a baseball bat or as complicated as the Space Shuttle. Also in
the problem domain are real-world algorithms that operate on the objects, resulting in transformed
objects. For example, a real-world result may be a course change for the Space Shuttle. When
developing software, either the real-world problem is modeled entirely in software, or for example
in embedded software, real-world objects are transformed into software and hardware to produce
real-world results. No matter how the solution is implemented, it must parallel the problem
domain. Programming languages provide the means for abstracting objects in the problem domain
by implementing them into software. Algorithms, which physically map some real-world action
(such as the movement of a control surface), are then applied to the software object to transform
it. The closer the solution domain maps your understanding of the problem domain, the closer
you get to achieving the goals of modifiability, reliability, efficiency, and understandability.

OOD differs fundamentally from traditional development, where the primary criterion for
decomposition is that each software module represents a major step in the overall process. With
OOD, each system module stands for an object or class of objects in the problem domain.
[BOOCH94] Of course, you will not always have perfect knowledge of the problem domain;
instead, it may be an iterative discovery process. As the design of the solution progresses into
greater states of decomposition, it is likely new aspects of the problem will be uncovered that
were not initially recognized. However, if the solution maps directly to the problem, any new
understanding of the problem domain will not radically affect the architecture of the solution.
With an object-oriented approach, developers are able to limit the scope of change to only those
modules in the solution domain that represent changing objects in the problem domain. [The
Space Shuttle mission will always be fulfilled by a space vehicle (constant); how that vehicle is
propelled (variable) may change as technology advances.]

The OOD method supports the software engineering principles of abstraction and information
hiding, since the basis of this approach is the mapping of a direct model of reality into the
solution domain. This strategy also provides a method for decomposing a software system into
modules where design decisions can be localized to match our view of the real world. It provides
a uniform means of notation for selecting those objects and operations that are part of the design.
With Ada as the design language, the details of operations can be physically hidden, as well as,
the representation of objects.

11.2.8 Critical Design Review (CDR)

The purpose of CDR is to verify that the detailed software design is complete, correct, internally
consistent, satisfies all requirements, and is a suitable basis for coding. The CDR follows the
Detailed Design phase, and the successful completion of CDR marks the completion of the
Detailed Design phase. The CDR is performed to establish the integrity of a computer program
design before coding and testing begins. When a given software system is so complex that a
large number of software modules will be produced, the CDR may be accomplished in increments
during the development process corresponding to periods during which different software units
reach their maturity. For less complex products, the entire review may be accomplished at a
single meeting. The primary product of CDR is the formal review of specific software
documentation, which will be approved and released for use in coding and testing. CDR covers
the following topics:

11-30

Chapter 11: Understanding Software Development GSAM Version 3.0

• Description of how the top-level design, presented at the PDR, has been refined and elaborated
upon to include the software architecture down to the lowest-level units.

• The assignment of CSCI requirements to specific lower-level CSCs and units.
• The detailed design characteristics of the CSCs. These detailed descriptions shall include

data definitions, control flow, timing, sizing, and storage allocation. Where the number of
units is large and the time for the CDR limited, the description concentrates on those units
performing the most critical functions.

• Detailed characteristics of all interfaces, including those between CSUs, CSCs, and CSCIs.
• Detailed characteristics of all databases, including file and record format and content, access

methods, loading and recovery procedures, and timing and sizing.
• Human engineering considerations.
• Life cycle support considerations that include a description of the software tools and facilities

used during development that will be required for software maintenance.

The contractor should answer the following questions at CDR:

• Are each unit’s inputs/outputs clearly defined? Are the units, size, frequency, and type of
each input/output parameter stated?

• Is the processing for each unit defined in sufficient detail, via flow charts, programming
design language (PDL), structured flow charts, or other design language so that the unit can
be coded by someone other than the original designer of the unit?

• What simulations, models, or analyses have been performed to verify that the design presented
satisfies system and software requirements?

• Has machine dependency been minimized (e.g., not overly dependent on word size,
peripherals, or storage characteristics)? Have machine dependent items been segregated into
independent units?

• Has the database been designed and documented? Has it been symbolically defined and
referenced (e.g., was a central data definition used)?

• Have the software overall timing and sizing constraints been subdivided into timing and
sizing constraints for individual units? Are the required timing and sizing constraints still
met?

• Have all support tools specified for coding and debugging (i.e., pre- and post-processor)
been produced? If not, are they scheduled early enough to meet the needs of the development
schedule?

• Are the software test procedures sufficiently complete and specific so that the test can be
conducted by someone else?

• Do the test procedures include input data at the limits of required program capability? Do
test procedures contain input that will cause the maximum permitted values and quantities of
output?

• Do test procedures exercise representative examples of all possible combinations of both
legal and illegal input conditions?

• Are there any potential software errors that cannot be detected by the test runs in accordance
with the test procedures? If so, why? What will be done to make certain the software does
not have those errors?

11-31

Chapter 11: Understanding Software Development GSAM Version 3.0

• How will detected errors be documented? How will corrective actions be recorded and
verified?

• What progress has been made in developing or acquiring the simulations and test data needed
for testing? Will they be available to support these testing efforts? How will they be controlled
during the test effort?

11.2.9 Coding

The purpose of this phase is to put the design produced during the design phase into practical
effect. Programmers translate the design into a language the computer can understand and execute.
Of course, as units are coded, further decomposition may be required. In this regard, the design/
code/test phases lose their distinction and should form an iterative process at each stage of the
solution. Peer reviews or other forms of formal inspection are an important part of the coding
phase. Jones reports:

Most forms of testing are less than 30 percent efficient, in that they will find less than one bug
out of every three actually present. Formal design and code inspections tend to be the most
efficient, and they alone can exceed 60 percent in defect removal efficiency. [JONES91]

11.2.10 Testing

Testing has been the most labor-intensive activity performed during software development. Testing
often requires more effort than the combined total for requirements analysis and design by as
much as 15%. It has also been a significant source of risk, often not recognized until too late into
cost and schedule overruns. There are two basic reasons why testing is risky. First, testing
traditionally occurs so late in software development that defects are costly and time consuming
to locate and correct. Second, test procedures are ad hoc, not defined and documented, and thus,
not repeatable with any consistency across development programs. We enter testing without a
clear idea of what is to be accomplished and how. Testing can be a major source of wheel
spinning that can lead from one blind alley to another.

Historically, software testing has been a process that checks software execution against
requirements agreed upon in the SRS. The goal of software testing was to demonstrate correctness
and quality. Today, we know this definition of testing is imprecise. Testing cannot produce
quality software — nor can it verify correctness. Testing can only confirm the presence (as
opposed to the absence) of software defects. The testing of source code alone cannot ensure
quality software, because testing only finds faults. It cannot demonstrate that faults do not exist.
Therefore, correcting software defects is a fix, not a solution. Software defects are usually
symptoms of more fundamental problems in the development process. Development process
problems might be the failure to follow standard procedures, the misunderstanding of a critical
process step, or a lack of adequate training.

Thus, the role of software testing has evolved into an integrated set of software quality activities
covering the entire life cycle. Software tests apply to all software artifacts. To engineer quality
into software, you must inspect, test, and remove errors and defects from requirements, design,
documentation, code, test plans, and tests. You must institute an effective defect prevention

11-32

Chapter 11: Understanding Software Development GSAM Version 3.0

program that engages in accurate defect detection and analysis to determine how and why they
are inserted. Remember, “Error is discipline through which we advance.” [CHANNING92]
Although testing cannot prevent defects, it is the most important activity for generating the
defect data necessary for process improvement.

Developmental testing must not interfere with, nor stand apart from, daily development activities;
it must be embedded within your development process. Furthermore, given the uniqueness of
each DoD software development program, the embedded testing methodologies you apply must
be customized to your environment. If testing standards are instituted and the testing process is
properly planned, the time and effort required for testing can be significantly reduced.
[MOSLEY93]

11.2.10.1 Testing Objectives

Because testing is not limited to the testing phase, but spans the entire software development,
your developer’s Test Plan must state general objectives for the overall testing process and specific
objectives for each development phase. The primary objective should be to assess whether the
system meets user needs. Other objectives depend on the software domain and the environment
in which the system will operate. Testing objectives also focus on verifying the accomplishment
of quality attributes, as discussed in Chapter 13, Software Estimation, Measurement, and Metrics.
The bottom line with testing is test early, test often, and use a combination of testing strategies
and techniques. Also, automate every testing activity economically and technically feasible.

11.2.10.1.1 Defect Detection and Removal

Defect detection and removal is the most basic testing objective and the one aspect of quality that
can be measured in a tangible and convincing way. Defects (and their removal) can be measured
with great precision, and their measurement is one of the fundamental parameters to include in
every testing and measurement program. Programs performing well in defect removal normally
perform well in other aspects also. Jones reports:

“Interestingly, a cumulative defect removal efficiency of 95 percent appears to be a powerful
nodal point for software projects. Projects which achieve overall removal efficiencies
approximating or exceeding 95 percent tend to be optimal in three other aspects as well: (1) they
have the shortest schedules for projects of their size and type; (2) they have the lowest quantity of
effort in terms of person-months or person-hours; and (3) they have the highest levels of user
satisfaction after release.” [JONES91]

It is important to understand that “errors” relate to early phases of development: requirements
definition and design specification. An error in requirements or design will cause the insertion
of one or more “defects” in the code. However, a defect may not be visible during code execution
— neither during testing nor operation. If a defect is executed, it may result in a tangible fault, or
it may not. Programmers debug code to correct defects by testing for tangible failures. But the
lack of failures cannot guarantee the absence of defects. Even if the defect executes, it may not
be visible as output. Furthermore, defect correction does not necessarily imply that the error
(source of the defect) causing the defect has been corrected.

There are three broad classifications of defects, named after the development phase where they
are found: unit/component defects, integration defects, and system defects. Unit defects are the

11-33

Chapter 11: Understanding Software Development GSAM Version 3.0

easiest to find and remove. When a test is failed during system testing, you may not be able to tell
if the failure is caused by a unit, integration, or system defect. It is only after the failure is
resolved that we know from where it came. As discussed above, system testing is more expensive
than unit testing and any unit defect remaining during system testing translates into costly scrap
and rework. Integration defects are more difficult to detect and prevent because they occur from
interaction among otherwise correct components. Component interactions are combinatorial —
i.e., they grow as n2 (the square of the number of components integrated) or worse (e.g., n! — that
number factorial). An integration testing objective is to assure that few, if any, harmful component
interaction defects remain before going to system testing. During system testing, we have the
added complexity of multitasking, i.e., the order in which things happen can no longer be predicted
with certainty. This uncertainty and the issue of timing is rich soil forever more complex system
defects. [BESIER95]

You might ask, if the defect cannot be detected and does not show itself as output, why bother
removing it? With mission and safety critical software operating under maximum stressed
conditions, the chance of a latent defect-related software failure often increases beyond acceptable
limits. This dichotomy amplifies the need to detect, remove, and ultimately prevent the causes of
errors before they become illusive software defects. Latent, undetected defects have the tendency
to crop up when the software is stressed beyond the scope of its developmental testing. It is at
these times, when the software is strained to its maximum performance, that defects are the most
costly or even fatal.

The number of errors (unintentionally injected into software by requirements analysts and
designers) and defects (injected by programmers while interpreting designs) can be quite large.
For complex software systems they can number in the tens-of-thousands. [PUTNAM92] Most
of these, however, are removed before delivery by the self-checking of analysts and programmers,
by design reviews, peer inspections, walkthroughs, and module and integration testing. Jones
estimates the pre-delivery defect removal rate using these techniques to be at about 85%.

For systems where failure to remove defects before delivery can have catastrophic consequences
in terms of failed missions or the loss of human life, defect removal techniques must be decidedly
intense and aggressive. For instance, because the lives of astronauts depend implicitly on the
reliability of Space Shuttle software, the software defect removal process employed on this program
has had a near perfect record. Of the 500,000 lines-of-code for each of the six shuttles delivered
before the Challenger, there was a zero-defect rate of the mission-unique data tailored for each
shuttle mission, and the source code software had 0.11 defects per thousand lines-of-code (KLOC).
[KOLKHORST88]

NOTE: This is not to imply the Challenger disaster was caused by software defects. It
was merely the cutoff point for the report upon which this example is based.

These impressive figures reflect a formal software engineering process that concentrates on
learning from mistakes. Finding and correcting mistakes must be a team effort where no individual
is held responsible or singled out. Figure 11-6 illustrates the steps performed for every software
defect found on the Space Shuttle program, regardless of significance. Process improvement is
relentlessly achieved by performing feedback during steps 2 and 3. Much credit for this
achievement is attributable to peer inspection techniques [discussed below], pioneered by IBM-
Houston.

11-34

Chapter 11: Understanding Software Development GSAM Version 3.0

Figure 11-6. Space Shuttle Defect Removal Process Improvement [KELLER93]

11.2.10.1.2 Defect Removal Strategies

Given the magnitude of errors associated with requirements and design, it is obvious that these
huge sources of errors must be included in your quality control/assurance strategies. PAT teams,
demonstrations, prototypes, and peer inspections are all necessary to control front-end sources
of errors. Testing and peer inspections are also necessary for discovering inserted defects. It is
important to recognize the up-front costs of inspections and testing, as well as the expected
downstream cost, quality, and schedule benefits. [BRYKCZYNSKI93]

Finding and removing defects is the most expensive activity in which the software industry invests.
Organizations who engage in quality control and defect prevention have an enormous competitive
advantage over those who do not. Given the low average efficiencies of most defect removal
methods, it is imperative that your developer use a variety of removal techniques to achieve a
high cumulative removal efficiency. Special attention must be given to the defects accidentally
introduced as the by-products of fixing previous defects. The total quantity of bad fixes averages
about 5% to 10%, which directly relates to the complexity of the product being repaired. Leading
commercial and DoD software developers, for example, may include as many as 20 to 25 different
defect removal activities. Serious quality control requires a combination of many techniques
each aimed at a class of defects for which its efficiency is the highest. The bottom line in choosing
your defect prevention and removal strategy is to choose the combination of methods which will
achieve the highest overall efficiency and quality gains for the lowest total life cycle cost.

11.2.10.2 Unit Testing

Testing is usually divided into three activities — unit testing, integration testing, and systems
testing. A unit is a component. A component is an aggregate of one or more components that can
be tested as an aggregate, such as subroutines, functions, macros, the application and the
subroutines it calls, communicating routines, or an entire software system. Unit testing is usually
performed by the programmer who created the unit. Unit testing is often accomplished in an
incremental design/code/test fashion, where more and more of the completed system is
progressively tested during each increment. Test cases are selected to force the occurrence of
defects. The results of unit tests are then analyzed to see if any defects have occurred, and a
debugging process is performed to remove them. A description of the type, cause, and correction

Process
Element

A

Process
Element

B

Process
Element

C

Process
Element

D

Product

2 ROOT
CAUSE

DEFECT
INTRODUCED

3
DEFECT
ESCAPED
DETECTION

3
DEFECT
ESCAPED
DETECTION

4

SIMILAR
ADDITIONAL
UNDETECTED
DEFECTS

ORIGINAL DEFECT1STEPS PERFORMED FOR EVERY DEFECT
(REGARDLESS OF MAGNITUDE)
(1) Remove defect
(2) Remove root cause of defect
(3) Eliminate process escape deficiency
(4) Search/analyze product for other, similar escapes

11-35

Chapter 11: Understanding Software Development GSAM Version 3.0

of defects is then placed in a database for future process improvement analysis. The purpose of
unit testing is to remove all defects from the component under test. The easiest way to accomplish
this is to begin as early as possible with requirements testing of the component. Component
requirements are easily tested as they represent but a small subset of the requirements for the
whole software product. Structure-driven, statistic-driven, and risk-driven testing are also
performed during unit testing. [GLASS92] There are two basic types of testing performed at the
unit and system level: structural testing (also called glass-box or white-box testing) and behavioral
testing (also called functional or black box testing).

Structural testing, or testing-in-the-small, ideally involves exhaustively execution of all paths of
control flow in a module or system. In reality, exhaustive path testing is usually impossible
because the number of potential paths can be infinite. Also, path testing cannot detect missing
paths and cannot detect data sensitivity defects. Thus, structural test case design must be based
on random and/or selective testing of control flow. Structural testing techniques include:

• Statement coverage,
• Decision coverage,
• Condition coverage,
• Decision/condition coverage,
• Multiple decision/condition coverage,
• Independent path coverage, and
• Structured tableau. [MOSLEY93]

Behavioral testing, or testing-in-the-large, focuses on requirements. For example, testing consists
of testing all features mentioned in the specification. Behavioral testing be performed, in theory
but not in practice, with total ignorance of how the object under test is constructed. It is not
concerned with the internal structure of behavior of the module or system, but only with the
instances when the program or module does not behave as indicated in its functional specifications.
In contrast with exhaustive path testing, behavioral testing focuses on exhaustive input testing,
which is also an impossible task. The number of possible valid inputs approaches infinity, as
does the number of all possible invalid inputs. Thus, behavioral test case design must be based
on random and/or selective testing of inputs. Behavioral testing techniques include:

• Equivalence partitioning,
• Boundary analysis,
• Cause effect graphing,
• Structured tableau, and
• Error guessing. [MOSLEY93]

Neither testing approach alone is enough. Behavioral testing should be used throughout
development, while structured methods are best used later in the process. Both methods are
complementary; however, some redundancy of test case design exists between certain techniques
within the two approaches. The tester should select and use a combination that maximizes yield
and minimizes redundancy. Again, automated tools that build test cases are a sound investment.

11-36

Chapter 11: Understanding Software Development GSAM Version 3.0

11.2.10.3 Integration Testing

While unit testing is performed by programmers on the modules they develop, integration testing
is performed to determine how the individual modules making up a subsystem component perform
together as an integrated unit. With large software developments, integration testing often involves
the software of many developers where individually developed modules are combined into various
software subsystems and tested as integrated units. As a manager, you must be aware of the
political problems associated with integration testing of multiple vendor products. Often, when
a defect occurs on the interface between two supposedly pre-tested and correct components,
neither developer wishes to take the blame for the defect and finger pointing occurs. Each
developer believes he has a perfect module and that the defect must have been caused by — and
thus must be fixed by — the other person. This situation takes a mix of tact and diplomacy on the
integration test manager’s part to resolve these problems and get the defects corrected. [GLASS92]

11.2.10.4 System Testing

System testing (conducted by the systems developer) usually begins after integration testing is
successfully completed. Some redesign and tweaking of both the hardware and software is
performed to achieve maximum levels of performance and to iron out bugs. System testing is
very much like integration testing where components are integrated into whole parts, but not
necessarily whole software parts. As with integration testing, the system tester tries to invoke
defects while the individual component developers are responsible for their repair. The system
tester is also responsible for resolving any political problems that arise. [Remember, it is essential
to perform adequate end-to-end testing prior to signing-off on standard form DD-250s for
software.]

11.3 Building Secure Software

Security is an essential element of many major DoD software-intensive systems. Adversaries
actively collect information about our new systems and software to negate their combat
effectiveness and eliminate our advantage of surprise. You must actively plan for and apply
OPSEC measures to protect crucial information throughout your acquisition process. The OPSEC
process helps guide the development of OPSEC measures. The process asks: what needs to be
protected, from whom, is there a potential for exposure of critical information, what are the risks,
and how is protection to be accomplished? This team effort must be revisited as your program
matures and parameters change. A well thought out plan of protection and its judicious application
will ensure the integrity and combat effectiveness of new systems and help us attain our mission
objectives.

11.3.1 Security Planning

Security is a crucial aspect of strategic system and software planning often overlooked. DoD
contingency strategists (wargamers) envision the objectives of war in the 21st century, not as
attacks to destroy enemy lives, but as maneuvers to gain control of those invisible, more vulnerable,
more significant and consequential software-driven systems. Weapons systems dependent on
satellite communications for target positioning, global financial systems, highly distributed military

11-37

Chapter 11: Understanding Software Development GSAM Version 3.0

logistics and air traffic control systems, and secure telecommunication networks are “soft” because
they are highly pregnable. [BLACK93] Due to its vulnerability, failure to plan for software
security could prove catastrophic. Today, reports abound of hackers gaining unauthorized access
to software systems, sometimes creating serious damage. Other software-related security problems
have resulted in severe financial loss or even loss of life. The protection of your software must be
a major element in your strategic planning process.

The common objective of acquisition activities is the production of combat-ready weapon systems
and/or support for those systems to further our national defense. The advantage we seek, the
success of our defensive efforts, is often expressed in the element of surprise. Surprise, in this
instance, means that our systems, when deployed, can operate in hostile environments and do the
job for which they were designed. Lack of surprise means that an adversary already knows
enough about our systems to counter them and/or to render them ineffective once deployed.
Lieutenant General V.A. Reznichenko, authoritative tactician for former Soviet Union ground
forces, explained why security is so important.

“Surprise makes it possible to take the enemy unawares, to cause panic in his ranks, to paralyze
his will to resist, to drastically reduce his fighting efficiency, to contain his actions, to disrupt his
troops’ control, and to deny him the opportunity to take effective countermeasures quickly. As a
result, this makes it possible to successfully rout even superior enemy forces with the least possible
losses to friendly forces.” — Col General V.G. Reznichenko [REZNICHENKO84]

Some program managers consciously omit security (and safety) requirements from their plans,
as they believe such considerations will significantly increase software development costs. As in
risk abatement, the benefits of including software security requirements up front must be weighed
against life cycle costs. Not planning for security up front and having to address these requirements
after development is underway (or the system is deployed) can severely impact the cost of your
software development (and system life cycle costs) as they constitute significant cost drivers.

It is imperative that your new software (and hardware) be fully protected commensurate with
your program requirements and sensitivities throughout the development life cycle to ensure it is
fully combat effective at IOC and that the element of surprise is retained. It makes little sense to
expend valuable resources (manpower, money, and time) on software that is compromised before
it can fulfill design and mission objectives. Software protection must be an integral and normal
part of all acquisition activities.

Building preemptive defenses into your software is one way to fight the software security war
against hackers and enemy access to our vital information resources. Another method is to build
in the ability to bounce back quickly if penetration is accomplished. You must, therefore, plan
for non-lethal warfare risks to be prepared, through prevention and circumvention, for today’s
software-versus-software battlefield.

11.3.2. Operations Security (OPSEC)

OPSEC is specifically designed to control and protect information of intelligence value to an
adversary. This information is called critical information. Critical information includes the
specific facts about our intentions, capabilities, limitations, and activities needed by adversaries
to guarantee the failure of our mission. It is the key information about our programs, activities,

11-38

Chapter 11: Understanding Software Development GSAM Version 3.0

hardware, and software, which if lost to an adversary, would compromise that program. Critical
information may be either classified or unclassified. It is not only the classification of the
information that is important, but also the value of the information to an adversary. It requires
the safeguarding of all classified information and protection from tampering for unclassified
information.

OPSEC is implemented by the development of an OPSEC Plan. The plan is based on a thorough
analysis of the important and sensitive aspects of your program (or software system) and of the
environment for which the software is being developed. OPSEC planning follows the OPSEC
process, a logical method of information analysis and evaluation guiding protection and control.
The OPSEC process can be applied to virtually any software development activity, and is as
simple or complicated as the situational environment warrants. The steps in the OPSEC process
are:

• Identify critical information,
• Describe the intelligence collection threat,
• Identify OPSEC vulnerabilities,
• Perform risk analysis, and
• Identify countermeasures to control and protect the information.

The plan summarizes the results of this analysis process and becomes the framework for subsequent
software protection measures.

• Critical information. Because you have to know what to protect, the first step is to identify
critical information and the indicators that point to it or that may divulge it. The first listing
of critical information is in the Operational Requirements Document (ORD) developed by
the user, which is very broad and general. As your program proceeds, this list must constantly
be reviewed and refined. As your program matures, the list of critical information will become
more specific and detailed.

• Threat. The threat is specific information about an adversary’s capabilities and intentions to
collect critical information. It begins with the identification of the adversary(ies). The
adversary’s resources/assets available to collect critical information and the degree of the
intent to collect is then assessed. The threat assessment must be specific (e.g., geographical
location, facility, program office, software system, laboratory, or contractor facility). Threat
information must be obtained in coordination with the OPSEC officer or through local liaison
officers and organizations (e.g., the Air Force Office of Special Investigations, Air Intelligence
Agency, or the National Air Intelligence Center. Intelligence collection of threat information
is also included in the System Threat Assessment Report (STAR) validated by the Defense
Intelligence Agency (DIA).

• Vulnerability. Critical information and indicators of critical information are compared with
the threat to determine if an OPSEC vulnerability exists. For an OPSEC vulnerability to
exist, critical information must be potentially open and available to an adversary, and that
adversary must have some type of collection platform in place to obtain the information (e.g.,
a spy satellite, an agent, an intelligence gathering ship, or communications network access).
If sensitive information is available and an adversary can collect it, then an OPSEC
vulnerability exists.

11-39

Chapter 11: Understanding Software Development GSAM Version 3.0

• Risk assessment. A risk assessment is a cost/benefits analysis of proposed protective measures
and the mission imperative. Several factors drive this assessment. First, no system can be
100% secure unless it is sealed off from all outside influences. Second, whatever protective
measures are used, they must not unduly hinder or prevent mission accomplishment or the
attainment of program objectives. Finally, a balance must be found that provides the maximum
possible protection while maintaining program integrity.

• OPSEC measures. Various methods must be developed that best meet operational protection
requirements while mitigating the identified OPSEC vulnerability. OPSEC measures are
program specific and must be tailored to the identified vulnerability. OPSEC measures include:
− Action control measures. These are actions that can be executed to prevent detection and

avoid exploitation of critical information. You should avoid stereotyped procedures which
can be exploited by an adversary. Examples of action control include making preparations
inside buildings rather than outside, conducting activities at night, and adjusting schedules
or delaying public affairs releases.

− Countermeasures. These are methods to disrupt adversary information gathering sensors
and associated data links or to prevent the adversary from obtaining, detecting, or
recognizing critical information. Examples include jamming, masking, encryption,
interference, camouflage, and diversions.

− Counteranalysis. These are methods to affect the observation and/or interpretation of
adversary analysts. They do not prevent detection, but enhance the probability that the
detectable activity is overlooked or its significance is misinterpreted. Counteranalysis
measures provide uncertainty and alternative answers to adversary questions. Deceptions,
including covers and diversions, are in this category of OPSEC measures. Detailed
planning of deceptions are separate from protection planning. However, close coordination
between OPSEC and deception planners will facilitate the desired result.

− Protective measures. These measures can and should include the use of all established
security disciplines.

Although security is ultimately your responsibility, program protection is not a one-person job.
OPSEC measures run the gamut of possibilities and there is ample help available. Each Major
Command (MAJCOM), product center, logistics center, test range, and laboratory has an identified
OPSEC point-of-contact. Indeed, each security discipline has a point-of-contact. Software
protection is, thus, a coordinated team effort — the same as other program activities.

Historically, it has been difficult and expensive to design and build secure/trusted data systems.
The traditional way of building secure systems has been to use logical and physical separation
(i.e., an “air gap”) based on providing a physically secure facility for each system, with everyone
in the facility cleared to the level of the most sensitive data. This method is not only expensive,
but very inefficient, and has several undesirable properties such as the cost of duplicating facilities,
and multiple sets of hardware and software. There is also an inability to share personnel talent
and skills due to the need for separation and the number of expensive clearances for people who
have no access to the data itself. Possibly the most serious issue is the inability to share data.
This creates serious data concurrency problems as duplicated data in the myriad of systems are
updated at different frequencies — greatly increasing the probability of error as the number of
instances increases. This was a major problem during the Gulf War. Virtually all the data needed
was in theater, but it was not accessible in a way that allowed coherent data fusion and integration.

11-40

Chapter 11: Understanding Software Development GSAM Version 3.0

This problem should soon be totally eradicated. All necessary COTS components for building
operational systems [i.e., hardware/operating systems, networks, and relational database
management systems (RDBMS’)] are National Computer Security Classification (NCSC)
evaluated at the CB/B1 and B2 levels. The old quandary that “COTS products are not secure”
and “secure products are not COTS” is no longer true. Today it is possible to get a hardware/
operating system-network-RDBMS combination that was evaluated together, which greatly
reduces the accreditation effort of the developer and the user.

The RDBMS is the most critical portion of the secure solution. The first, and most important,
concern should be a vendor’s overall philosophy and commitment to developing secure products.
Some build a minimally compliant product so they appear to have complete secure and non-
secure product suites. Serious secure product vendors meet the extreme assurance requirements
required at the B2 level and above, while others have layered C2/B1 level features that meet the
minimal assurance requirements at B1 and below. Vendors who are serious about the secure
products market also view security as an attribute of their product — not as a 150% to 200%
premium over the price of their standard product.

Compatibility of the vendors’ products at various levels is a major development security issue.
Compatibility has many benefits such as the ability to partition data and applications across
different levels without having to duplicate the applications. For example, the ability to access
untrusted administrative systems and secure operational systems in the same application is useful.
Also desirable is the ability to separate very sensitive SCI data into a B2 assurance RDBMS
engine, routine operational data into a B1 assurance RDBMS, and other administrative data into
a C2 assurance RDBMS. This makes data and security administration easier while retaining the
usability and functionality of one logical database with joins and other transaction management
capabilities. In addition to only having to develop one set of applications, this capability has
several performance advantages. Joins are required only in those less normal scenarios where
multiple kinds of data are required in a single transaction. Otherwise, a single server is used,
increasing the apparent network bandwidth for users at different levels. The RDBMS’ distributed
capabilities should make the data partitioning invisible to the client-user so the only relevant
issue is the client security level, not specialized knowledge of the physical data schema.

All secure products are evaluated against the Trusted Computer System Evaluation Criteria
(TCSEC) defined in DoD 5200.28.Std (the Orange Book) and its various interpretation guides.
The Orange Book is a statement of the DoD basic security policy and relies on the Bell-Lapadula
Security Policy Model. The principle of the Bell-Lapadula model is access mediation based on
the relative values of a user’s (subject) clearance level and the data (object) classification level as
conveyed by appropriately assigned security labels. The salient features of the model are a
“subject” may access “objects” at its session (login) level and below, and “may-write objects” at
its session level only.

This policy has some onerous implications for RDBMS’. The most serious of which are that
implementation of this policy dictates that: (1) uniqueness of a primary key is only guaranteed
within a single security level; (2) an index on a table exists at a single security level; and (3)
referential integrity is guaranteed only at a single security level. Related issues are the serious
covert channels in databases centered around the physical storage of labels in each row and the
serialization of row IDs. The management of data integrity locking mechanisms at different
security levels is also a problem. (INFORMIX uses a unique security metadata approach which

11-41

Chapter 11: Understanding Software Development GSAM Version 3.0

eliminates all these covert channel issues by avoiding the need to physically store labels in each
row.) To support complex and sophisticated application development, most secure RDBMS’
provide a means for mitigating these problems.

The crucial item is the safety and granularity of these mechanisms. Most secure RDBMS’ support
the simple, but coarse, method of using a configuration option to set it to either “on” or “off.” A
more sophisticated approach is to support a set of discrete privileges granted and revoked
selectively by the Information Systems Security Officer (ISSO) to facilitate a specific task. These
discrete privileges are manageable at a granularity no greater than a transaction boundary, and
deal with the granularity of indices, uniqueness of primary keys, referential integrity across levels,
and locks at multiple levels.

The selection of a secure RDBMS should not lock a developer into a particular hardware
environment. A committed secure products vendor will support mainstream hardware platforms
and operating systems (e.g., HP, Sun, IBM, DEC, Harris, AT&T, and SCO). They will also
support all applicable standards [such as FIPS 127, FIPS-156, XOPEN, RDA, ANSI XXX, and
de facto standards (e.g., DRDA, ODBC, and TCP/IP)] in their standard and secure products. A
secure product should not have a significant performance degradation over an equivalent non-
secure product. Vendors should publish official audited benchmarks of both secure and non-
secure products.

11.4 The Bottom Line

The bottom line for successful software development is adherence to the software engineering
discipline discussed throughout these Guidelines for its stabilizing effects on the development
process. No sounder advice can be given. As General George Washington explained in a letter
of instructions to the captains of his Virginia regiments in 1759,

Discipline is the soul of an army. It makes small numbers formidable; procures success to the
weak and esteem to all. [WASHINGTON59]

11-42

Chapter 11: Understanding Software Development GSAM Version 3.0

11.5 References

[AGRESTI86] Agresti, William W., ed., New Paradigms for Software Development, IEEE Computer
Society Press, Washington, D.C., 1986

[BESIER95] Besier, Boris, Black-Box Testing: Techniques for Functional Testing of Software and Systems,
John Wiley & Sons, Inc., New York, 1995

[BLACK93] Black, Peter, “The Next Generation of Weapons: Dependency on Electronic Systems Make
Us Vulnerable,” Washington Technology, December 2, 1993

[BOOCH94] Booch, Grady, Software Engineering With Ada, Third Edition, The Benjamin/Cummings
Publishing Company, Inc., Menlo Park, California, 1994

[BRYKCZYNSKI93] Brykczynski, Bill and David A. Wheeler, “An Annotated Bibliography on Software
Inspections,” Institute of Defense Analysis, Alexandria, Virginia, January 1993

[CHANNING92] Channing, William Ellery, as quoted by Lowell Jay Arthur, Improving Software Quality:
An Insider’s Guide to TQM, John Wiley & Sons, Inc., New York, 1993

[COAD90] Coad, Peter and Edward Yourdon, Object-Oriented Analysis, Yourdon Press, Prentice Hall,
Englewood Cliffs, New Jersey, 1990

[DEMING82] Deming, W. Edward, Out of Crisis, Massachusetts Institute for Technology, Center for
Advanced Engineering Study, Cambridge, Massachusetts, 1982

[DENTON92] Denton, Lynn and Jody Kelly, Designing, Writing & Producing Computer Documentation,
McGraw-Hill, Inc., New York, 1992

[DMR91] “Strategies for Open Systems,” briefing presented by DMR Group, Inc. to SAF/AQK, March 14,
1991

[DOBBINS92] Dobbins, James H., “TQM Methods in Software,” G. Gordon Schulmeyer and James I.
McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

[GLASS92] Glass, Robert L, Building Quality Software, Prentice Hall, Englewood Cliffs NJ, 1992
[IEEE90] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990, Institute

of Electrical and Electronic Engineers, Inc., New York, NY, December 10, 1990
[JONES91] Jones, Capers, Applied Software Measurement, McGraw-Hill, Inc, New York, 1991
[KELLER93] Keller, Ted, briefing “Providing Man-Rated Software for the Space Shuttle,” IBM, Houston,

Texas, 1993
[KOLKHORST88] Kolkhorst, Barbara G., and A.J. Macina, “Developing Error-Free Software,” Fifth

International Conference on Testing Computer Software, US Professional Development Institute, Silver
Springs, Maryland, June 1988

[McMENAMIN84] McMenamin, Steve and John Palmer, Essential Systems Analysis, Yourdon Press,
Englewood Cliffs, New Jersey, 1984

[MOSLEY93] Mosley, Daniel J., The Handbook of MIS Application Software Testing: Methods, Techniques,
and Tools for Assuring Quality Through Testing, Yourdon Press, Englewood Cliffs, New Jersey, 1993

[PAULSON79] Paulson, Paul J., as quoted in the New York Times, May 4, 1979
[PAYTON92] Payton, Teri F., briefing, “Reuse Context,” presented at the STARS/Air Force Reuse

Orientation, October 14, 1992
[PRESSMAN93] Pressman, Roger S., “Understanding Software Engineering Practices: Required at SEI

Level 2 Process Maturity,” briefing prepared for the Software Engineering Process Group, July 30,
1993

[PUTNAM92] Putnam, Lawrence H., and Ware Myers, Measures for Excellence: Reliable Software On
Time, Within Budget, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1992

[REZNICHENKO84] Reznichenko, Col General V.G., Taktika, 1884

11-43

Chapter 11: Understanding Software Development GSAM Version 3.0

[STRASSMANN93] Strassmann, Paul A., “Information Warfare for Low-Intensity Conflicts,” briefing
presented to the Army Executives for Software (ARES), West Point, New York, July 15, 1993

[THOMPSON91] Thompson (SCXS), “Guidelines” comments from SCXS, March 15, 1991
[WASHINGTON59] Letter to the captains of the Virginia regiments, July 29, 1759, The Writings of

George Washington, John C. Fitzgerald, ed., Washington DC, 1931-41
[YOURDON90] Yourdon, Edward N., Modern Structured Analysis, Prentice Hall, New Jersey, 1990
[YOURDON92] Yourdon, Edward N., Decline and Fall of the American Programmer, Yourdon Press,

Englewood Cliffs, New Jersey, 1992

Part 2: Engineering GSAM Version 3.0

Chapter 12

Software Support

Chapter 12 : Software Support GSAM Version 3.0

12-2

Contents

12.1 Chapter overview ... 12-3
12.2 A Total Life Cycle Approach ... 12-4

12.2.1 Software Support Cost Drivers .. 12-5
12.2.2 Software Support Activities ... 12-6
12.2.3 Software Support Issues ... 12-8
12.2.4 COTS Software Support Issues .. 12-10

12.3 Planning for Support Success .. 12-10
12.3.1 Software Support Cost Estimation ... 12-11

12.4 Software Reengineering ... 12-12
12.4.1 Reengineering Decision .. 12-12
12.4.2 Reengineering Process.. 12-13

12.5 Logistics Support Analysis (LSA) ... 12-14
12.5.1 LSA on the F-22 Program... 12-16

12.6 Continuous Acquisition and Life Cycle Support (CALS) 12-17
12.7 Managing a PDSS Program ... 12-18

12.7.1 Computer Resources Integrated Support Document (CRISD) 12-19
12.8 Addressing Software Support in the RFP ... 12-20

12.8.1 Specifying Supportable Software .. 12-22
12.8.1.1 Statement of Objectives (SOO) .. 12-22
12.8.1.2 Specification Practices.. 12-22
12.8.1.3 Documentation ... 12-23
12.8.1.4 Life Cycle Software Support Strategies 12-23

12.9 References .. 12-25

12-3

Chapter 12 : Software Support GSAM Version 3.0

12.1 Chapter overview

In Operation Desert Storm the intensity of battle coupled with large forces using Information
Age weaponry and communications created the most intense electronic battlefield ever witnessed.
The E-3 Airborne Warning and Control System (AWACS) was an integral part of the battle
serving as the “eye” that tracked all battle space aircraft and directed interceptions while
safeguarding our forces from surprise enemy aerial attack. The overwhelming density of diverse
electronic signals transmitted and received created such a congested environment that the E-3s’
full mission capability was greatly hindered. This E-3 problem had to be quickly corrected and
a dedicated software support team sprung into immediate action. The E-3 radar software was
rapidly revised, flight tested, and on its way to deployed aircraft within 96 hours. This quick
reaction, modification, and change-out during the heat of battle emphasizes the operational
necessity for easily supportable software.

The ability to continuously support our major software-intensive systems is a paramount mission
requirement. Supportability is critical because there is always an inevitable need to correct latent
defects, modify the system to incorporate new requirements, enhance the existing system to add
capability, and alter it to increase performance. The ability to accommodate change is an integral
requirement of major software-intensive systems.

Unfortunately, when we have fielded unsupportable systems, we have often had to expend
considerable time and funds to provide the required support or we have had to abandon them
altogether. We learned that it is far more cost-effective to address supportability as we define
requirements, design the system, and plan for its operational life. In this chapter you will learn
how to reduce the risk of acquiring, managing, and maintaining software-intensive systems by
ensuring that they are modifiable, expandable, flexible, interoperable, and portable — i.e.,
supportable.

Software support, often called redevelopment, addresses the maintenance life cycle phase where
major software costs occur. Support planning addresses the development acquisition and entails
request for proposal (RFP) development that provides for delivery of full documentation, data
rights, and delivery of the software engineering environment (SEE) used by the developer.

When tasked with maintenance responsibility of legacy software which has become technologically
obsolete, has deteriorated through years of changes, or must be changed anyway to work with
new hardware or other software, it may be cost effective to reengineer it. This involves systematic
evaluation and alteration of an existing system to reconstitute it (or its components) into a new
form or converting it to Ada to perform within a new operational environment, to improve its
performance, or to reduce maintenance costs. This process can combine several subprocesses,
such as reverse engineering, restructuring, redocumentation, forward engineering, or retargeting.

12-4

Chapter 12 : Software Support GSAM Version 3.0

12.2 A Total Life Cycle Approach

With the exception of the B-2 bomber, DoD will not be purchasing any additional bomber aircraft
in the foreseeable future. Procurements of new, advanced fighter aircraft [i.e., the F-22 or Joint
Advanced Strike Technology (JAST)] will not occur until the early 2000s. Thus, we have to rely
on existing aircraft platforms for several years. The recent modification to the B-1B Lancer is a
prime example of this. The B-1B is being upgraded to a conventional munitions capability. The
bulk of the effort focuses on the enhancement and modification of the B-1B’s offensive avionics
software component. These trends indicate that the future capability of our major software-
intensive systems is inexorably dependent on our ability to cost-effectively maintain them.

Software maintenance is really a poor name for the post-deployment software support (PDSS)
activity. In other engineering contexts, maintenance implies repairing broken or worn-out parts.
But software does not break — nor does it wear out. It is for this reason that PDSS is often called
the redevelopment phase. As defined by the Institute of Electrical and Electronics Engineers
(IEEE), software maintenance is

The process of modifying a software system or component after delivery to correct faults, improve
performance or other attributes, or adapt to a changed environment. [IEEE90]

Software is alive! Whether it is in production or not, it is always in the process of becoming,
evolving, changing. Research on software maintenance shows that user requirements impacting
software account for 41% of post-deployment support costs, while hardware changes account
for 10%. [BASSETT95] That is to say, over half of all software support is driven by changes in
the system’s external environment. Because software must evolve in response to its external
environment, it is more like a living thing than an inanimate object that only needs to be designed
once, and thereafter, infrequently repaired or maintained. With software, development (and
redevelopment) is the norm in response to external changes. Therefore, designing for maintenance
must be incorporated and unified with development.

Software support is different from but includes the same activities as development. It is different
because the developer has no existing system from which to work; whereas, the maintainer must
be able to read and understand already existing code and solve problems within an existing
framework which constrains the solution set. The developer has no product knowledge because
the product does not yet exist. The maintainer must have complete product knowledge to do his
job well. Support is the same as development because the maintainer must perform the same
tasks as the developer, such as define and analyze user requirements, design a solution (within
the constraints of the existing solution), convert that design into code, test the revised solution,
and update documentation to reflect changes. Figure 12-1 illustrates how support tasks correspond
to and mirror the development process. [GLASS92]

12-5

Chapter 12 : Software Support GSAM Version 3.0

Figure 12-1. Support Tasks Superimposed on the Software Development Phase

12.2.1 Software Support Cost Drivers

The demand for delivering high quality software support in time has never been greater. However,
software support is by far the biggest life cycle cost driver and the most significant source of
system risk for all major DoD software-intensive acquisitions. Although software support occurs
during the post-deployment phase, it must be planned for upfront during requirements definition
and design. It must also be budgeted for and continuously addressed throughout the system’s
life. Developing supportable software is one of the most important criteria for software success.
All the causes of cost and schedule overruns, performance shortfalls, and for programs being
thrown off stride are amplified once the system is in the hands of the maintainer. Therefore, the
Software Crisis has primarily been the Maintenance Crisis. According to numerous DoD and
industry studies, the typical cost to maintain a software product is from 60% to 80% of total life
cycle costs. Your challenge is to minimize the cost of software maintenance, and to avoid being
at the heart of the Crisis. These costs are depicted on Figure 12-2.

Testing and
debugging

(30%)

Updating
documentation (5%)

Defining
and

understanding
change
(15%)

Implementing
the change

(20%)

Tracing
logic (25%)

C
he

ck
ou

t

Implementation

D
es

ig
n:

un
de

si
gn

, r
ed

es
ig

n

Requirements

Understanding
the product

(30%)

Reviewing
documentation

(5%)

12-6

Chapter 12 : Software Support GSAM Version 3.0

Figure 12-2. Life Cycle Support Costs

These cost increases during the software maintenance phase have historically been caused by
dram atic decreases in productivity (measured in lines-of-code (LOC)/manmonths or function
(feature) points/manmonths.) Productivity drops of 40:1 have been reported during software
support. [BOEHM81] For example, what cost $150/LOC to develop might cost $1,000/LOC to
maintain. This significant increase in system cost demands that basic decisions about how the
software will be maintained be made during the concept and design phases. Easy access to the
software and an inexpensive medium for distributing enhancements can have significant effects
on life cycle costs. A well thought out concept of operations includes hardware provisions for
spare connectors, card slots, and memory capacity to facilitate interoperability to new software
systems as they are fielded and integrated into the defense inventory. [PIERSALL94] A flexible,
modular architecture is also essential for ensuring understandability, modifiability, interoperability,
reusability, expandability, and portability — all prerequisites for supportable software.

12.2.2 Software Support Activities

Figure 12-3 is based on a study of 487 commercial software development organizations and
illustrates how software support changes are distributed among support tasks. Most software
support dollars are spent on defining, designing, and testing changes. After these activities are
performed (whether there is one unit or hundreds of units in the field), subsequent increases in
cost are marginal. Support activities include:

• Interacting with users to determine what changes or corrections are needed,
• Reading existing code to understand how it works,
• Changing existing code to make it perform differently,
• Testing the code to make sure it performs both old and new functions correctly, and
• Delivering the new version with sufficiently revised documentation to support the user and

the product.

Maintenance
49%

Va lidation
21%

Requirements/
Design

13%

Implementation
9%

Other
8%

Development
20%

Maintenance
80%

Data Processing
Environments

Large, Complex Systems
Environments

12-7

Chapter 12 : Software Support GSAM Version 3.0

Figure 12-3. Causes of Software Changes [PIERSALL94]

During operational testing, supportability evaluations concentrate on software code, supporting
documentation and implementation, computer support resources, and life cycle process planning.
Due to its impact on software support, spare computing capacity is also examined. The four
areas the Air Force Operational Test and Evaluation Center (AFOTEC) evaluates for supportability
are illustrated in Figure 12-4. For example, maintainability evaluations consist of questionnaires
that concentrate on the specific characteristics of a maintainable system, such as consistency,
modularity, and traceability. Software supportability is evaluated by the developer when the
documentation and source code are initially baselined (usually during initial integration test and
evaluation) and then periodically until the completion of software development. The information
gained during integration testing helps the developer build more maintainable software.

Enhancement
50%

Maintenance
21%

Refinement
25%

Other
4%

Threat - - - Doctrine - - - Technology

Problem Reports

Software
Life Cycle
Process

Spare
Computing
Capacity

Maintainabilty Computer
Support

Resources

SOFTWARE
SUPPORTABILITY

– Project
Management

– Configuration
Management

– Timing
– Sizing

– Documentation
– Source Listings
– Implementation

– Personnel
– Equipment
– Facilities

Figure 12-4. AFOTEC Software Supportability Evaluation Areas

12-8

Chapter 12 : Software Support GSAM Version 3.0

12.2.3 Software Support Issues

In theory, software never wears out! It has none of the physical properties found in hardware
which the forces of Nature and the operational environment can play on to cause physical systems
to decline in performance. When pieces of hardware begin their life span, they often have a high
failure rate (defects per unit time) because of problems created during manufacturing. Those
pieces that survive the “infant mortality” period usually have lower failure rates (often for many
years) until components begin to wear out. At this point, the failure rate begins to climb again.
This trend, called the “bathtub curve” by hardware engineers, is true for all hardware systems —
whether an automobile, a radio, or a computer.

While software does not wear out in the physical sense, it does deteriorate! There are some
interesting similarities and differences to be seen when the software failure rate is superimposed
on the bathtub curve. Like hardware, new software usually has a fairly high failure rate until the
bugs are worked out. At which point failures drop to a very low level. Theoretically, software
should stay at that low level indefinitely because it has no tangible components upon which the
forces of the physical environment can play. However, after software enters its operational life
(during PDSS), it undergoes changes to correct latent defects, to adapt to changing user
requirements, or to improve performance. These changes make the software failure rate curve
steadily begin an upward journey. Hardware deteriorates for lack of maintenance, whereas software
deteriorates because of maintenance! [GLASS92] By making changes, software maintainers
often inadvertently introduce “side-effects” causing the defect rate to rise, as illustrated in Figure
12-5.

Figure 12-5. Bathtub Curves for Hardware and Software

Although side-effects can be quite complex, most are caused by one thing — there are no spare
parts for software! When software fails the part causing the failure cannot simply be replaced
with a spare. When software fails, from defects inserted during maintenance, often the only way
to correct for the cause of failure is through design modification. Every time the design is modified

12-9

Chapter 12 : Software Support GSAM Version 3.0

it weakens the original structure (or how the modules work internally and with each other) and
eventually the software begins to fall apart. Undisciplined maintenance (or that performed in the
field under stressed conditions) frequently compounds the problem. Maintainers, struggling
against time to make corrections, modifications, or adaptations to new requirements, often
compound the defects created by the last generation of maintainers. In the rush to get the product
to impatient users, they take short cuts — exacerbating the software’s deterioration. Problems
arise when there is a failure to modify the design when patches are made (causing the design and
code to be out of synch). Problems also stem from a failure to update documentation or a failure
to use modern concepts of design and programming in the initial development.

Most of the problems associated with software support can be traced directly back to deficiencies
in the way the original software product was planned, managed, and designed. Lack of sound
software engineering discipline, control, and attention to the design of modular software
architectures during development translates into software support problems resulting in excessive
maintenance costs. Some classic software support issues include:

• Lack of requirements traceability;
• The evolution of software versions or releases that are difficult or impossible to trace [the

evolution of changes that are not documented];
• Unavailability of the software development toolset (compilers, loaders, etc can have impacts;
• Impossible to understand code [software understandability usually increases as the number

of software modules increases];
• Documentation that is nonexistent or of such poor quality that it is useless [documentation

must be understandable and consistent with the source code to be of value]; and
• Inflexible software not designed to accommodate change [unless the architecture allows for

change, modifications to the software are difficult and defect-prone]. [PRESSMAN92]

This last point is, perhaps, the most critical deficiency. The software architecture should carefully
address abstraction, encapsulation, and information hiding to minimize dependencies. By
separating computational and operational details from interface calls, and by maximizing use of
object-oriented design, the software can be easily modified. Modifications can occur during
development and during post-deployment operation with less risk of introducing unwanted side
effects.

Many factors play in the supportability equation. An undisciplined, poorly managed development
process where design, coding, and testing were conducted with carelessness negatively impact
the support task. Design characteristics that affect software supportability include:

• Design complexity (including related attributes of software size, structure, and
interrelationships);

• Stability and flexibility of the design itself;
• Adequacy of documentation to support PDSS;
• Completeness of the software development effort; and
• Extent and implementation of configuration management practices for both operational and

support software. [SHUMSKAS92]

12-10

Chapter 12 : Software Support GSAM Version 3.0

Other factors within the development environment that impact software supportability include:

• Availability of qualified software personnel,
• System structure understandability,
• Ease of system handling,
• Use of standardized programming languages,
• Documentation structure standardization,
• Test case availability,
• Built-in debugging mechanisms,
• Delivery of the original development SEE to the maintenance organization, and
• Availability of appropriate computer hardware to conduct maintenance activities.

[PRESSMAN92]

12.2.4 COTS Software Support Issues

Software support includes support of government-developed software, contractor-developed
software, and commercial-off-the-shelf (COTS) software. Issues to consider when supporting
COTS software include:

• The acquisition agent must acquire appropriate documentation and data rights, licensing,
and subscription services (such as options to purchase or escrow proprietary information)
which allows the Government to support the software if contracted support becomes unfeasible.

• The software support activity (SSA) must maintain appropriate licensing and subscription
services (vendor field change orders and software releases) throughout the life of the system.

• COTS resources must not be altered so as to preclude contractor logistics support or void
licensing or subscription services.

• The supporting command must provide logistics support and contract for subscription services
required to update and maintain COTS assets. It must also evaluate operational and logistic
impacts of change due to subscription-related hardware and software upgrades.

• The operating command must provide a technical review of proposed changes during upgrades
and changes to COTS assets. It is responsible for evaluating effectiveness and mission impact
of changes due to subscription-related software upgrades.

12.3 Planning for Support Success

In recent years, early planning for software support has become a main DoD acquisition priority.
Learning from costly past mistakes, the early F-22 planners wanted to make their weapon system
a “maintenance man’s dream,” according to Colonel John Borky, former director of ATF Avionics.
[BORKY90] Colonel Ron Bischoff, Air Logistics Center (ALC) system program manager for
the F-22, remarked, “We are practicing [with F-22 support and maintenance design] what we
always said we were going to do, but never did...[Before] it was a build it, then fix it, way of
doing business.” [BISCHOFF91] In the past, the system program manager responsible for
supporting the aircraft was not assigned until late in the design process. Support problems were
not addressed until after an aircraft was deployed and maintenance problems occurred. F-22

12-11

Chapter 12 : Software Support GSAM Version 3.0

planners specified support requirements early, which then became part of the RFP. Colonel
Bischoff explained that planning for support success was accomplished by making it a source
selection criterion that support issues be addressed during the design stage.

Colonel Bischoff remarked that writing and maintaining software for the F-22 will be a much
larger task than for any other aircraft in history. He explained, “The F-22 leads DoD’s list of the
most complex software projects, with a projected 7 million lines-of-code.” [BISCHOFF91] F-22
planners enforced consistency and completeness by mandating the use of Ada for all F-22 software
systems. By using Ada, all F-22 software engineers are forced to use common terminology, from
ground support systems to operational flight programs. Bischoff claims, “That was a major step
forward. Ada makes the software much more supportable because it is written in much clearer
text. Lack of documentation killed us in the past.” F-22 planners also enforced the use of a
common Ada software engineering environment that provides uniform development tools for all
the software development team members.

To augment F-22 support success, Air Force and contractor personnel will work together as
integrated product teams (IPTs) to maintain F-22 software. To plan for this requirement, the
ALC F-22 system program office (SPO) has ALC software personnel involved shoulder-to-
shoulder with contractors so they will understand what is being done and why. Colonel Bischoff
boasted, “We’re already planning for the first update to the operational flight program within a
year or two after the first F-22 rolls off the production line!” [BISCHOFF91]

As discussed above, decreases in productivity during PDSS can be tied to increases in software
complexity the longer it is in the support phase. The more modifications made to the software
(especially to a poorly engineered product), the more complex it becomes with corresponding
increases in the introduction of defects. These exponential increases in effort (and cost) are
mainly the product of poorly engineered software. [PRESSMAN92] Therefore, planning for
supportability upfront is a major determinant of software development success. Software not
developed with maintenance in mind can end up so poorly designed and documented that total
redevelopment is actually cheaper than maintaining the original code. With today’s shrinking
defense dollars, failure to make software maintenance a design priority would not only be poor
management on your part, but could very well result in an inability to support your product.

12.3.1 Software Support Cost Estimation

The variety and undefined scope of future changes throughout the software life cycle make
estimating support costs one of the most difficult — yet most important activities to consider due
to its impact on the DoD budget. Most software estimating models estimate software support
costs; however, the types of activities and the costs included in their estimates vary significantly
from model to model. Most parametrically-based software support estimating models provide a
top-level approximation of sustaining engineering and support requirements. They do not produce
estimates that can be reliably used alone as the basis for a software support budget or similar
purpose. Once software has been transferred into a support environment, changes to the software
(especially major changes or additions to basic software functionality) must be estimated using
software models calibrated to the redevelopment environment.

12-12

Chapter 12 : Software Support GSAM Version 3.0

12.4 Software Reengineering

The concept of reengineering is relatively new within the software development community.
The motivation behind reengineering is to get a handle on the ever-growing software maintenance
burden. The rapid evolution of software and hardware technology over the past 20 years has left
DoD with a legacy of millions of lines of failure-prone code, written in a conglomeration of
languages, running on a hodgepodge of incompatible hardware.

“Reengineering” is defined as the examination and alteration of a software system to reconstitute
and re-implement it in a new form. The reengineering process involves recovering the design
from an existing application and using that information to reconstitute it to improve its quality
and decrease maintenance costs. While reengineering re-implements existing system functions
in a better, more efficient manner, new or improved functions are often also added.
[PRESSMAN92]

12.4.1 Reengineering Decision

Reengineering of old, worn-out or obsolete code is often economically justified. The lengthy
DoD acquisition process often takes a decade or more for large software-intensive systems to
come on line. By industry standards, military software is often obsolete before it enters the field,
at which point a 20-year operational life usually lies ahead. The cost of maintaining software
over its extended life can be from two to 10 times as much as the cost to initially develop it. The
decision to reengineer software is often one based on the premise to “pay now or pay much more
later.” [PRESSMAN92] There are basically three situations when reengineering is beneficial.
These include:

• When the existing system has become technologically obsolete and must be replaced;
• When the existing system has deteriorated to the point where it has severe technical problems;

and
• When it might be expedient to upgrade the existing system. [SNEED91]

You may choose to reengineer if you reach the conclusion that it is better to pay now, rather than
waiting to pay-much-more-later. “Paying now” is what Perry calls avoiding the rathole syndrome.
He defines a rathole as the dark place where software maintainers throw their money with no
possibility of return on investment. He equates the legacy software rathole with the old car
rathole. In the short-term, it is cheaper to fix your old car than it is to buy a new one. But over
an extended period, the out-of-pocket expense for parts and labor to patch your old clunker will
cost you more without increasing its resale value than investing in a new car. He also explains
that software maintenance ratholes are like ratholes in the woods. Once you plug one up, the rat
digs another. [PERRY93] Reengineering, when cost effective, can provide you with a way to
plug up all your ratholes and have a new system with all the bells and whistles your user desires.
It may well be the long-term, low-cost solution to your software maintenance problems. The
reasons to reengineer include:

12-13

Chapter 12 : Software Support GSAM Version 3.0

• To reduce maintenance costs,
• To decrease defect rate,
• To convert to a better language or hardware platform,
• To lengthen the life-span, and
• To enable changes in the user’s environment.

Another reason to reengineer is often based on the logical migration of the system. Since the
system has to be dramatically changed anyway, it might as well be upgraded to more current
technology. Your reengineering decision must be based on a thorough feasibility analysis of the
costs, benefits, and risks involved in continued patching (if possible) versus redevelopment
(starting from scratch) versus reengineering. This analysis is based on a calculation of the target
system’s expected lifetime and the comparison of reengineering costs with the costs of a new
development. A rule of thumb is, reengineering is a viable alternative when the cost to reengineer
is not more than 50% of the cost to redevelop. It may also be determined that it is too expensive
to reengineer the entire system. [SNEED91] Studies conducted by major industry software
developers indicate that 80% of the problems are caused by 20% of the software. [JONES91]
Therefore, in some cases, only 20% of a system may need reengineering.

Reengineering is only one of several options you have as a maintenance manager in fulfilling
your user’s needs. These options must be weighed against each other. Factors to consider, in
addition to cost, include:

• The added value of reengineering relative to the value of a new system and the value of the
old system.

• The risk of reengineering relative to the risk of a new development and the risk of doing
nothing.

• The life expectancy of the existing system relative to the time required to reengineer it and the
time required to redevelop it. [SNEED91]

12.4.2 Reengineering Process

Reengineering involves a number of engineering concepts. How these engineering tasks make
up the reengineering process and relate to each other is illustrated on Figure 12-6. These methods
include:

• Reverse engineering. This is the process of examining an existing software system to abstract
its design and fundamental requirements. It is also the end-to-end process used to understand
the existing software well enough to change it. It is the opposite of forward engineering (the
traditional way software is developed).

• Forward engineering. This is the set of engineering activities that use the products and
artifacts derived from legacy software and new requirements to produce a new target system.

• Restructuring. This is the process of reorganizing or transforming an existing system from
one representation form to another at the same relative abstraction level, while preserving the
subject software’s external functional behavior. Most commonly applied, restructuring
involves taking (perhaps unstructured) software and adding structure.

• Redocumentation. This is the process of analyzing the software to produce support
documentation in various forms, including users’ manuals and reformatting the system’s
source code listings.

12-14

Chapter 12 : Software Support GSAM Version 3.0

Other software support engineering concepts not illustrated on this figure include: retargeting,
the process of transforming and hosting (or porting) existing software to a new hardware
configuration; and source code translation, the transformation of source code from one language
to another or from one version of a language to another version (e.g., translating COBOL-74 to
COBOL-85). [OLSEM93]

Requirements
(constraints,
objectives,

business rules)

Re-engineering
(renovation)

Foreward
engineering

Reverse
engineering

Design
recovery

Restructuring Restructuring

Foreward
engineering

Reverse
engineering

Redocumentation,
restructuring

Design
recovery

Re-engineering
(renovation)

ImplementationDesign

Figure 12-6. Relationship Among Support Engineering Tasks [GLASS92]

Your reengineering strategy can be integrated into your domain engineering approach with
profitable results. This may involve looking at reengineering as a total migration plan that can
involve a number of incremental steps — rather than as a single event at one point in time. A
comprehensive model of the reengineered system can also be developed and maintained while
the implementation of the plan is staggered as resources permit. [For more information see
Feiler’s Reengineering: An Engineering Problem, SEI Special Report, 1992.]

12.5 Logistics Support Analysis (LSA)

It has not been the practice for contractors to perform formal LSAs for software acquisitions.
Even for weapon systems, most LSA is confined to hardware. A complete, well-rounded approach
to assuring that software is supportable has not been formally developed. In 1991, at the 26th
Annual International Logistics Symposium sponsored by the Society of Logistics Engineers
(SOLE), a paper was presented by A.G. Johnson and T.A. Haden, from the United Kingdom
Ministry of Defense Army Electronics Branch. This paper included a Software Supportability
Checklist, modeled after those used for hardware. It is reproduced in Table 12-1 for the benefit
of program managers and contractors who desire to give additional attention to the LSA of their
software.

12-15

Chapter 12 : Software Support GSAM Version 3.0

Table 12-1. Software Supportability Checklist

SOFTWARE
SUPPORTABILITY

FACTOR
DESCRIPTION

1 Maintainability Requirement for a Maintenance Task Analysis (MTA)

2 FTA, FMECA Requirement for Fault Tree Analysis (FTA) and Failure Modes and Effects and
Criticality Analysis (FMECA) to be performed to functional depth

3 Defect Rate Requirements to state a contractual target defect rate per lines of code over an
agreed period including confidence limits

4 Failure Identification Design to provide features that achieve failure detection and location times

5 Failure Snapshot Design to provide features that achieve failure detection and location times

6 Tool Kit Provision of User/Maintainers software tool kits to aid failure location

7 Loading and Saving Data Design to allow loading or saving data in specified times

8 Configuration Identification User/maintainer able to identify the configuration status (version) without
accompanying documentation

9 Exception Handling Design to allow exception handling to preclude failure conditions from aborting
software during operations

10 Support Policy Constraints Use Study to include what the software must do and not do

11 Support Maintenance Policy Support specific maintenance policies and manpower ceilings and skill level
availability to be stated

12 Software Support and
Maintenance Categories

Categories of software support and maintenance to be stated

13 Media Proposed media must: (a) suit the environmental requirements, and (b) be
acceptable as a consumable item

14 Media Copying Simplify copying and distribution

15 Media Marking To allow physical and internal marking; safety critical items to be separately
marked

16 Packaging Media packaging to be consumable, reusable, and robust

17 Handling Media to require no special precautions and meet Use Study requirements

18 Storage Media to require no special precautions or facilities and meet Use Study
requirements

19 Transportation Media and packaging to require no special requirements

20 Training, User User training required to detect failures and invoke exception handling

21 Training, Support Support training required to detect and locate failures and inoke exception
handling

22 Publications User and Support publications will be required

23 Definitions The Requirement must include contractually agreed upon definitions of: incident,
fault, failure, defect, reliability, and failure categories

24 Resources Cost estimates must be sought for software maintenance

25 Test Tools Contractor-owned and maintained software test tools and documentation must be
provided

26 Test Tool Access Access to test tools to be provided to software support personnel

27 Incident/Failure Reporting Incident and failure reporting to be available

12-16

Chapter 12 : Software Support GSAM Version 3.0

12.5.1 LSA on the F-22 Program

From the outset, the F-22 program has enhanced and implemented Integrated Product Development
(IPD) and Integrated Weapon System Management (IWSM). Specifically, the program has always
integrated software engineers and logistics personnel throughout all Integrated Product Teams
(IPTs). In addition, the Life Cycle Software Support (LCSS) IPT was created to influence software
design for supportability and to build a specification that describes the software support concepts
for the life of the weapon system. Personnel from product centers, support centers, customers,
and contractors work together on the IPTs. Thus, program decisions related to software
development and support are jointly determined. Since each IPT is composed of representatives
from all disciplines, life cycle impact is always considered as are plans for future software support.
Because a software support facility is still some years away, support decisions are analyzed to
determine future impact. LCSS IPT personnel ensure that decision makers are briefed on the
consequences of support decisions.

NOTE: See master’s thesis, Guidelines for Ensuring Software Supportability in Systems
Developed Under the Integrated Weapon System Management Concept, by Johndro
and Butts, Air Force Institute of Technology, December 1993.

Instead of the traditional LSA process, the approach the LCSS IPT used was a combination of
parametric models, analogy, expert opinion, and top-down analysis. By analogy, they compared
the overall size of the effort to past fighter aircraft designs. The F-22 will have at least twice as
much software on board the aircraft as any fighter currently in DoD. Also by analogy, they
initially estimated that the magnitude of average software block change would be approximately
10% of the total source lines-of-code.

The F-22 also employs data tables to implement highly volatile functions and reduce the magnitude
of block changes. Key design decisions were made to move potential areas of change out of the
source code and into the lookup tables. Potential change areas are now isolated to easily modifiable
code blocks instead of locked in algorithms. For example, most Pilot-Vehicle Interface (PVI)
functions have traditionally been hard-coded into the software, but on the F-22, many of these
functions will be implemented using data tables. By expert opinion, the IPT leads in charge of
software development estimated that the use of data tables would reduce the block change size
by about 50%. Once the overall effort was estimated, parametric analyses of each subsystem
provided estimates for schedule and personnel requirements. Three software cost estimation
models (SEER, REVIC, and CostMotio) indicated varying degrees of schedule and personnel
requirements. The IPT leads then selected a single model to continue a top-down analysis of the
large subsystems.

Software support facility cost estimates were also based on expert opinion and analogy. Subject
matter experts, such as lab managers and integration and test leads, suggested space and equipment
requirements based on F-22 development efforts from which equipment cost estimates were
derived. Personnel cost estimates were based on the current annual rates for government and
contractor software development personnel when applied to parametric analysis results. Similar
data, which had been previously collected from the F-14, F-15, F-16, and F/A-18 programs, were
used for comparison purposes. The comparative data corroborated facility and personnel cost
estimates.

12-17

Chapter 12 : Software Support GSAM Version 3.0

An inherent difference between hardware support and software support is that hardware support
is based on the finished product, while software support must mimic the development process.
Hardware support must use the tools necessary to repair a finished product, not tools required to
build a one. Software support, on the other hand, must use tools functionally identical to those
used during the development process. To determine F-22 software support requirements, the
LCSS IPT started their LSA program by identifying the tools used to create the software. They
then developed a software supportability database based on MIL-STD-1388A. Although
traditional LSA process was not used to assess software supportability, LSA Record (LSAR)
data items are incorporated in a database. Both software maintainers and developers reviewed
and commented on the initial database design, as defined by the LCSS IPT. To populate the
analysis database, data are collected from the software development IPTs during each development
phase. The database is segregated by computer software configuration items (CSCIs) and by
development cycle phase. This data collection relationship will continue throughout production
and post-production support. The software supportability database implements the intent of the
LSA process at the highest level to accommodate software support requirements.

The LCSS IPT will generate several guidance documents for the F-22 program. Specifically, IPT
personnel will also prepare and publish a Post-Deployment Software Support Concept Document
(PDSSCD) as an executive summary of the processes, plans, and procedures to be used in post-
deployment support. System Program Office (SPO) personnel will update the F-22 Computer
Resources Life Cycle Management Plan (CRLCMP) to reflect software support decisions
published in the PDSSCD. Contractor personnel will prepare and deliver a Computer Resources
Integrated Support Document (CRISD) to define the processes, plans, and procedures for software
support. Additionally, contractor personnel will prepare an Integrated Weapons System Support
Facility (IWSSF) development specification to define and itemize the resources needed to
implement the CRISD.

The LCSS IPT takes a very proactive role in the Software Product Evaluation (SPE) process.
Since the SPE process keeps software support personnel closely associated with software
development teams, support personnel are able to influence design and improve supportability.
For example, LCSS IPT and Charles Stark Draper Laboratory personnel developed Document
Evaluation Guidelines to help evaluate hundreds of software documents generated by the program.
These guidelines provided developers with criteria to follow during initial product development.
They also form the basis for document SPEs. The LCSS IPT personnel also train government
and contractor personnel on the SPE process so that documents are prepared according to the
same guidelines against which they will be evaluated. This dramatically improves the first-time
approval rate of software documents.

12.6 Continuous Acquisition and Life Cycle
Support (CALS)

CALS is a collection of standards for developing, storing, and communicating products, parts
specifications, and other engineering technical information electronically. The purpose of CALS
is to get on-line engineering data and specifications for high-tech equipment in a DoD-wide
database for easy retrieval and updating throughout a weapon system’s life. All new weapons
systems should include a “delivery-in-place” capability. This is the electronic capability to

12-18

Chapter 12 : Software Support GSAM Version 3.0

deliver on-request all contractually required information. Although the data resides with the
contractor, DoD retains the rights to the data and must be provided access to it on a fee-for-
service basis.

12.7 Managing a PDSS Program

You employ the same tactics for successful management of PDSS as those employed for new-
starts and ongoing software developments. The solutions to your PDSS development problems
are the also same software engineering practices used throughout other phases of the life cycle.
Unfortunately, you are at the mercy of the acquirer and initial developer who may have burdened
your program with problems. Planning and execution of software support must begin during the
concept exploration phase and continue until the system is removed from the inventory. The key
areas that must be addressed are illustrated in Figure 12-7. These key areas consist of processes,
products, and support systems.

CONFIGURATION
MANAGEMENT

PROGRAM
MANAGEMENT

SOFTWARE
DEVELOPMENT

SYSTEM
ENGINEERING

PROCESSES

SOURCE
CODE

DOCUMENTATION SOFTWARE
DESIGN

PRODUCTS

EQUIPMENT
(ASIF)

PERSONNEL FACILITIES

SUPPORT
SYSTEMS

SOFTWARE
SUPPORTABILITY

Figure 12-7. Post-Deployment Software Support Key Considerations

Life cycle support strategies typically span the support spectrum from sole source contractor to
full government organic, with each strategy presenting different advantages and disadvantages
needing evaluation. A high level IPT consisting of the operational user, the Program Executive
Officer (PEO), and the acquisition agent must make the support decision prior to Milestone I.
This focuses attention on the software support process and allows the acquisition agent to begin
planning for it earlier in the program.

To effectively manage and control software development and to ensure software supportability
requires that we incorporate measurement in the developer’s decision making and reporting
processes. With measurement, we can monitor the development effort, gain early insight into
potential problem areas which can negatively impact the PDSS task, and we can ease verification
procedures.

Support processes are the most important element for management, control, and improvement of
software support. The key processes that must be captured and recorded are program management,
configuration management, systems engineering, and software development. The key products
essential to PDSS are documentation, source code, and a description of the software design and
test procedures. The baseline for PDSS activity is the delivered products from the initial
development. The effectiveness of PDSS is governed by the usability and descriptiveness of the

12-19

Chapter 12 : Software Support GSAM Version 3.0

delivered documentation. Source documents for these essential products are contract Contract
Data Requirements Lists (CDRLs), Contract Line Item Numbers (CLINs), and the CRISD. Support
systems include the people, facilities, tools, and equipment needed to perform the maintenance
task.

The following are key management activities to remember for PDSS success:

• Determine your life cycle support strategy early,
• Remember that software support is actually software redevelopment,
• Ensure adequacy of contractor software development processes during source selection,
• Identify supportability requirements and objectives in system requirements documents and

Statements of Objectives,
• Specify required documentation and verification methods in the appropriate CDRLs,
• Identify necessary software development and support tools in CRISD, and
• Establish a Computer Resource Working Group (CRWG) IPT.

12.7.1 Computer Resources Integrated Support Document

(CRISD)

The CRISD is the key document for software support. It defines facility requirements, specifies
equipment and required support software, and lists the number of required personnel, skills,
required training. It contains information crucial to the establishment of the SEE, its functionality,
and limitations. It is a management tool that accurately characterizes the SEE’s evolution over
time.

The CRISD is a product of the software development process. As the pyramid in Figure 12-8
illustrates, the bottom tier, “early analysis and supportability decisions during design,” is the
cornerstone in achieving supportable software. Support requirements and characteristics must
be specified at the beginning of the design process so that supportability features are an integral
part of system development. This permits identification of support resources as they are needed.
It also enables the identification and documentation of the software development tools used.
The CRISD is a living document that reflects the development configuration and test/integration
environments. Thus, the CRISD lays the foundation for PDSS and is essential in reducing software
life cycle support costs.

12-20

Chapter 12 : Software Support GSAM Version 3.0

Figure 12-8. Computer Resources Integrated Support Document (CRISD)

NOTE: See Volume 2, Appendix I for a discussion on the importance of the CRISD and
how it is being implemented on the F-22 Program.

12.8 Addressing Software Support in the RFP

Supportability is one of the most important issues to address in the RFP. Your RFP must require
that offerors plan for supportability by stipulating that the software be developed with a supportable
architecture that anticipates change, uses accepted protocols and interfaces, and has
documentation consistent with the code. This can only be achieved during initial software
development and must be addressed upfront in the development contract. The higher the quality
of the initial system, the easier it will be to support. Therefore, the offeror’s approach to
supportability must be a major source selection criterion.

In 1990, a survey of over 100 businesses and technical people conducted by the Air Force Scientific
Advisory Board revealed that contractors do not perceive supportability and maintenance as
important factors for winning software development contracts. This study showed that software
contractors believe cost, performance, and schedule are the Government’s main concern. This
perception by contractors must be changed. The primary vehicle to help institute this change,
especially for your program, will be the emphasis given to supportability in your RFP. [PDSS90]

One method to emphasize the importance of supportability is to require pre-award competitive
software exercises (e.g., prototypes and demonstrations). These compute-offs can be followed
by multiple awards for design demonstrations. The design demonstrations are based on evolving,
value-added prototypes that ultimately converge into a fully supported product at the end of the
initial procurement. To make this acquisition strategy effective, the developing contractor(s)
must be required to support previous, but evolving, versions of the product the same way a PDSS
maintainer would. The prototype developers are required to select design(s) that promulgates a

Support Concept

Well Planned,
Consolidated Resources

Reduce Life
Cycle Support

 Costs

Early Analysis and Supportability Decisions
During Design

CRISD

12-21

Chapter 12 : Software Support GSAM Version 3.0

low-cost, efficient solution with minimal side effects on software maintenance. The subsequent
Engineering and Manufacturing Development (EMD) development contract is awarded to the
most supportable design.

Whether a contractor maintains the software, or it is transitioned to in-house government
maintainers, the maintainer must have the original developer’s SEE and other essential tools for
proper code maintenance. The following deliverables must be required:

• Data rights to make and install changes,
• Source code and documentation adequate to understand the code,
• Computer resources (SEE, computers, compilers, etc.) needed to modify the source code and

produce object code,
• Equipment and support software to test the subject code, to diagnose problems, and to test

solutions, enhancements, and modifications,
• Equipment needed to distribute and install the new software,
• A workable system to identify problems, resolve new requirements, and manage the support

workload, and
• Skilled personnel to perform required maintenance tasks. [ALC89]

The way you structure the RFP to acquire and develop your initial software can profoundly
impact the availability and usefulness of the required support environment. Therefore, you must
require that all offerors describe their plans for supportability as part of their proposal submission.
To ensure a prospective offeror’s systems engineering and software development processes
adequately address the supportability of software, it is imperative you carefully evaluate the
offeror’s software development processes during source selection. To do so, three major areas
must be addressed:

• Software Development Plan (SDP). Require the submission of a SDP with offerors’ proposals
that states how they intend to ensure their development process addresses supportability
relative to the systems engineering process. This plan is evaluated during source selection.

• Capability Evaluation.
• Instructions to Offerors (ITO). The ITO and source selection evaluation criteria must

specifically address those areas you consider critical processes. The evaluation criteria should
describe what is required of the offerors’ proposal and how it will be evaluated. The
Aeronautical Systems Center has developed an RFP template which provides general and
specific guidance on preparing the RFP for software-intensive systems. [You might also
consider requiring that offerors address the software supportability instructions contained in
Volume 2, Appendix S, Software Source Selection as part of their proposal response. In
addition, Appendix S provides a shopping list of RFP statements, definitions of software
supportability metrics, and a sample “Instructions to Offerors” that addresses supportability.]

12-22

Chapter 12 : Software Support GSAM Version 3.0

12.8.1 Specifying Supportable Software

Acquiring supportable software also requires the specification of software product performance
requirements. The major instruments contained within the RFP are illustrated in Figure 12-9.

Figure 12-9. Acquisition Instruments

12.8.1.1 Statement of Objectives (SOO)

The SOO defines an objective for efficient, life cycle software support consistent with total system
requirements. The SOO states that software supportability requirements and support characteristics
are to be managed as an integral part of system development.

12.8.1.2 Specification Practices

In accordance with the Perry Memo, your RPF must describe what you want to procure — not
how to design or build it. You can provide top-level system specifications or requirements
documents to satisfy the “what you want.” These specifications can only contain performance
requirements and key system characteristics — they can not contain design solutions or detailed
design requirements. You can describe the methods you intend to use to verify that system
requirements have been achieved. For each performance requirement, a corresponding method
of verification should be provided. Therefore, specify key software supportability characteristics
along with corresponding verification methods in the system specification or requirements
document. You should specify the following characteristics to ensure your software acquisition
is supportable:

• Module size. Module size affects software supportability. Module size [a typical computer
software component (CSC)] should generally not exceed 100 source lines-of-code (SLOC).

• Complexity. Application complexity affects software supportability. One generally accepted
complexity measure is McCabe’s Cyclomatic Complexity Measure, which should not exceed
10 for a given module.

• Programming language. The use of widely-accepted, higher order programming languages
to develop software enhances software supportability.

OBJECTIVES
(SOO)

SPECIFICATION CDRL INTSRUCTIONS
TO OFFERER

(ITO)

MODEL
CONTRACT

RFP

REQUIREMENTS
– PERFORMANCE
– CHARACTERISTICS

VERIFICATION

SRS/IRS

SOURCE
CODE

EVALUATION
CRITERIA

CDRL

CLINS

12-23

Chapter 12 : Software Support GSAM Version 3.0

• Spare memory. The availability of installed spare memory improves software supportability.
Spare memory permits the incorporation of enhancements and the correction of latent
deficiencies. The effect of spare memory on supportability was calculated for the E-3 AWACS
where two similar radars were delivered with 9% spare and 34% spare memory, respectively
for the APY-1 and the APY-2. Measurements revealed a 3 to 1 difference in cost and schedule
impact when making the same change to both E-3 radars.

• Spare computer throughput. The availability of installed spare throughput affects the software
supportability by permitting the incorporation of enhancements and the correction of latent
deficiencies.

• Spare computer system input/output. The availability of installed spare input/output affects
software supportability.

• Other parameters. These include Halstead Metrics, SAIC, Inc.’s Quality Profile Metrics for
Supportable Maintainable Software, the IEEE’s software reliability concepts as they may
apply to specifying a required level of software supportability, and Rome Laboratory’s,
Framework Implementation Guidebook, RL-TR-94-146, August 1994.

12.8.1.3 Documentation

Because software is unlike any other product, the only way to visualize and understand it is
through its documentation. Without accurate, high-quality documentation, software cannot be
understood. In essence, documentation is the most important aspect of software support.
Documentation delivery requirements specified in CDRLs include:

• Software and Interface Requirements Specifications,
• Software and Interface Design Descriptions,
• Database Descriptions,
• Software Product Specifications,
• Source Code Listings,
• Test plans/descriptions/reports,
• Software Development Plans,
• Software programming manuals,
• Software users manuals, and
• Software maintenance manuals.

The specific criteria for government acceptance of software design information should be clearly
specified in the appropriate CDRLs (DD Form 1423) items. This includes the verification
methodology, composition of the verification teams, and quantitative thresholds that must be
met or exceeded. Offerors should be encouraged to provide alternative verification approaches.

12.8.1.4 Life Cycle Software Support Strategies

To ensure the contractor’s process for developing the software addresses information and
documentation management, quality, and verification procedures, typical life cycle support
strategies available for source selection include the following.

12-24

Chapter 12 : Software Support GSAM Version 3.0

• Sole source (original contractor). The original contractor is awarded the software support
contract. The processes, products, and support system are already in place at the contractor’s
facility and typically are the same as those used during the development.

• Competitive (support equipment provided). A competitive contract is awarded and the
processes, products, and support systems are either transferred from the original contractor
facility to the competing contractor or the items are duplicated. The original contractor can
also be a competitor.

• Organic/contractor mix. The Government and the contractor share responsibility for software
support. Each agent is assigned a percentage of the software to be supported. Typically the
Government and contractor are collocated. The processes, products, and support system are
relocated to a government support center or the items are duplicated. Manning of the effort
is shared by the Government and either the original contractor or a competitive contractor.

• Organic. The Government assumes responsibility for software CSCIs. The processes,
products, and support systems are relocated to a government support center or duplicated.
Support processes are executed by government organic personnel.

12-25

Chapter 12 : Software Support GSAM Version 3.0

12.9 References

[ALC89] Supportable Software Acquisition Guide, First Edition, San Antonio Air Logistics Center, October
1989

[BASSETT95] Bassett, Paul, “Maintenance is a Misnomer,” Software Magazine, December 1995
[BISCHOFF91] Bischoff, Col Ron, as quoted in “Design and Planning Make High-Tech F-22 Easy to

Maintain and Support,” Aviation Week & Space Technology, July 15, 1991
[BOEHM81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1981
[BORKY90] Borky, Col John M., as quoted in “ATF Avionics Met Dem/Val Goals, Providing Data for

Flight Tests,” Aviation Week & Space Technology, September 24, 1990
[GLASS92] Glass, Robert L., Building Quality Software, Prentice Hall, Englewood Cliffs, New Jersey,

1992
[IEEE90] Institute of Electrical and Electronic Engineers, Inc., IEEE Standard Glossary of Software

Engineering Technology, IEEE STD 610.12-1990, New York NY, December 10, 1990
[JONES91] Jones, Capers, Applied Software Measurement: Assuring Productivity and Quality, McGraw-

Hill, Inc., New York, 1991
[OLSEM93] Olsem, Michael R. and Chris Sittenauer, “Terms in Transition: Reengineering Terminology,”

CrossTalk, Software Technology Support Center, Special Edition, 1993
[PDSS90] “Report of the Ad Hoc Committee on Post-deployment Software Support,” US Air Force Scientific

Advisory Board, December 1990
[PERRY93] Perry, William E., “Don’t Pour Money Down Rat Holes that Infest Your Budget,” Government

Computing News, December 6, 1993
[PIERSALL94] Piersall, COL James, “The Importance of Software Support to Army Readiness,” Army

Research, Development, and Acquisition Bulletin, January-February 1994
[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition,

McGraw-Hill, Inc., New York, 1992
 [SHUMSKAS92] Shumskas, Anthony F., “Software Risk Mitigation,” G. Gordon Schulmeyer and James

I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992
[SNEED91] Sneed, Harry M., “Economics of Software Reengineering,” Software Maintenance: Research

and Practice, Volume 3, John Wiley and Sons, Ltd., 1991

Part 3: Management GSAM Version 3.0

Chapter 13

Software Estimation,
Measurement, and
Metrics

13-2

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Contents

13.1 Chapter Overview .. 13-4
13.2 Software Estimation ... 13-4

13.2.1 Measuring Software Size ... 13-6
13.2.2 Source Lines-of-Code Estimates ... 13-7
13.2.3 Function Point Size Estimates ... 13-7
13.2.4 Feature Point Size Estimates.. 13-9
13.2.5 Cost and Schedule Estimation Methodologies/Techniques 13-10
13.2.6 Ada-Specific Cost Estimation ... 13-12

13.3 Software Measurement ... 13-13
13.3.1 Measures and Metrics, and Indicators ... 13-13
13.3.2 Software Measurement Life Cycle ... 13-15
13.3.3 Software Measurement Life Cycle at Loral 13-16

13.4 Software Measurement Process ... 13-18
13.4.1 Metrics Plan ... 13-19
13.4.2 Activities That Constitute a Measurement Process.......................... 13-21

13.4.2.1 Planning ... 13-21
13.4.2.1.1 Define Information Needs... 13-21
13.4.2.1.2 Define Indicators and Analysis Methods to Address
 Information Needs ... 13-21
13.4.2.1.3 Define the Selected Measures ... 13-21
13.4.2.1.4 Metrics Selection.. 13-22

13.4.3 Typical Software Measurements and Metrics.................................. 13-24
13.4.3.1 Quality ... 13-24
13.4.3.2 Size .. 13-25
13.4.3.3 Complexity ... 13-25

13.4.4 Requirements ... 13-25
13.4.5 Effort.. 13-26
13.4.6 Productivity .. 13-26
13.4.7 Cost and Schedule .. 13-28
13.4.8 Scrap and Rework .. 13-29
13.4.9 Support .. 13-30

13.4.9.1 Define the Collection Process of the Measurement Data 13-30
13.4.9.2 Implementation... 13-30
13.4.9.3 Collect the Measurement Data .. 13-31
13.4.9.4 Analyze the Measurement Data to Derive Indicators 13-31
13.4.9.5 Manage the Measurement Data and Indicators 13-33

13-3

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

13.4.9.6 Report the Indicators .. 13-33
13.4.9.7 Evaluation .. 13-33
13.4.9.8 Review Usability of Indicators ... 13-33
13.4.9.9 Begin Measurement Activities Early 13-34

13.5 Cautions About Metrics ... 13-34
13.6 Addressing Measurement in the Request for Proposal (RFP) 13-35
13.7 References .. 13-36

13-4

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

13.1 Chapter Overview

Poor size estimation is one of the main reasons major software-intensive acquisition programs
ultimately fail. Size is the critical factor in determining cost, schedule, and effort. The failure to
accurately predict (usually too small) results in budget overruns and late deliveries which
undermine confidence and erode support for your program. Size estimation is a complicated
activity, the results of which must be constantly updated with actual counts throughout the life
cycle. Size measures include source lines-of-code, function points, and feature points. Complexity
is a function of size, which greatly impacts design errors and latent defects, ultimately resulting
in quality problems, cost overruns, and schedule slips. Complexity must be continuously measured,
tracked, and controlled. Another factor leading to size estimate inaccuracies is requirements
creep which also must be baselined and diligently controlled.

Any human-intensive activity, without control, deteriorates over time. It takes constant attention
and discipline to keep software acquisition and development processes from breaking down —
let alone improving them. If you do not measure, there is no way to know whether processes are
on track or if they are improving. Measurement provides a way for you to assess the status of
your program to determine if it is in trouble or in need of corrective action and process
improvement. This assessment must be based on up-to-date measures that reflect current program
status, both in relation to the program plan and to models of expected performance drawn from
historical data of similar programs. If, through measurement, you diagnose your program as
being in trouble, you will be able take meaningful, effective remedial action (e.g., controlling
requirements changes, improving response time to the developer, relaxing performance
requirements, extending your schedule, adding money, or any number of options). [See Chapter
14, The Management Challenge, for a discussion on remedial actions for troubled programs.]
Measurement provides benefits at the strategic, program, and technical levels.

A good measurement program is an investment in success by facilitating early detection of
problems, and by providing quantitative clarification of critical development issues. Metrics
give you the ability to identify, resolve, and/or curtail risk issues before they surface. Measurement
must not be a goal in itself. It must be integrated into the total software life cycle — not independent
of it. To be effective, metrics must not only be collected — they must be used! Campbell and
Koster summed up the bottom line for metrics when they exclaimed:

“If you ain’t measurin,’ you ain’t managin’ — you’re only along for the ride (downhill)!”
[CAMPBELL95]

13.2 Software Estimation

Just as we typically need to determine the weight, volume, and dynamic flight characteristics of
a developmental aircraft as part of the planning process, you need to determine how much software
to build. One of the main reasons software programs fail is our inability to accurately estimate
software size. Because we almost always estimate size too low, we do not adequately fund or
allow enough time for development. Poor size estimates are usually at the heart of cost and
schedule overruns.

13-5

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

The key to credible software sizing is to use a variety of software sizing techniques, and not to
rely on a single source or method for the estimate. Reliance on a single source or technique
represents a major contribution to program cost and schedule risk, especially if it is based
exclusively on a contractor’s bid. There are two common types of size inaccuracies for which
you can compensate to some degree.

1. Normal statistical inaccuracies can be dealt with by using multiple data sources and estimating
methodologies, or by using multiple organizations to do the estimating and check and analyze
results.

2. The earlier the estimate is made — the less is known about the software to be developed —
and the greater the estimating errors. [See Figure 13-1]

Basing your estimates on more than one source is sound advice for both types of discrepancies.
Because accuracy can be improved if estimates are performed with smaller product elements,
base your estimates on the smallest possible unit of each component. Then compile these
calculations into composite figures. [HUMPHREY89]

0.25x

0.5x

.067x

0.8x

x

1.25x

1.5x

2.0x

4x

Feasibi l i ty P lans and Product Detai led Deve lopment and tes t
 requ i rements design design

Concept o f
operat ion

Requ i rements
S p e c ifications

Product
des ign

speci f icat ions

Detai led
design

speci f icat ions
Accep ted
sof tware

Classes of people,
data sources to suppor t

Query types, data loads,
intel l igent-terminal tradeoffs,

response t imes

Internal data structure,
buffer handl ing techniques

Detai led schedul ing a lgor i thms,
error handl ing

Programmer unders tanding
of specif icat ions

Example sources of uncer ta in ty ,
human-m achine interface software

R
el

at
iv

e
co

st
 ra

ng
e

Phases and mi lestones

Figure 13-1. Software Cost Estimation Accuracy Versus Phase [BOEHM81]

Given our shortcomings in size estimation, it is absolutely critical that you measure, track, and
control software size throughout development. You need to track the actual software size against
original estimates (and revisions) both incrementally and for the total build. Analysis is necessary
to determine trends in software size and functionality progress. Data requirements for these
measures are stated in Contract Data Requirements List (CDRL) items and should include:

13-6

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

• The number of distinct functional requirements in the Software Requirement Specification
(SRS) and Interface Requirement Specification (IRS),

• The number of software units contained in the Software Development Plan (SDP) or Software
Design Description (SDD), and

• Source lines-of-code (SLOC) or function point estimates for each computer software
configuration item (CSCI) and build compared to the actual source code listing for each
software unit.

Software size has a direct effect on overall development cost and schedule. Early significant
deviations in software size data indicate problems such as:

• Problems in the model(s), logic, and rationale used to develop the estimates,
• Problems in requirements stability, design, coding, and process,
• Unrealistic interpretation of original requirements and resource estimates to develop the system,

and
• Faulty software productivity rate estimates.

Significant departures from code development estimates should trigger a risk assessment of the
present and overall effort. Size-based models should be revisited to compare your development
program with those of similar domain, scope, size, and complexity, if possible.

13.2.1 Measuring Software Size

There are three basic methods for measuring software size. Historically, the primary measure of
softw are size has been the num ber SLOC. However, it is difficult to relate software functional
requirements to SLOC, especially during the early stages of development. An alternative method,
function points, should be used to estimate software size. Function points are used primarily for
management information systems (MISs), whereas, feature points (similar to function points) are
used for real-time or embedded systems. [PUTNAM92] SLOC, function points, and feature
points are valuable size estimation techniques. Table 13-1 summarizes the differences between
the function point and SLOC methods.

FUNCTION POINTS SOURCE LINES-OF-CODE

Specification-based Analogy-based

Language independent Language dependent

User-oriented Design-oriented

Variations a function of
counting conventions

Variations a function of
languages

Expandable to source
lines-of-code

Convertible to function
points

Table 13-1. Function Points Versus Lines-of-Code

13-7

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

13.2.2 Source Lines-of-Code Estimates

Most SLOC estimates count all executable instructions and data declarations but exclude
comments, blanks, and continuation lines. SLOC can be used to estimate size through analogy
— by comparing the new software’s functionality to similar functionality found in other historic
applications. Obviously, having more detailed information available about the functionality of
the new software provides the basis for a better comparison. In theory, this should yield a more
credible estimate. The relative simplicity of the SLOC size measure facilitates automated and
consistent (repeatable) counting of actual completed software size. It also enables recording size
data needed to prepare accurate estimates for future efforts. The most significant advantage of
SLOC estimates is that they directly relate to the software to be built. The software can then be
measured after completion and compared with your initial estimates. [HUMPHREY89] If you
are using SLOC with a predictive model (e.g., Barry Boehm’s COnstructive COst MOdel
(COCOMO)), your estimates will need to be continually updated as new information is available.
Only through this constant re-evaluation can the predictive model provide estimates that
approximate actual costs.

A large body of literature and historical data exists that uses SLOC, or thousands of source lines-
of-code (KSLOC), as the size measure. Source lines-of-code are easy to count and most existing
software estimating models use SLOCs as the key input. However, it is virtually impossible to
estimate SLOC from initial requirements statements. Their use in estimation requires a level of
detail that is hard to achieve (i.e., the planner must often estimate the SLOC to be produced
before sufficient detail is available to accurately do so.) [PRESSMAN92]

Because SLOCs are language-specific, the definition of how SLOCs are counted has been
troublesome to standardize. This makes comparisons of size estimates between applications
written in different programming languages difficult even though conversion factors are available.
From SLOC estimates a set of simple, size-oriented productivity and quality metrics can be
developed for any given on-going program. These metrics can be further refined using productivity
and quality equations such as those found in the basic COCOMO model.

13.2.3 Function Point Size Estimates

Function points, as defined by A.J. Albrecht, are the weighted sums of five different factors that
relate to user requirements:

• Inputs,
• Outputs,
• Logic (or master) files,
• Inquiries, and
• Interfaces. [ALBRECHT79]

The International Function Point Users Group (IFPUG) is the focal point for function point
definitions. The basic definition of function points provided above has been expanded by several
others to include additional types of software functionality, such as those related to embedded
weapons systems software (i.e., feature points).

13-8

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Function points are counted by first tallying the number of each type of function listed above.
These unadjusted function point totals are subsequently adjusted by applying complexity measures
to each type of function point. The sum of the total complexity-adjusted function points (for all
types of function points) becomes the total adjusted function point count. Based on prior
experience, the final function point figure can be converted into a reasonably good estimate of
required development resources. [For more information on function point counting, see the
“Counting Practices Manual” available from the IFPUG administrative office in Westerville,
Ohio for a nominal charge, (614) 895-3170 or Fax (614) 895-3466.]

Table 13-2 illustrates a function point analysis for a nominal program. First you count the number
of inputs, outputs, inquiries, logic files, and interfaces required. These counts are then multiplied
by established values. The total of these products is adjusted by the degree of complexity based
on the estimator’s judgment of the software’s complexity. Complexity judgments are domain-
specific and include factors such as data communications, distributed data processing,
performance, transaction rate, on-line data entry, end-user efficiency, reusability, ease of
installation, operation, change, or multiple site use. This process for our nominal program is
illustrated in Figure 13-2.

Simple Average Complex Total

Inputs 3X ___ 4X _2_ 6X _2_ 20

Outputs 4X _1_ 5X _3_ 7X ___ 19

Inquiries 3X ___ 4X ___ 6X ___ 0

Files 7X ___ 10X _1_ 15X ___ 10

Interfaces 5X ___ 7X ___ 10X ___ 10

UNADJUSTED FUNCTION POINTS =59

Table 13-2. Function Point Computation

13-9

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Figure 13-2. Function Point Software Size Computational Process

While function points aid software size estimates, they too have drawbacks. At the very early
stages of system development, function points are also difficult to estimate. Additionally, the
complexity factors applied to the equation are subjective since they are based on the analyst/
engineer’s judgment. Few automated tools are available to count either unadjusted or adjusted
function points, making comparisons between or among programs difficult, and making the
function point counts for any single program inconsistent when calculated by different analysts.
However, function points are valuable in making early estimates, especially after the SRS has
been completed. Like SLOC, they too are affected by changes in system and/or software
requirements. Also, as a relatively new measure of software size, there are few significant,
widely-available databases for estimating function points by comparison (analogy) to functionally
similar historic software applications.

13.2.4 Feature Point Size Estimates

A derivative of function points, feature points were developed to estimate/measure real-time
systems software with high algorithmic complexity and generally fewer inputs/outputs than MISs.
Algorithms are sets of mathematical rules expressed to solve significant computational problems.
For example, a square root extraction routine, or a Julian date conversion routine, are algorithms.

In addition to the five standard function point parameters, feature points include an algorithm(s)
parameter which is assigned the default weight of 3. The feature point method reduces the
empirical weights for logical data files from a value of 10 to 7 to account for the reduced
significance of logical files in real-time systems. For applications in which the number of
algorithms and logical data files are the same, function and feature point counts generate the
same numeric values. But, when there are more algorithms than files, feature points produce a
greater total than function points. Table 13-3 illustrates the ratio of function point to feature
point counts for selected applications. [For a more detailed explanation of feature points, see
Capers Jones, Applied Software Measurement.] [JONES91]

Inputs
Out ut
Inquiries

Interfaces

Files

Application Boundary

(Information Processing
Size)

Function
Points =

Adjustment
Factors

(Complexity
Adjustment)

(0.65 + 1% of total influence of
adjustment factors)

(Raw function points)

Function Points =
SLOCs =

(59) (0.65 + 0.47 = (59) (1.12) = 66
(66 FPs) (90 'C' SLOCs/FP) = 5,940 SLOCs

13-10

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Table 13-3. Ratios of Feature Points to Function Points [JONES91]

NOTE: See Volume 2, Appendix H, “Counting Rules for Function Points and Feature
Points.”

13.2.5 Cost and Schedule Estimation Methodologies/Techniques

Most estimating methodologies are predicated on analogous software programs. Expert opinion
is based on experience from similar programs; parametric models stratify internal data bases to
simulate environments from many analogous programs; engineering builds reference similar
experience at the unit level; and cost estimating relationships (like parametric models) regress
algorithms from several analogous programs. Deciding which of these methodologies (or
combination of methodologies) is the most appropriate for your program usually depends on
availability of data, which is in turn depends on where you are in the life cycle or your scope
definition.

• Analogies. Cost and schedule are determined based on data from completed similar efforts.
When applying this method, it is often difficult to find analogous efforts at the total system
level. It may be possible, however, to find analogous efforts at the subsystem or lower level
computer software configuration item/computer software component/computer software unit
(CSCI/CSC/CSU). Furthermore, you may be able to find completed efforts that are more or
less similar in complexity. If this is the case, a scaling factor may be applied based on expert
opinion (e.g., CSCI-x is 80% as complex). After an analogous effort has been found, associated
data need to be assessed. It is preferable to use effort rather than cost data; however, if only
cost data are available, these costs must be normalized to the same base year as your effort
using current and appropriate inflation indices. As with all methods, the quality of the estimate
is directly proportional to the credibility of the data.

• Expert (engineering) opinion. Cost and schedule are estimated by determining required
effort based on input from personnel with extensive experience on similar programs. Due to
the inherent subjectivity of this method, it is especially important that input from several
independent sources be used. It is also important to request only effort data rather than cost
data as cost estimation is usually out of the realm of engineering expertise (and probably
dependent on non-similar contracting situations). This method, with the exception of rough
orders-of-magnitude estimates, is rarely used as a primary methodology alone. Expert opinion
is used to estimate lower-level, low cost, pieces of a larger cost element when a labor-intensive
cost estimate is not feasible.

APPLICATION FUNCTION
POINTS

FEATURE
POINTS

Batch MIS projects 1 0.80

On-line MIS projects 1 1.00

On-line database projects 1 1.00

Switching systems projects 1 1.20

Embedded real-time projects 1 1.35

Factory automation projects 1 1.50

Diagnostic and prediction projects 1 1.75

13-11

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

• Parametric models. The most commonly-used technology for software estimation is
parametric models, a variety of which are available from both commercial and government
sources. The estimates produced by the models are repeatable, facilitating sensitivity and
domain analysis. The models generate estimates through statistical formulas that relate a
dependent variable (e.g., cost, schedule, resources) to one or more independent variables.
Independent variables are called “cost drivers” because any change in their value results in
a change in the cost, schedule, or resource estimate. The models also address both the
development (e.g., development team skills/experience, process maturity, tools, complexity,
size, domain, etc.) and operational (how the software will be used) environments, as well as
software characteristics. The environmental factors, used to calculate cost (manpower/effort),
schedule, and resources (people, hardware, tools, etc.), are often the basis of comparison
among historical programs, and can be used to assess on-going program progress.

Because environmental factors are relatively subjective, a rule of thumb when using parametric
models for program estimates is to use multiple models as checks and balances against each
other. Also note that parametric models are not 100 percent accurate. Boehm states:

“Today, a software cost estimation model is doing well if it can estimate software development
costs within 20% of the actual costs, 70% of the time, and on its own home turf (that is, within the
class of projects to which it is calibrated…. This means that the model’s estimates will often be
much worse when it is used outside its domain of calibration.” [BOEHM81]

Boehm’s assertion is still valid today as reported by Ferens and Christensen. They report:

“…in general, model validation showed that the accuracy of the models was no better than within
25 percent of actual development cost or schedule, about one half of the time, even after calibration.”
[FERENS00]

In all fairness, the databases used to achieve the results reported in [FERENS00] were not from
a single entity, but a compilation of data from several software developers. One would assume as
developers increase their maturity levels and gather data, their ability to estimate required resources
would improve. However, if dealing with developers that do not have a good estimation database,
the wise project manager will plan for cost and schedule to be 30% to 50% higher than the
estimates provided by the parametric cost models.

13-12

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

• Engineering build (grass roots, or bottoms-up build). Cost and schedule are determined by
estimating effort based on the effort summation of detailed functional breakouts of tasks at
the lowest feasible level of work. For software, this requires a detailed understanding of the
software architecture. Analysis is performed at the CSC or CSU level and associated effort is
predicted based on unit level comparisons to similar units. Often, this method is based on a
notional system of government estimates of most probable cost and used in source selections
before contractor solutions are known. This method is labor-intensive and is usually performed
with engineering support; however, it provides better assurance than other methods that the
entire development scope is captured in the resulting estimate.

• Cost Performance Report (CPR) analysis. Future cost and schedule estimates are based on
current progress. This method may not be an optimal choice for predicting software cost and
schedule because software is generally developed in three distinct phases (requirements/
design, code/unit test, integration/test) by different teams. Apparent progress in one phase
may not be predictive of progress in the next phases, and lack of progress in one phase may
not show up until subsequent phases. Difficulty in implementing a poor design may occur
without warning, or problems in testing may be the result of poor test planning or previously
undetected coding defects. CPR analysis can be a good starting point for identifying problem
areas, and problem reports included with CPRs may provide insight for risk assessments.

• Cost estimating relationships (CERs)/factors. Cost and schedule are estimated by determining
effort based on algebraic relationships between a dependent (effort or cost) variable and
independent variables. This method ranges from using simple factor, such as cost per line-
of-code on similar program with similar contractors, to detailed multi-variant regressions
based on several similar programs with more than one causal (independent) variable. Statistical
packages are commercially available for developing CERs, and if data are available from
several completed similar programs (which is not often the case), this method may be a
worthwhile investment for current and future cost and schedule estimating tasks. Parametric
model developers incorporate a series of CERs into an automated process by which parametric
inputs determine which CERs are appropriate for the program at hand.

Of these techniques, the most commonly used is parametric modeling. There is currently no list
of recommended or approved models; however, you will need to justify the appropriateness of
the specific model or other technique you use in an estimate presented for DAB and/or MAISARC
Review. As mentioned above, determining which method is most appropriate is driven by the
availability of data. Regardless of which method used, a thorough understanding of your software’s
functionality, architecture, and characteristics, and your contract is necessary to accurately estimate
required effort, schedule, and cost.

NOTE: Refer to “A Manager’s Checklist for Validating Software Cost and Schedule
Estimates,” CMU/SEI-95-SR-04, and “Checklists and Criteria for Evaluating the Cost and
Schedule Estimating Capabilities of Software Organizations,” CMU/SEI-95-SR-05.

13.2.6 Ada-Specific Cost Estimation

Using Ada-specific models is necessary because Ada developments do not follow the classic
patterns included in most traditional cost models. As stated above, the time and effort required
during the design phase are significantly greater (50% for Ada as opposed to 20% for non-Ada
software developments). [Ada/C++91] Another anomaly with Ada developments is productivity

13-13

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

rates. Traditional non-Ada developments have historically recorded that productivity rates decrease
as program size increases. With Ada, the opposite is often true. Due in large to Ada reusability,
the larger the program size — the greater the productivity rate.

13.3 Software Measurement

You cannot build quality software, or improve your process, without measurement. Measurement
is essential to achieving the basic management objectives of prediction, progress, and process
improvement. An oft-repeated phrase by DeMarco holds true; “You can’t manage what you
can’t measure!” [DeMARCO86] All process improvement must be based on measuring where
you have been, where you are now, and properly using the data to predict where you are heading.
Collecting good metrics and properly using them always leads to process improvement!

13.3.1 Measures and Metrics, and Indicators

A software measurement is a quantifiable dimension, attribute, or amount of any aspect of a
software program, product, or process. It is the raw data which are associated with various
elements of the software process and product. Table 13-4 gives some examples of useful
management measures.

AREA MEASURES

Requirements • CSCI requirements
• CSCI design stability

Performance • Input/output bus throughout
capability

• Processor memory utilization
• Processor throughout put

utilization

Schedule • Requirements allocation status
• Preliminary design status
• Code and unit test status
• Integration status

Cost • Person-months of effort
• Software size

Table 13-4. Example Management Indicators

Metrics (or indicators) are computed from measures. They are quantifiable indices used to compare
software products, processes, or projects or to predict their outcomes. With metrics, we can:

• Monitor requirements,
• Predict development resources,
• Track development progress, and
• Understand maintenance costs.

13-14

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Metrics are used to compare the current state of your program with past performance or prior
estimates and are derived from earlier data from within the program. They show trends of
increasing or decreasing values, relative only to the previous value of the same metric. They also
show containment or breeches of pre-established limits, such as allowable latent defects.

Metrics are also useful for determining a “business strategy” (how resources are being used and
consumed). For example, in producing hardware, management looks at a set of metrics for scrap
and rework. From a software standpoint, you will want to see the same information on how
much money, time, and manpower the process consumes that does not contribute to the end
product. One way a software program might consume too many resources is if errors made in
the requirements phase were not discovered and corrected until the coding phase. Not only does
this create rework, but the cost to correct an error during the coding phase that was inserted
during requirements definition is approximately 50% higher to correct than one inserted and
corrected during the coding phase. [BOEHM81] The key is to catch errors as soon as possible
(i.e., in the same phase that they are induced).

Management metrics are measurements that help evaluate how well the acquisition office is
proceeding in accomplishing their acquisition plan or how well the contractor is proceeding in
accomplishing their Software Development Plan. Trends in management metrics support forecasts
of future progress, early trouble detection, and realism in plan adjustments. Software product
attributes are measured to arrive at product metrics which determine user satisfaction with the
delivered product or service. From the user’s perspective, product attributes can be reliability,
ease-of-use, timeliness, technical support, responsiveness, problem domain knowledge and
understanding, and effectiveness (creative solution to the problem domain). Product attributes
are measured to evaluate software quality factors, such as efficiency, integrity, reliability,
survivability, usability, correctness, maintainability, verifiability, expandability, flexibility,
portability, reusability, and interoperability. Process metrics are used to gauge organizations,
tools, techniques, and procedures used to develop and deliver software products. [PRESSMAN92]
Process attributes are measured to determine the status of each phase of development (from
requirements analysis to user acceptance) and of resources (dollars, people, and schedule) that
impact each phase.

NOTE: Despite the SEI’s Software Capability Evaluation (SCE) methods, process
efficiency can vary widely within companies rated at the same maturity levels, and from
program to program.

There are five classes of metrics generally used from a commercial perspective to measure the
quantity and quality of software. During development technical and defect metrics are used.
After market metrics are then collected which include user satisfaction, warranty, and reputation.

• Technical metrics are used to determine whether the code is well-structured, that manuals
for hardware and software use are adequate, that documentation is complete, correct, and up-
to-date. Technical metrics also describe the external characteristics of the system’s
implementation.

• Defect metrics are used to determine that the system does not erroneously process data, does
not abnormally terminate, and does not do the many other things associated with the failure
of a software-intensive system.

• End-user satisfaction metrics are used to describe the value received from using the system.

13-15

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

• Warranty metrics reflect specific revenues and expenditures associated with correcting
software defects on a case-by-case basis. These metrics are influenced by the level of defects,
willingness of users to come forth with complaints, and the willingness and ability of the
software developer to accommodate the user.

• Reputation metrics are used to assess perceived user satisfaction with the software and may
generate the most value, since it can strongly influence what software is acquired. Reputation
may differ significantly from actual satisfaction:
− Because individual users may use only a small fraction of the functions provided in any

software package; and
− Because marketing and advertising often influence buyer perceptions of software quality

more than actual use.

13.3.2 Software Measurement Life Cycle

Effective software measurement adds value to all life cycle phases. Figure 13-3 illustrates the
primary measures associated with each phase of development. During the requirements phase,
function points are counted. Since requirements problems are a major source of cost and schedule
overruns, an error and quality tracking system is put into effect. Once requirements are defined,
the next phase of measurement depends on whether the program is a custom development, or a
combination of newly developed applications, reusable assets, and COTS. The risks and values
of all candidate approaches are quantified and analyzed.

INITIATE
A

PROJECT

ANALYZE
EXISTING

SITUATION

Project
Assessment

(Soft Factors)

CONSTRUCT
THE

SYSTEM

LO C
Count

Defect
Analysis

DESIGN
LOGICAL
SYSTEM

Defect
Analysis

DEFIN E N E W
SYSTEM

REQUIREMENTS

FP
Sizing

Project
Estimate

Defect
Analysis

DESIGN
PHYSICAL

SYSTEM

FP
Sizing

Defect
Analysis

TEST AND
IMPLEMENT

SYSTEM

FP
Sizing

Defect
Analysis

Project
Management

Evaluation

MAINTENANCE

Complexity
Analysis

Maintenance
Measures

Post
Impl .

Defects

MEASUREMENT
RELATED ACTIVITIES

SUPPORT
ACTIVITIES

 PROJECT ACCOUNTING (SCHEDULE AND EFFORT)

 CONFIGURATION MANAGEMENT (DELIVERABLES)

Figure 13-3. Software Measurement Life Cycle [JONES91]

If the solution is a custom development, from the logical system design on, defect removal can
be a very costly activity. Therefore, design reviews and peer inspections are used to gather and
record defect data. The data are analyzed to determine how to prevent similar defects in the
future. During physical design, reviews and peer inspections continue to be valuable and defect
data are still collected and analyzed. The coding phase can be anything from very difficult to
almost effortless, depending upon the success of the preceding phases. Defect and quality data,
as well as code complexity measures, are recorded during code reviews and peer inspections.

13-16

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

One of the most important characteristics of your software development is complexity. With the
first executable architecture, throughout the design phases, and subsequently, as the code is
developed and compiled, evaluate the complexity of your proposed development. This will give
you important insight into the feasibility of bringing your program to a successful conclusion
(i.e., to provide the desired functional performance on the predicted schedule, at the estimated
cost).

The testing phase will range from a simple unit tests the programmers conduct, to a full-scale,
multi-staged formal test suite, including function tests, integration tests, stress tests, regression
tests, independent tests, field tests, system tests, and final acceptance tests. During all these
activities, in-depth defect data are collected and analyzed for use in subsequent defect prevention
activities such as changing the development process to prevent similar defects in future
developments. Retrospective analyses are performed on defect removal efficiencies for each
specific review, peer inspection, and test, and on the cumulative efficiency of the overall series of
defect removal steps.

During the maintenance phase, both user satisfaction and latent defect data are collected. For
enhancements or replacements of existing systems, the structure, complexity, and defect rates of
the existing software are determined. Further retrospective analysis of defect removal efficiency
is also be performed. A general defect removal goal is a cumulative defect removal efficiency of
95% for MIS, and 99.9% (or greater) for real-time weapon systems. This means that, when
defects are found by the development team or by the users, they are summed after the first (and
subsequent) year(s) of operations. Ideally, the development team will find and remove 95% to
100% of all latent defects. [JONES91]

13.3.3 Software Measurement Life Cycle at Loral

Table 13-5 illustrates how Loral Federal Systems collects and uses metrics throughout the software
life cycle. The measurements collected and the metrics (or in-process indicators) derived from
the measures change throughout development. At the start of a program (during the proposal
phase or shortly after contract start), detailed development plans are established. These plans
provide planned start and completion dates for each CDRL (CSU or CSCI). From these plans, a
profile is developed showing the planned percent completion per month over the life of the
program for all the software to be developed. Also at program start, a launch meeting is conducted
to orient the team to a common development process and to present lessons-learned from previous
programs.

13-17

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Table 13-5. Collection and Use of Metrics at Loral

During software design, coding, and unit testing, many different measurements and metrics are
used. On a weekly basis, actual percent completion status is collected against the plan established
at program start. Actuals are then plotted against the plan to obtain early visibility into any
variances. The number of weeks (early or late) for each line item is also tracked to determine
where problems exist. Source statement counts (starting as estimates at program start) are updated
whenever peer inspections are performed. A plot of code change over time is then produced.
Peer inspections are conducted on a regular basis and defects are collected. Peer inspection
metrics include peer inspection efficiency (effectiveness) (percent of defects detected during
inspections versus those found later) and expected product quality [the number of defects detected
per thousand source lines-of-code (KSLOC)]. Inspection data are used to project the expected
latent defect rate (or conversely, the defect removal efficiency rate) after delivery. At the completion
of each development phase, defect causal analysis meetings are held to examine detected defects
and to establish procedures, which when implemented, will prevent similar defects from occurring
in the future.

During development, program measurements are updated periodically (either monthly or quarterly)
in the site metrics database. These measurements include data such as cost, effort, quality, risks,
and technical performance measures. Other metrics, such as planned versus actual staffing profiles,
can be derived from these data. During integration and test, trouble report data are collected.
Two key metrics are produced during this phase: the Program Trouble Report (PTR) density (the

PROGRAM
PHASE

MEASUREMENT
COLLECTION

IN-PROCESS INDICATORS
(METRICS)

At Start Establish SPD
(plan star/completion for each phase)

Initial plan-complete profiles

During Design,
Coding,

Unit Testing

Weekly:
Update and complete plan items

Regularly:
Inspect Defect Data

Bi-monthly:
Casual analysis meeting

Quarterly:
Update measurements

% plan verus % casual

Inspection effectiveness (defects found
))defects remaining);
Defects)) KSLOC

Process improvements identified

Product quality (projected);
Staffing profile

During
Integration

Testing

Program Trouble Reports (PTRs)

Development team survey
transferred to integration and test
team survey

PTR density (PTR)) KSLOC)
Open PTRs versus time

% PTRs satisfied and survey comments

At End Document lessons learned

Customer survey

PTRs during acceptance

% satisfied and customer comments used
for future improvements

Product quality (actual)

13-18

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

number of defects per KSLOC) and Open PTRs over time. An internal development team survey
is transferred to the integration and test team so they can derive the team’s defect removal efficiency
and PTR satisfaction for the internal software delivery.

At the end of the program, lessons-learned for process improvement are documented for use in
future team launches. If possible, a customer survey is conducted to determine a customer
satisfaction rating for the program. Delivered product quality is measured during acceptance
testing and compared to the earlier projected quality rate. These actuals are then used to calibrate
the projection model for future and on-going programs.

13.4 Software Measurement Process

The software measurement process must be an objective, orderly method for quantifying, assessing,
adjusting, and ultimately improving the development process. Data are collected based on known,
or anticipated, development issues, concerns, and questions. They are then analyzed with respect
to the software development process and products. The measurement process is used to assess
quality, progress, and performance throughout all life cycle phases. The key components of an
effective measurement process are:

• Clearly defined software development issues and the measure (data elements) needed to
provide insight into those issues;

• Processing of collected data into graphical or tabular reports (indicators) to aid in issue analysis;
• Analysis of indicators to provide insight into development issues; and,
• Use of analysis results to implement process improvements and identify new issues and

problems.

Your normal avenue for obtaining measurement data from the contractor is via contract CDRLs.
A prudent, SEI Level 3 contractor will implement a measurement process even without government
direction. This measurement process includes collecting and receiving actual data (not just
graphs or indicators), and analyzing those data. To some extent the government program office
can also implement a measurement process independent of the contractor’s, especially if the
contractor is not sufficiently mature to collect and analyze data on his own. In any case, it is
important for the Government and the contractor to meet and discuss analysis results. Measurement
activities keep you actively involved in, and informed of, all phases of the development process.
Figure 13-4 illustrates how measurement was integrated into the organizational hierarchy at
IBM-Houston. It shows how a bottoms-up measurement process is folded into corporate activities
for achieving corporate objectives.

13-19

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Figure 13-4. Organizational Measurement Hierarchy

13.4.1 Metrics Plan

NOTE: Practical Software Measurement: A Foundation for Objective Project
Management, available at www.psmsc.com, and Practical Software Measurement:
Measuring for Process Management and Improvement (CMU/SEI-97-HB-003), available
at www.sei.cmu.edu should be reviewed in conjunction with the remainder of this chapter.

For measurement to be effective, it must become an integral part of your decision-making process.
Insights gained from metrics should be merged with process knowledge gathered from other
sources in the conduct of daily program activities. It is the entire measurement process that gives
value-added to decision-making, not just the charts and reports. [ROZUM92] Without a firm
Metrics Plan, based on issue analysis, you can become overwhelmed by statistics, charts, graphs,
and briefings to the point where you have little time for anything other than ingestion. Plan well!
Not all data is worth collecting and analyzing. Once your development program is in-process,
and your development team begins to design and produce lines-of-code, the effort involved in
planning and specifying the metrics to be collected, analyzed, and reported upon begins to pay
dividends. Figure 13-5 illustrates examples of life cycle measures and their benefits collected on
the Space Shuttle program.

CORPORATE
VISION

MARKET

FLEXIBILITY PRODU CTIVITY

Departments
and

Work Centers
QUALITY DELIVERY CYCLE

TIME WASTE

C USTOMER
SATISFAC TION

FINANCIAL

Business O perating
Systems

Business Units

O bjectives

Measures

External Effectiveness Internal Efficiency

www.psmsc.com
www.sei.cmu.edu

13-20

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Figure 13-5. Space Shuttle Life Cycle Measurements

The ground rules for a Metrics Usage Plan are that:

• Metrics must be understandable to be useful. For example, lines-of-code and function
points are the most common, accepted measures of software size with which software engineers
are most familiar.

• Metrics must be economical. Metrics must be available as a natural by-product of the work
itself and integral to the software development process. Studies indicate that approximately
5% to 10% of total software development costs can be spent on metrics. The larger the
software program, the more valuable the investment in metrics becomes. Therefore, do not
waste programmer time by requiring specialty data collection that interferes with the coding
task. Look for tools which can collect most data on an unintrusive basis.

• Metrics must be field tested. Beware of software contractors who offer metrics programs
that appear to have a sound theoretical basis, but have not had practical application or
evaluation. Make sure proposed metrics have been successfully used on other programs or
are prototyped before accepting them.

• Metrics must be highly leveraged. You are looking for data about the software development
process that permit management to make significant improvements. Metrics that show
deviations of .005% should be relegated to the trivia bin.

• Metrics must be timely. Metrics must be available in time to effect change in the development
process. If a measurement is not available until the program is in deep trouble it has no value.

• Metrics must give proper incentives for process improvement. High scoring teams are
driven to improve performance when trends of increasing improvement and past successes
are quantified. Conversely, metrics data should be used very carefully during contractor
performance reviews. A poor performance review, based on metrics data, can lead to negative
government/industry working relationships. Do not use metrics to judge team or individual
performance.

PRE-PROCESS
MEASURES

IN-PROCESS
MEASURES

XXXX
X
X X X X X X

X
X
X
XX

X

X
X X XXX

X
X

XX
X
X

X

END-PROCESS
MEASURES

Examples:
- Skil l demographics
- Education/training
- Process rating
- Patents/ID's
- VECP's

Primary Value:
- Preventative
- Strategic

Examples:
- Process defects
- Requirements stability
- Technical performance measures
- Design readiness

Primary Value:
- Real-time decision making

Examples:
- Product defects
- On-time delivery
- Cycle time
- Cost performance
- User satisfaction

Primary Value:
- Corporate history
- Lessons-learned

13-21

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

• Metrics must be evenly spaced throughout all phases of development. Effective measurement
adds value to all life cycle activities. [JONES91]

• Metrics must be useful at multiple levels. They must be meaningful to both management
and technical team members for process improvement in all facets of development.

13.4.2 Activities That Constitute a Measurement Process

Measurement can be expressed in terms of a fairly simple process. Simple is not to be confused
with easy. There are innumerable challenges to the successful implementation of an effective
measurement process. The following is a recommended measurement process logically grouped
by activity type (planning, implementation, and evaluation). During measurement planning,
information needs drive the selection of indicators. Indicators and analysis methods drive the
selection of specific measures. The specific measures drive the selection of collection processes.
During measurement implementation, the collection process provides measurement data that is
analyzed and formed into indicators that are used to satisfy information needs. The evaluation
activity is where metrics are judged to determine if they are providing the information required
for decision making and process improvement.

13.4.2.1 Planning

There are four activities to measurement planning (discussed below). The results of these four
activities are documented in the Measurement Plan.

13.4.2.1.1 Define Information Needs

The need for information is derived from goals and objectives. These goals and objectives may
come from project planning, project monitoring, process compliance, pilot process improvements,
and/or risk mitigation, etc. There are technical needs, project needs, managerial needs, and
organizational needs.

13.4.2.1.2 Define Indicators and Analysis Methods to Address Information Needs

Once the information needs have been prioritized, an appropriate number of indicators are selected.
Indicators are derived from the analysis of “two or more sets of measurement data”. Once the
indicators are selected, the appropriate analysis methods are defined to derive indicators from
the measurement data.

It is important during the initial growth of a measurement program that information needs be
limited. This is a change management issue. Do not overwhelm the measurement staff. On the
other hand, a little advanced planning will serve to develop measurements useful as organizations
mature.

13.4.2.1.3 Define the Selected Measures

The selected indicators and analysis methods will drive the selection of specific measures. Once
the measures are selected, the details of the measure must be documented. This includes
definitions, terms, data requirements, security requirements, data types etc.

13-22

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Once data collection has commenced, it is important that there is consistency in data definitions.
Changing a definition in midstream during data collection produces variations in data trends that
can skew the analysis of performance, quality, and related issues. If definitions do change through
process-knowledge, it is critically important that you understand each change and how these
changes will affect already collected data. [Changes in entry/exit definitions should be reflected
in an updated SDP.]

13.4.2.1.4 Metrics Selection

Marciniak and Reifer proclaim that: “Software projects don’t get into trouble all at once; instead
they get into trouble a little at a time.” [MARCINIAK90] Metrics must be selected to ascertain
your program’s trouble threshold at the earliest phase of development. Basic measures should
be tailored by defining and collecting data that address those trouble (risk) areas identified in the
Risk Management Plan. A rule of thumb for metrics is that they must provide insight into areas
needing process improvement! Which metrics to use depends on the maturity level of the
organization. Table 13-6, based on the Army’s STEP metrics process, illustrates how metrics are
used to obtain program knowledge. [See Army policy on Preparation for Implementing Army
Software Test and Evaluation Panel (STEP) Metrics Recommendations, Volume 2, Appendix
B.]

13-23

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Table 13-6. How Metrics Are Used for Program Management

ATTENTION! Metrics selection must focus on those areas you have identified as sources
of significant risk for your program.

NOTE: Examples of minimum measures include: quarterly collation and analysis of
size (counting source statements and/or function/feature points), effort (counting staff
hours by task and nature of work; e.g., hours for peer inspection), schedule (software
events over time), software quality (problems, failures, and faults), rework (SLOC changed
or abandoned), requirements traceability (percent of requirements traced to design, code,
and test), complexity (quality of code), and breadth of testing (degree of code testing).

Contact the Global Transportation Network (GTN) Program for a copy of the GTN Software
Development Metrics Guidelines which discusses the metrics selected and gives examples of
how to understand and interpret them. See Volume 2, Appendix A for information on how to
contact the GTN program office.

METRIC OBJECTIVE

Schedule Track progress versus schedule

Cost Track software expenditures

Computer resource
utilization

Track planned versus actual size

Software engineering
environment

Rate contractor environment

Design stability Rate stability of software design and planned release or block. Design
stability = [(total modules+deleted module+modules with design
changes)/total modules]. Design thresholds: >=0.9 to >0.85 (warning), <=0.85
(alarm)

Requirements
traceability

Track rqmts to code by showing % of software rqmts traceable to developer
specifications, coding items (CI), CSCI, or CSC. Traceability thresholds are:
<=99% to <99.5% (warning), <99.5% (alarm)

Requirements stability Track changes to requirements

Fault profiles Track open versus closed anomalies

Complexity Assess code quality

Breadth testing Extent to which rqmts are tested. 4 measures are: coverage (ration or rqmts
tested to total rqmts); test success (ratio of rqmts passed to rqmts tested);
overall success (ratio rqmts passed to total rqmts); deferred (total deferred
rqmts).

Overall success thresholds: >99% (satisfactory), <99% to <95% (warning),
<=95% (alarm)

Depth of testing Track testing of code

Reliability Monitor potential downtime due to software

13-24

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

13.4.3 Typical Software Measurements and Metrics

A comprehensive list of industry metrics is available for software engineering management use,
ranging from high-level effort and software size measures to detailed requirements measures and
personnel information. Quality, not quantity, should be the guiding factor in selecting metrics. It
is best to choose a small, meaningful set of metrics that have solid baselines in a similar
environment. A typical set of metrics might include:

• Quality,
• Size,
• Complexity,
• Requirements,
• Effort,
• Productivity,
• Cost and schedule,
• Scrap and rework, and
• Support.

Some industry sources of historical data are those listed in Volume 2, Appendix A. A good
source of information on optional software metrics and complexity measures are the SEI technical
reports listed in Volume 2, Appendix D. Also see Rome Laboratory report, RL-TR-94-146,
Framework Implementation Guidebook, for a discussion on software quality indicators. Another
must-read reference is the Army Software Test and Evaluation Panel (STEP) Software Metrics
Initiatives Report, USAMSAA, May 6, 1992 and policy memorandum, Preparation for
Implementing Army Software Test and Evaluation Panel (STEP) Metrics Recommendations,
Volume 2, Appendix B.

13.4.3.1 Quality

Measuring product quality is difficult for a number of reasons. One reason is the lack of a precise
definition for quality. Quality can be defined as the degree of excellence that is measurable in
your product. The IEEE definition for software quality is the degree to which a system, component,
or process meets:

• Specified requirements
• Customer or user needs or expectations. [IEEE90]

Quality is in the eye of the user! For some programs, product quality might be defined as reliability
[i.e., a low failure density (rate)], while on others maintainability is the requirement for a quality
product. [MARCINIAK90] Your definition of a quality product must be based on measurable
quality attributes that satisfy your program’s specified user requirements. Because requirements
differ among programs, quality attributes will also vary. [MARCINIAK90]

13-25

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

13.4.3.2 Size

Software size is indicative of the effort required. Software size metrics have been discussed
above as SLOC, function points, and feature points.

13.4.3.3 Complexity

Complexity measures focus on designs and actual code. They assume there is a direct correlation
between design complexity and design errors, and code complexity and latent defects. By
recognizing the properties of each that correlate to their complexity, we can identify those high-
risk applications that either should be revised or subjected to additional testing.

Those software properties which correlate to how complex it is are size, interfaces among modules
(usually measured as fan-in, the number of modules invoking a given application, or fan-out, the
number of modules invoked by a given application), and structure (the number of paths within a
module). Complexity metrics help determine the number and type of tests needed to cover the
design (interfaces or calls) or coded logic (branches and statements).

There are several accepted methods for measuring complexity, most of which can be calculated
by using automated tools.

NOTE: See Appendix M, Software Complexity, for a discussion on complexity analysis.

13.4.4 Requirements

Requirements changes are a major source of software size risk. If not controlled and baselined,
requirements will continue to grow, increasing cost, schedule, and fielded defects. If requirements
evolve as the software evolves, it is next to impossible to develop a successful product. Software
developers find themselves shooting at a moving target and throwing away design and code
faster than they can crank it out [scrap and rework is discussed below]. Colonel Robert Lyons,
Jr., former co-leader of the F-22 System Program Office Avionics Group, cites an “undisciplined
requirements baselining process” as the number one cause of “recurring weapons system
problems.” An undisciplined requirements process is characterized by:

• Inadequate requirements definition,
• Late requirements clarification,
• Derived requirements changes,
• Requirements creep, and
• Requirements baselined late. [LYONS91]

Once requirements have been defined, analyzed, and written into the System Requirements
Specification (SRS), they must be tracked throughout subsequent phases of development. In a
system of any size this is a major undertaking. The design process translates user-specified (or
explicit) requirements into derived (or implicit) requirements necessary for the solution to be
turned into code. This multiplies requirements by a factor of sometimes hundreds. [GLASS92]

13-26

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Each implicit requirement must be fulfilled, traced back to an explicit requirement, and addressed
in design and test planning. It is the job of the configuration manager to guarantee the final
system meets original user requirements. As the requirements for a software solution evolve
into a design, there is a snowball effect when converting original requirements into design
requirements needed to convert the design into code. Conversely, sometimes requirements are
not flowed down and get lost during the development process (dropped through the developmental
crack) with a resulting loss in system performance or function. When requirements are not
adequately tracked, interface data elements can disappear, or extra interface requirements can be
introduced. Missing requirements may not become apparent until system integration testing,
where the cost to correct this problem is exponentially high.

13.4.5 Effort

In the 1970s, Rome Air Development Center (RADC) collected data on a diverse set of over 500
DoD programs. The programs ranged from large (millions of lines-of-code and thousands of
months of effort) to very small (a one month effort). The data was sparse and rather primitive but
it did include output KLOC and input effort months and duration. At that time most program
managers viewed effort and duration as interchangeable. When we wanted to cut completion
time in half, we assigned twice as many people! Lessons-learned, hard knocks, and program
measures such as the RADC database, indicated that the relationships between duration and
effort were quite complex, nonlinear functions. Many empirical studies over the years have
shown that manpower in large developments builds up in a characteristic way and that it is a
complex power function of software size and duration. Many estimation models were introduced,
the best known of which is Barry Boehm’s COnstructive COst MOdel (COCOMO). [HETZEL93]

13.4.6 Productivity

Software productivity is measured in the number of lines-of-code or function/feature points
delivered (i.e., SLOC that have been produced, tested, and documented) per staff month that
result in an acceptable and usable system.

Boehm explains there are three basic ways to improve software development productivity.

• Reduce the cost-driver multipliers,
• Reduce the amount of code; and,
• Reduce the scalable factor that relates the number of instructions to the number of man

months or dollars.

His model for measuring productivity is:

Productivity = Size/Effort where
Effort = Constant x Size Sigma x Multipliers [BOEHM81]

In the equation for effort, multipliers are factors such as efficiency of support tools, whether the
software must perform within limited hardware constraints, personnel experience and skills, etc.
Figure 13-6 lists the various cost drivers that affect software development costs. Many of these

13-27

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

factors (not all) can be modified by effective management practices. The weight of each factor as
a cost multiplier (on a scale of 1 to 4.18, with larger numbers having the greater weight) reflects
the relative effect that factor has on total development costs. Boehm’s studies show that “employing
the right people” has the greatest influence on productivity. (Reliability and complexity are also
important multipliers.)

Figure 13-6. Software Productivity Factors (Weighted Cost Multipliers) [BOEHM81]

The third element in the equation, the exponent Sigma, is 1.2 for embedded software in Boehm’s
COCOMO model.

NOTE: COCOMO II, an updated version of COCOMO that allows methodologies other
than the classic waterfall (such as object oriented, iterative, incremental), is available.

For large aerospace systems the value amounts to a fairly costly exponent. When you double the
size of software, you multiply the cost by 21.2, which is 2.3. In other words, the cost is doubled,
plus a 30% penalty for size. The size penalty, according to Boehm, results from inefficiency
influences that are a product of size. The bigger the software development, the bigger the
integration issues, the bigger the team you need, the less efficient they become.

“You bring a bigger team on board. The people on the team spend more time talking to each
other. There is more learning curve effect as you bring in people who don’t know what you are
building. There is a lot of thrashing in the process any time there is a proposed change of things
that haven’t been determined that people are trying to determine. Any time you do have a change,
there are ripple effects that are more inefficient on big programs than on small programs.”
[BOEHM89]

1 .2 0

1 .2 3

1 .2 3

1 .3 2

1 .3 4

1 .4 9

1 .4 9

1 .5 1

1 .5 6

1 .5 7

1 .6 6

1 .8 7

4 .1 8

2 .3 6

1 .0 0 1 .5 0 2 .0 0 2 .5 0 3 .0 0 3 .5 0 4 .0 0

L a n g u a g e e x p e r i e n c e

S ch e d u l e c o n s t r a i n t

D a t a b a s e s i z e

T u r n a r o u n d t i m e

V i r t u a l m a c h i n e e x p e r i e n c e

V i r t u a l m a c h i n e v o l a t i l i t y

S o f tw a r e T o o ls

M o d e r n p r o g r a m m i n g p r a c t i c e s

S t o r a g e c o n s t r a i n t

A p p l i c a t i o n s e x p e r i e n c e

T i m i n g c o n s t r a i n t

R e q u i r e d r e lia b i l i t y

P ro d u c t c o m p l e x ity

P e r s o n n e l / t e a m c a p a b i l i t y

S o f tw a r e p r o d u c t i v i t y r a n g e

S
of

tw
ar

e
co

st
 d

riv
er

 a
ttr

ib
ut

e

13-28

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

13.4.7 Cost and Schedule

As previously discussed, the driving factors in DoD software development have always been
cost, schedule, or both. A typical DoD scenario has been for the software development schedule
to be accelerated to support the overall program schedule, increasing the cost of the software and
reducing quality. Because cost is the key issue in any development program, it must be reviewed
carefully as part of the program review and approval process. As Benjamin Franklin explained:

“I conceive that the great part of the miseries of mankind are brought upon them by the false
estimates they have made of the value of things.” — Benjamin Franklin [FRANKLIN33]

To avoid the miseries of a runaway program, you must carefully plan for and control the cost and
schedule of your software development effort. These measures are important for determining
and justifying the required funding, to determine if a specific proposal is reasonable, and to
insure that the software development schedule is consistent with the overall system schedule.
Cost measures should also be used to evaluate whether the developer has the appropriate mix
and quantity of assigned staff, and to develop a reasonable program cost and schedule baseline
for effective and meaningful program management.

While size is by far the most significant driver of cost and schedule, other factors impact them as
well. These factors are usually more qualitative in nature and address the development and
operational environments as well as the software’s characteristics. Most software cost estimating
models use these factors to determine environmental and complexity factors which are in turn
used in computations to calculate effort and cost.

Multi-source cost and schedule estimation is the use of multiple, independent organizations,
techniques, and models to estimate cost and schedule, including analysis and iteration of the
differences between estimates. Whenever possible, multiple sources should be used for estimating
any unknowns, not just cost and schedule. Errors or omissions in estimates can often be identified
by comparing one with another. Comparative estimates also provide a sounder set of “should-
costs” upon which to control software development. As with size estimates, assessment from
alternate sources (such as program office software technical staff, prime or subcontractors, or
professional consulting firms) is advisable for cost and schedule. Reassessments throughout the
program life cycle improve the quality of estimates as requirements become better understood
and refined. The following summarizes the resources you should consider when costing software
development.

• Human resources. This includes the number and qualifications of the people required, as
well as their functional specialties. Boehm asserts that human resources are the most significant
cost drivers on a software development effort. [BOEHM81] Development personnel skills
and experience (reflected in their productivity) have the greatest effect on cost and schedule.

• Hardware resources. This includes development (host) and target computers, and compilers.
Hardware resources used to be major cost drivers when development personnel needed to
share equipment with multiple constituencies. Now that virtually everyone has a PC or
workstation on his or her desk, the issue is whether the target computer significantly differs
from the development computer. For instance, if the target machine is an air or spaceborne
system, the actual CPU may be technology-driven and not usable for all required development
activities.

13-29

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

• Software resources. Software is also used as a tool to develop other software. CASE tools
needed for development, test, and code generation must be considered. Your toolset might
include: business systems planning tools, program management tools, support tools, analysis
and design tools, programming tools, integration and test tools, prototyping and simulation
tools, maintenance tools, cost/schedule estimating tools, and architectural tools.

• Reusable resources. Reusable assets are a valuable resource that must be considered in
determining your cost requirements. This includes the assets you will develop for future
reuse by other programs, as well as searching the reuse repositories for existing code that can
be integrated into your development. Reusable assets will have significant impact on your
program cost and schedule.

Schedule measurements track the contractor’s performance towards meeting commitments, dates,
and milestones. Milestone performance metrics give you a graphical portrayal (data plots and
graphs) of program activities and planned delivery dates. It is essential that what constitutes
progress slippage and revisions is understood and agreed upon by both the developer and the
Government. Therefore, entry and exit criteria for each event or activity must be agreed upon at
contract award. A caution in interpreting schedule metrics is to keep in mind that many activities
occur simultaneously. Slips in one or more activities usually impact on others. Look for problems
in process and never, never sacrifice quality for schedule!

13.4.8 Scrap and Rework

A major factor in both software development cost and schedule is that which is either scrapped
or reworked. The costs of conformance are the normal costs of preventing defects or other
conditions that may result in the scrapping or reworking of the software. The costs of
nonconformance are those costs associated with redoing a task due to the introduction of an
error, defect, or failure on initial execution (including costs associated with fixing failures that
occur after the system is operational, i.e., scrap and rework cost).

NOTE: Good planning requires consideration of the “rework cycle.” For iterative
development efforts, rework can account for the majority of program work content and
cost!

Rework costs are very high. Boehm’s data suggest rework costs are about 40% of all software
development expenditures. Defects that result in rework are one of the most significant sources
of risk in terms of cost, delays, and performance. You must encourage and demand that your
software developer effectively measures and controls defects. Rework risk can be controlled by:

• Implementing procedures to identify defects as early as possible;
• Examining the root causes of defects and introducing process improvements to reduce or

eliminate future defects; and
• Developing incentives that reward contractors/developers for early and comprehensive defect

detection and removal.

There are currently no cost estimating models available that calculate this substantial cost factor.
However, program managers must measure and collect the costs associated with software scrap
and rework throughout development. First, it makes good sense to monitor and track the cost of

13-30

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

defects, and thereby to incentivize closer attention to front-end planning, design, and other defect
preventive measures. Second, by collecting these costs across all software development programs,
parametric models can be designed to better help us plan for and assess the acquisition costs
associated with this significant problem.

NOTE: See Volume 2, Appendix O, “Swords & Plowshares; The Rework Cycles of Defense
and Commercial Software Development Projects.”

13.4.9 Support

Software supportability progress can be measured by tracking certain key supportability
characteristics. With these measures, both the developer and the acquirer obtain knowledge
which can be focused to control supportability.

• Memory size. This metric tracks spare memory over time. The spare memory percentage
should not go below the specification requirement.

• Input/output. This metric tracks the amount of spare I/O capacity as a function of time. The
capacity should not go below the specification requirement.

• Throughput. This metric tracks the amount of throughput capacity as a function of time.
The capacity should not go below specification requirements.

• Average module size. This metric tracks the average module size as a function of time. The
module size should not exceed the specification requirement.

• Module complexity. This metric tracks the average complexity figure over time. The average
complexity should not exceed the specification requirement.

• Error rate. This metric tracks the number of errors compared to number of errors corrected
over time. The difference between the two is the number of errors still open over time. This
metric can be used as a value for tested software reliability in the environment for which it
was designed.

• Supportability. This metric tracks the average time required to correct a deficiency over
time. The measure should either remain constant or the average time should decrease. A
decreasing average time indicates supportability improvement.

• Lines-of-code changed. This metric tracks the average lines-of-code changed per deficiency
corrected when measured over time. The number should remain constant to show the
complexity is not increasing and that ease of change is not being degraded.

13.4.9.1 Define the Collection Process of the Measurement Data

From the definition of the specific measures, collection process requirements can be identified.
These requirements are used to guide the development of the measurement data collection process.

13.4.9.2 Implementation

Measurement process implementation is controlled by the measurement plan. The implementation
activities are discussed below.

13-31

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

13.4.9.3 Collect the Measurement Data

This activity is simply the execution of the measurement data collection process.

As stated above, metrics are representations of the software and the software development process
that produces them — the more mature the software development process, the more advanced
the metrics process. A well-managed process, with a well-defined data collection effort embedded
within it, provides better data and more reliable metrics. Accurate data collection is the basis of
a good metrics process. Figure 13-7 illustrates the variety of software quality metrics and
management indicators that were collected and tracked for all F-22 weapon systems functions.

of Requirements
of Interfaces

of Units Coded

of Open S/W Problems
of Tested Units Manpower Loading

Figure 13-7. F-22 Data Collection for Software Development Tracking

To summarize, data collection must be woven into the developer’s process. For instance, count
the number of software units to be built by looking at the Software Design Description (SDD)
and limit the use of out-of-range data. Also, avoid collecting data that are derived, ill-defined, or
cannot be traced directly back to the process. As the development progresses, new tools or data
collection techniques may emerge. If new data collection methods are employed, the data
collection efforts must be tailored to these techniques. In addition, as the data collection changes,
your understanding of what those data mean must also change. [ROZUM92]

13.4.9.4 Analyze the Measurement Data to Derive Indicators

Indicators are derived from the analysis performed on the measurement data. The quality of the
indicator is tied to the rigor of the analysis process.

Both objective and subjective measures are important to consider when assessing the current
state of your program. Objective data consists of actual item counts (e.g., staff hours, SLOC,
function points, components, test items, units coded, changes, or errors) that can be independently
verified. Objective data are collected through a formal data collection process. Subjective data
are based on an individual’s (or group’s) feeling or understanding of a certain characteristic or

13-32

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

condition (e.g., level of problem difficulty, degree of new technology involved, stability of
requirements). Objective and subjective data together serve as a system of checks and balances
throughout the life cycle. If you are a resourceful manager, you will depend on both to get an
accurate picture of your program’s health. Subjective data provide critical information for
interpreting and validating objective data; while objective data provide true counts that may
cause you to question your subjective understanding and investigate further.

Analysis of the collected data must determine which issues are being addressed, and if new
issues have emerged. Before making decisions and taking action from the data, you must
thoroughly understand what the metrics mean. To understand the data, you must:

• Use multiple sources to validate the accuracy of your data and to determine differences and
causes in seemingly identical sets of data. For instance, when counting software defects by
severity, spot check actual problem reports to make sure the definition of severity levels is
being followed and properly recorded.

• Study the lower-level data collection process, understand what the data represent, and how
they were measured.

• Separate collected data and their related issues from program issues. There will be issues
about the data themselves (sometimes negating the use of certain data items). However, do
not get bogged down in data issues. You should concentrate on program issues (and the data
items in which you have confidence) to provide the desired insight.

• Do not assume data from different sources (e.g., from SQA or subcontractors) are based on
the same definitions, even if predefined definitions have been established. You must re-
verify definitions and identify any variations or differences in data from outside sources when
using them for comparisons.

• Realize development processes and products are dynamic and subject to change. Periodic
reassessment of your metrics program guarantees that it evolves. Metrics are only meaningful
if they provide insight into your current list of prioritized issues and risks.

The availability of program metrics is of little or no value unless you also have access to models
(or norms) that represent what is expected. The metrics are used to collect historical data and
experience. As their use and program input increases, they are used to generate databases of
information that become increasingly more accurate and meaningful. Using information extracted
from these databases, you are able to gauge whether measurement trends in your program differ
from similar past programs and from expected models of optimum program performance within
your software domain. Databases often contain key characteristics upon which models of
performance are designed. Cost data usually reflect measures of effort. Process data usually
reflect information about the programs (such as methodology, tools, and techniques used) and
information about personnel experience and training. Product data include size, change, and
defect information and the results of statistical analyses of delivered code.

Figure 13-8 illustrates the possibilities for useful comparison by using metrics, based on available
program histories. By using models based on completed software developments, the initiation
and revision of your current plans and estimates will be based on “informed data.” As you
gather performance data on your program, you should compare your values with those for related
programs in historical databases. The comparisons in Figure 13-8 should be viewed collectively,
as one component of a feedback-and-control system that leads to revisions in your management
plan. To execute your revised plans, you must make improvements in your development process
which will produce adjusted measures for the next round of comparisons.

13-33

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

Figure 13-8. Management Process with Metrics

13.4.9.5 Manage the Measurement Data and Indicators

The measurement data and the indicators must be properly managed according to the requirements
identified in the measurement plan.

13.4.9.6 Report the Indicators

Once the indicators are derived, they are made available to all those affected by the indicators or
by the decisions made because of the indicators.

13.4.9.7 Evaluation

The value of any measurement process is in direct proportion to the value the indicators have to
the users of the indicators.

13.4.9.8 Review Usability of Indicators

Initially, the selection of indicators, analysis methods, and specific measurement data may be a
‘best guess’ whether or not they meet the information needs specified. Over time, through a
review of the usefulness of the indicators, the selection can be refined such that there is a high
correlation between the indicators selected and the information needs. This will be an iterative
process.

ASSESS
PROGRAM

HEALTH

COMPARE WITH
PROJECT PLAN

(EXPECTATIONS)

COMPARE WITH
ORGANIZATIONAL

MEMORY

Current
Project

Plan

Revised
Plan and
Project

Adjustment

Current
Project
Metrics

Current
Subjective

Data

Project
Histories

and
Models

13-34

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

13.4.9.9 Begin Measurement Activities Early

Measurement, as a practice, must begin at the project level. Other activities such as project
planning, project monitoring, etc. rely on the information gathered by the measurement process.

As the organization begins to focus on process standardization and improvement, the measurement
program grows. Additional “information needs” are identified and fed to the measurement process.
More mature processes such as quantitative process management, process innovation deployment
rely on indicators to determine effectiveness, efficiency, and productivity, etc.

13.5 Cautions About Metrics

Software measures are valuable for gaining insight into software development; however, they
are not a solution to issues in and of themselves. To implement a metrics program effectively,
you must be aware of limitations and constraints.

• Metrics must be used as indicators, not as absolutes. Metrics should be used to prompt
additional questions and assessments not necessarily apparent from the measures themselves.
For instance, you may want to know why the staff level is below what was planned. Perhaps
there is some underlying problem, or perhaps original manpower estimates need adjusting.
Metrics cannot be applied in a vacuum, but must be combined with program knowledge to
reach correct conclusions.

• Metrics are only as good as the data that support them. Input data must be timely, consistent,
and accurate. A deficiency in any of these areas can skew the metrics derived from the data
and lead to false conclusions.

• Metrics must be understood to be of value. This means understanding what the low-level
measurement data represent and how they relate to the overall development process. You
must look beyond the data and measurement process to understand what is really going on.
For example, if there is a sharp decrease in defect detection and an increase in defect resolution
and close out, you might conclude that the number of inserted defects is decreasing. However,
in a resource-constrained environment, the defect discovery rate may have dropped because
engineering resources were temporarily moved from defect detection (e.g., testing) to defect
correction.

• Metrics should not be used to judge your contractor (or individual) performance.
Measurement requires a team effort. While it is necessary to impose contractual provisions
to implement software measurement, it is important not to make metrics a controversial issue
between you and your contractor. Support of the measurement process will be jeopardized if
you “shoot-the-messenger.” Measurements should be used to identify problem areas and for
improving the process and product. While metrics may deal with personnel and organizational
data, these data must be used for constructive, process-oriented decision-making, rather than
for placing blame on individuals or teams.

• Metrics cannot identify, explain, or predict everything. Metrics must be used in concert
with sound, hands-on management practice. They are only valuable if used to augment and
enhance intimate process knowledge and understanding.

13-35

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

• Analysis of metrics should NOT be performed exclusively by the contractor. Ideally, the
contractor you select will already have a metrics process in place. As mentioned above, you
should implement your own independent metrics analysis process because:
− Metrics analysis is an iterative process reflecting issues and problems that vary throughout

the development cycle;
− The natural tendency of contractors is to present the program in the best light; therefore,

independent government analysis of the data is necessary to avoid misrepresentation; and
− Metrics analysis must be issue-driven and the government and contractor have inherently

different issue perspectives.
• Direct comparisons of programs should be avoided. No two programs are alike; therefore,

any historical data must be tailored to your program specifics to derive meaningful projections.
[Conversely, do not tailor your data to match historical data.] However, metrics from other
programs should be used as a means to establish normative values for analysis purposes.

• A single metric should not be used. No single metric can provide the insight needed to
address all program issues. Most issues require multiple data items to be sufficiently
characterized. Because metrics are interrelated, you must correlate trends across multiple
metrics. [ROZUM92]

13.6 Addressing Measurement in the Request for
Proposal (RFP)

Your RFP should define the indicators and metrics the Government needs to track progress,
quality, schedule, cost, and maintainability. What you should look for when analyzing an offeror’s
Metrics Usage Plan is “control.” Through measurement, the process’s internal workings are
defined and assessed. If an effective process improvement plan is executed (which requires
appropriate measurements be taken) data are collected and analyzed to predict process failures.
Therefore, the offeror must have a corporate mechanism implemented in a systematic manner
that performs orderly process control and methodical process improvement. This can be identified
by the measurement methods the company uses to assess the development process, analyze the
data collected, and feed back corrections for problems within the process. [CAREY92]

After you have identified your program issues (and before contract award) you and your future
contractor must agree on entry and exit criteria definitions for the proposed software development
process and products. Entry and exit criteria must also be defined for all data inputs, standards of
acceptance, schedule and progress estimation, and data collection and analysis methods. For
instance, there must be an agreement on the definition of source lines-of-code and how and
when SLOC will be estimated or counted. The entire collection and analysis process — all
definitions, decisions, and agreements — should be written into the contract

Make sure the software quality metrics and indicators they employ include a clear definition of
component parts (e.g., SLOC), are accurate and readily collectible, and span the development
spectrum and functional activities. They must identify metrics early and apply them at the beginning
of the system engineering and software implementation process. They should also develop a
software Metrics Usage Plan before contract award.

13-36

Chapter 13: Software Estimation, Measurement & Metrics GSAM Version 3.0

13.7 References

[Ada/C++91] Ada and C++: A Business Case Analysis, Office of the Deputy Assistant Secretary of the
Air Force, Washington, DC, June 1991

[ALBRECHT79] Albrecht, A.J., “Measuring Application Development Productivity,” Proceedings of the
IBM Applications Development Symposium, Monterey, California, October 1979

[BOEHM81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1981

[BOEHM89] Boehm, Barry W., as quoted by Ware Myers, “Software Pivotal to Strategic Defense,” IEEE
Computer, January 1989

[CAMPBELL95] Campbell, Luke and Brian Koster, “Software Metrics: Adding Engineering Rigor to a
Currently Ephemeral Process,” briefing presented to the McGrummwell F/A-24 CDR course, 1995

[CAREY92] Carey, Dave and Don Freeman, “Quality Measurements in Software,” G. Gordon Schulmeyer
and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New
York, 1992

[DeMARCO86] DeMarco, Tom, Controlling Software Projects, Yourdon Press, New York, 1986
[FERENS00] Ferens, Daniel V. and David S. Christensen, “Does Calibration Improve the Predictive Accuracy

of Software Cost Models?”, CrossTalk, April 2000
[FRANKLIN33] Franklin, Benjamin, Poor Richard’s Almanac, 1733
[GLASS92] Glass, Robert L., Building Quality Software, Prentice-Hall, Inc., Englewood Cliffs, New

Jersey, 1992
[HETZEL93] Hetzel, Bill, Making Software Measurement Work: Building an Effective Measurement

Program, QED Publishing Group, Boston, 1993
[HUMPHREY89] Humphrey, Watts S., Managing the Software Process, The SEI Series in Software

Engineering, Addison-Wesley Publishing Company, Inc., 1989
[IEEE90] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990, Institute

of Electrical and Electronic Engineers, Inc., New York, NY, December 10, 1990
[JONES91] Jones, Capers, Applied Software Measurement, McGraw-Hill, New York, 1991
[LYONS91] Lyons, Lt Col Robert P., Jr., “Acquisition Perspectives: F-22 Advanced Tactical Fighter,”

briefing presented to Boldstroke Senior Executive Forum on Software Management, October 16, 1991
[MARCINIAK90] Marciniak, John J. and Donald J. Reifer, Software Acquisition Management: Managing

the Acquisition of Custom Software Systems, John Wiley & Sons, Inc., New York, 1990
[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition,

McGraw-Hill, Inc., New York, 1992
[PUTNAM92] Putnam, Lawrence H., and Ware Myers, Measures for Excellence: Reliable Software On

Time, Within Budget, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1992
[ROZUM92] Rozum, James A., Software Measurement Concepts for Acquisition Program Managers,

Technical Report CMU/SEI-92-TR-11/ESD-TR-92-11, Carnegie-Mellon University, Software
Engineering Institute, Pittsburgh, Pennsylvania, June 1992

Part 3: Management GSAM Version 3.0

Chapter 14

The Management
Challenge

14-2

Chapter 14: The Management Challenge GSAM Version 3.0

Contents

14.1 Chapter Overview .. 14-3
14.2 Seize the Opportunity ... 14-4

14.2.1 Embrace the Software Vision: Make It Work for You 14-4
14.2.2 Make the Commitment to Excellence ... 14-6

14.3 Program Management Challenge .. 14-7
14.3.1 Managing a New-Start Program ... 14-7

14.3.1.1 Lessons Learned ... 14-7
14.3.1.2 Earned Value Management System (EVMS)............................. 14-9

14.3.2 Managing an On-going Program ... 14-11
14.3.3 Managing a PDSS Program .. 14-12
14.3.4 Determining If Your Program Is In Trouble..................................... 14-12

14.3.4.1 What to Do With a Troubled Program 14-17
14.3.4.1.1 Take a Hiatus ... 14-18
14.3.4.1.2 Increase Your Schedule ... 14-18
14.3.4.1.3 Reduce the Number of Requirements to be Satisfied........ 14-18
14.3.4.1.4 Improve Your Process .. 14-19

14.3.4.2 What To Do With a Program Catastrophe? 14-19
14.3.4.2.1 Abandoning the Catastrophe ... 14-20

14.4. The Continuous Improvement Challenge .. 14-20
14.4.1 Measurement .. 14-20
14.4.2 Baselines ... 14-21
14.4.3 Benchmarks .. 14-21

14.5 Your Management Challenge .. 14-22
14.6 References .. 14-24

14-3

Chapter 14: The Management Challenge GSAM Version 3.0

14.1 Chapter Overview

In this chapter, you will learn that, in addition to detailed technical insight, a high-level, big
picture perspective is needed for successful software acquisition management. Closely tied to
the technical competence needed for good management is the confidence that you are being
supported. From the governing documents, sources for schools and tools, through the white
papers and acquisition program examples, to the guidelines and philosophical insights on selected
subjects found in the Appendices of these guidelines, you have a wealth of practical information
to assimilate and digest. The Vision for Software expressed here encompasses the promise that
you have a software infrastructure to support your management activities. Your challenge is to
make use of these resources (e.g., tools, schools, repositories, programs, technology, professional
workforce) to ensure the success of your program as it supports the DoD mission.

There are three categories of acquisition management which apply to DoD software programs.
If you are managing a new-start program, your challenge is to follow the advice found in these
Guidelines with the objective of attaining customer satisfaction, quality, economy, efficiency,
and process improvement. If your program is a smooth running on-going effort, your goal is to
improve your process. This is accomplished through rigorous self-assessment and the introduction
of new processes, tools, improved methods, and advanced technologies.

If your on-going program is in trouble, you must first assess the extent of your problems. The
cure for a troubled program can only be achieved by identifying the causes of your problems,
removing them, and preventing their recurrence. While you are focusing on a cure, there are
some band-aid efforts you can employ to get back on track until the sources of problems are
identified and remedied. As Benjamin Disraeli, former British prime minister, proclaimed, “He
who gains time gains everything.” Increasing your schedule will gain you time, productivity, and
decrease defects, as will reducing the number of requirements to be satisfied. If you determine,
however, that your program is beyond repair through detailed cost/benefit analyses, do not think
twice, stop it dead in its tracks!

Throughout these Guidelines the underlying theme has been quality through process improvement.
Your program is never so successful that it cannot be made better. Process improvement means
there is a definable, measurable process to improve. The bottom line for improving software
development is measurement. You must be able to determine where you stand today to determine
how to improve for tomorrow. This includes establishing a baseline and measuring progress
from that point in time. Measurement should include all facets of your process for which
improvement is possible, and for which metrics can be applied as a normal part of everyday
activities. Benchmarks are useful for comparing your effort with other successful programs, and
for setting realistic goals for improvement.

These Guidelines are your opportunity for success. They provide you with information you can
use to enhance and support your management efforts. You will find no secrets here — only
better ways of doing business, based on common sense and learning from our mistakes. Remember
that success can only be obtained through simultaneous efforts. Your challenge is to take what
you have learned here and direct it to your given program. With sustained constancy and sound
management decisions, you will help achieve the Vision for Software.

14-4

Chapter 14: The Management Challenge GSAM Version 3.0

14.2 Seize the Opportunity

In an interview with the Washington Post, General Colin L. Powell described how to achieve
success.

“There are no secrets to success; don’t waste your time looking for them...Success is the result of
perfection, hard work, learning from failure, loyalty to those for whom you work, and persistence.
You must be ready for opportunity when it comes.” [POWELL89]

As a software-intensive system acquisition manager, these Guidelines provide you with a
significantly improved opportunity for success. Managers must aggressively look for better ways
to increase productivity, reduce costs, and improve product quality. This motivation comes by
learning from failure, loyalty to those for whom you work (and those who work for you), a
determination to achieve quality through persistent work, and a desire for perfection. Software
engineering is the basis upon which this opportunity resides. The proven paradigms and methods
presented in these Guidelines allow you to take full advantage of this technology.

A software acquisition infrastructure has been established to provide a framework for applying
software engineering technology to your program. This infrastructure was designed to be flexible,
to take advantage of software state-of-the-art and from management practices that work and will
provide you the greatest opportunity for success. However, as Mosemann explains,

“Software problems will not be solved purely by policies, by standards, or even by education. An
integrated DoD software technology strategy that includes both software management and
technology initiatives will make a much larger difference in resolving DoD’s current and future
software problems.” [MOSEMANN93]

Mosemann warns that institutional changes simply do not happen by mandate; there has to be
buy-in at every level. Your commitment to turn around software acquisition problems is the
most important buy-in of all! To do this, all of you who are affected by the infrastructure must
participate in its evolution. Incentives must be provided to our industrial partners, along with
education and training for our managers, practitioners, and team members. Measurement is an
integral part of the framework, as cost/benefits must be understood and quantified. Ways to
exploit our valuable cache of legacy software assets through reuse and re-engineering must be
explored. Our systems must be open and have well-defined generic architectures so they can
evolve and endure. Our customers must be enlightened and our suppliers must be certified. If
you are ready for success, the opportunity is yours!

14.2.1 Embrace the Software Vision: Make It Work for You

Although we have turned the tide of failure and experienced some success, we must never be
satisfied with the status quo. We must be dedicated to never-ending software process improvement.
The Vision is to continuously improve software quality and predictability through diligent
application of engineering discipline. The way we plan to achieve this Vision is a twofold
approach of which you are an integral part. One facet of the Vision encompasses the
institutionalization of software engineering practice throughout all software development programs
DoD-wide. Having read these Guidelines, you have a solid foundation from which to make your

14-5

Chapter 14: The Management Challenge GSAM Version 3.0

contribution to this Vision by institutionalizing the practice of software engineering within your
program. Because education and training are key to achieving the Vision, you, as a software
manager, must place high priority on keeping your software professionals trained and educated
in software engineering discipline.

The other facet of the Vision is the establishment of a software engineering infrastructure. As
illustrated on Figure 14-1, this infrastructure is based on a concept created by the Japanese some
20 years ago — the house-of-quality. Used as a total quality management (TQM) communication
tool, the structure shows how all the pieces of a system are needed to build and provide support
to the whole. The importance of the pillars to each other in supporting the ceiling (the Vision) is
an interrelated and co-related set of methods, techniques, technologies, and organizations. Your
side of the equation — using software engineering discipline to build your pillar — needs parallel
balance and support from the infrastructure to achieve the Vision for the whole. Here, the purpose
is ultimately to help you and other software professionals by actively addressing software issues
surfacing within your programs. Part of the infrastructure is the gathering of a software work
force within which communication, learning, and education are cultivated and where exchange
of corporate knowledge flows freely through technology transfer and the sharing of lessons-
learned. Infrastructure resources are dedicated to continuous improvement through working
groups and agent (software organizations) support. The infrastructure also brings consistency,
repeatability, and currency to software development through the implementation of software
policies and management plans.

Figure 14-1. Vision for Software

14-6

Chapter 14: The Management Challenge GSAM Version 3.0

You must realize that the software engineering for which you are responsible is a relatively
young discipline. At first it may seem little more than a hodge podge of rules, methods, and
disparate pieces of information. The Vision provides the unifying theme that brings the ingredients
for success into a single software engineering framework. The separate pieces, such as metrics,
reuse, models, tools, prototyping, open systems, re-engineering, risk management, and architecture
are interrelated and merged into an integrating foundation permitting us to build quality into our
software through the application of technology and practical know-how. This discipline provides
an understanding of what it is we are trying to do, and how to go about doing it.

At the foundation of the Vision, holding it all together and making it work, is process improvement.
The commitment and contribution to this concept must come from your program office, your
contractors, your colleagues’ programs, and your counterparts within the software infrastructure.
The Vision is to select those contractors who have in hand a predictable, mature, software
development process with demonstrable, built-in mechanisms for its continuous improvement.

“Nothing is of greater importance in time of war than knowing how to make the best use of a fair
opportunity when it is offered.” — Niccolo Machiavelli [MACHIAVELLI21]

In the heat of fighting your daily management battles, remember the Vision. As you are engineering
your software, a software infrastructure provides you the opportunity to do your job better, to
help you succeed. This infrastructure is comprised of policies to keep you in tune with initiatives
to improve the way we develop our software and manage our acquisitions. DoD and Service
policies and instructions are there to make sure we build uniformity and predictability into our
systems. Organizations within the infrastructure are there to assist in implementing reuse and
metrics, to evaluate our tools and our contractors, and to research new technologies to improve
the way we do our jobs. Training programs and software courses provide the opportunity to
advance our skills, and to increase our understanding of the software engineering discipline.
Make use of the tools, the repositories, the education, the programs, the technology, the agents
(labs, institutes, and centers), and the software work force discussed throughout these Guidelines.
They are offered as your fair opportunity; use them to your best advantage. Remember, you are
not on a solo mission — an extensive team is there to back you up.

14.2.2 Make the Commitment to Excellence

Embracing the Vision also means making a commitment to excellence — excellence in
management and excellence in your product. People are conditioned to believe defects in software
are inevitable. For the foreseeable future, software will continue to be built by humans; however,
humans are believed to have a built-in defect factor. Most commercial software development
organizations allow 20% of sales for scrap, rework, warranty repairs, complaint handling, service,
test, and inspection. [SCHULMEYER92] Human errors cause this waste. To eliminate waste
in software development, we must concentrate on preventing the errors and defects that plague
us. There must be a commitment to defect reduction for all programs.

In his book, Quality is Free, Cosby explains that a defect which is prevented has no cost. It needs
no repair, no examination, no explanation. [COSBY79] Defect prevention techniques can include
peer inspections, process action teams, Cleanroom engineering, software quality assurance (SQA),
early testing, commercial-off-the-shelf (COTS), reuse, prototyping, and demonstrations. A serious

14-7

Chapter 14: The Management Challenge GSAM Version 3.0

defect prevention program is comprised of combinations of techniques, each chosen for its ability
to prevent a different class of defects.

14.3 Program Management Challenge

We are aware that all our readers are not at the same stage in their acquisition programs. The
issues with which you are challenged and how you deal with them will, therefore, differ. Your
program may be a new start, may be many years into a long acquisition cycle, may be running
smoothly, or plagued with the problems common to software acquisition and development projects.
You might be tasked with the maintenance of newly delivered software, or software that has been
in use for 20 years or more. Or you might be supporting a combination of new Ada software that
has to run with older non-Ada applications, or a combination of COTS or non-developmental
item (NDI). These different management challenges are addressed in the following sections, or
in the chapters cited, and are listed as the following:

• Managing a new-start program,
• Managing an on-going program,
• Managing a PDSS program, and
• Managing a troubled program.

14.3.1 Managing a New-Start Program

Every new program can benefit from the lessons learned on previous programs. Additionally, it
is important to set up a means to accurately determine program progress. The means required by
DoD 5000.2-R for major projects is the Earned Value Management System .

14.3.1.1 Lessons Learned

If you are managing a new development, follow these Guidelines as completely and fully as
possible. Your challenge is to apply proven software engineering practices and streamlined
procurement methods to your acquisition program. They should reflect the concept that we are
interested in not only buying product, but process. We have attempted to assemble a variety of
lessons-learned to give you insight into what works and what does not. The following are lessons
learned that deal with software acquisition and development from various sources. Don’t repeat
history. Take the time to review these lessons periodically. See how they may apply to your
project. Then take the steps necessary to avoid the problems they describe. The descriptions
below contain the outlines only, take time to download and read the entire documents.

James H. Dobbins, a Professor of System Management at the Defense Systems Management
College and Course Director for the Management of Software Acquisition Course, wrote an
article titled “Software Acquisition Management in a Nutshell” for the January-February 1994
issue of Program Manager magazine (available at www.dsmc.dsm.mil/pubs/pdf/pmpdf94/
dobbins.pdf). Though the Mil-STDs cited are out of date, the remainder of the article is as valid
today as when it was written. In it, Mr. Dobbins discusses eight cost-proposal blinders that
prevent the program manager from recognizing software risks. He then covers twenty-three
sources of software risk and uncertainty. These are followed by twenty-nine rules for managing

14-8

Chapter 14: The Management Challenge GSAM Version 3.0

software acquisition. He also includes seventeen rules to keep software contracting from “biting”
you. Software metrics is the next area covered, including eleven implications of the software
complexity metric. Dobbins concludes by describing the importance of managing software testing.

The Software Program Managers Network (SPMN) reported twenty-four categories of Lessons
Learned – Current Problems in their SPMN Software Development Bulletin Number 3, 31
December 1998. It is available at www.spmn.com. The categories are:

• Systems Engineering
• Safety and Security
• Continuous Risk Management
• Requirements Management
• Planning and Tracking
• Products Required for Delivery
• Interface Management
• Visibility
• Cost Estimation
• Schedule Compression
• Rework
• Reuse
• Architecture
• Quality
• Retaining Technical Staff
• Approach to Achieving Higher SEI Rating
• Integrated Product Teams
• Configuration Management
• Test
• Metrics
• Cost of Maintenance
• Software Development Environment/Tools
• Contract/RFP Management
• Commercial-off-the-Shelf (COTS) Products.

The SPMN also identified 16 Critical Software Practices for Performance-Based Management
(available at www.spmn.com/critical_software_practices.html), categorized in three areas. They
are:

• Project Integrity
− Adopt Continuous Project Management
− Estimate Cost and Schedule Empirically
− Use Metrics to Manage
− Track Earned Value
− Track Defects Against Targets
− Treat People as the Most Important Resource

www.spmn.com
www.spmn.com/critical_software_practices.html

14-9

Chapter 14: The Management Challenge GSAM Version 3.0

• Construction Integrity
− Adopt Life Cycle Configuration Management
− Manage and Trace Requirements
− Use System-Based Software Design
− Ensure Data and Database Interoperability
− Define and Control Interfaces
− Design Twice, Code Once
− Assess Reuse Risks and Costs

• Product Stability and Integrity
− Inspect Requirements and Design
− Manage Testing as a Continuous Process
− Compile and Smoke Test Frequently.

It is also sound advice to research lessons-learned from programs similar to yours within your
domain to arm yourself with as much knowledge as possible. Never forget, software acquisition
is one of the toughest management battles you will ever fight. Be armed, prepared, and well-
trained. You must always plan, measure, track, and control with quality as your number one
goal.

Another major issue to address in your new acquisition is to make sure the new software you are
building today is not a maintenance nightmare tomorrow. Well-engineered software must be
reliable, understandable, and modifiable. The maintenance burden of tomorrow’s legacy software
will be lightened by the success of your efforts today.

14.3.1.2 Earned Value Management System (EVMS)

DoD 5000.2-R discusses the EVMS in the section on Cost Performance (3.3.5.3), and in Appendix
VI. One of the stated purposes of EVMS is to “Provide an adequate basis for responsible decision
making by both contractor management and DoD Component personnel by requiring that
contractors’ internal management control systems produce data that: (a) indicate work progress;
(b) properly relate cost, schedule, and technical accomplishment; (c) are valid, timely, and able
to be audited; and (d) provide DoD Component managers with information at a practical level of
summarization.”

The EVMS is more than the formulas often associated with earned value. It includes thirty-two
mandatory procedures grouped in five categories:

• Organization
• Planning, Scheduling, and Budgeting
• Accounting Considerations
• Analysis and Management Reports
• Revisions and Data Management

Use of the EVMS is required on significant contracts and subcontracts within all acquisition
programs. Significant contracts include research, development, test, and evaluation contracts
and subcontracts with a value of $70 million or more or procurement contracts and subcontracts

14-10

Chapter 14: The Management Challenge GSAM Version 3.0

with a value of $300 million or more (in FY 1996 constant dollars). Compliance with EVMS
criteria is not required on firm fixed price contracts, time and materials contracts, and contracts
which consist mostly of level-of-effort work. However, all program managers may want to review
the EVMS criteria and select for implementation the procedures that are important to their program.

The Defense Systems Management College (DSMC) Earned Value Management Gold Card,
shown as Figure 14-2, covers what several individuals usually characterize as the EVMS.
Additional EVMS information is available on the DoD EVMS home page at www.acq.osd.mil/
pm/.

Figure 14-2. DSMC Earned Value Management Gold Card

One caution about using Actual Cost of Work Performed (ACWP), Budgeted Cost of Work
Performed (BCWP), and Budgeted Cost of Work Scheduled (BCWS) to determine program
status. The summary earned value metrics can be misleading. They may indicate a program is at
the half-way point when it is only at the 10 percent point on the critical path. Critical path only
earned value metrics must be examined. Earned value metrics can also be misleading at the start
of a program, suggesting that the same variance seen on an early process block or work breakdown
structure element will reoccur for every remaining process block. Some organizations have
modified their tracking to account for these problems.

www.acq.osd.mil/pm/
www.acq.osd.mil/pm/

14-11

Chapter 14: The Management Challenge GSAM Version 3.0

14.3.2 Managing an On-going Program

Today, there are very few major new-start software-intensive acquisitions in DoD. Therefore,
most of the readers of these Guidelines are either managing on-going programs, or programs in
post-deployment software support (PDSS) [discussed in Chapter 12, Software Support]. If your
program is on track, do not be tempted to sit back and rest on your laurels. As Brigadier General
Marshall explained:

“Success is disarming. Tension is the normal state of mind and body in combat. When the tension
suddenly relaxes through the winning of the first objective, troops are apt to be pervaded by a
sense of extreme well-being and there is apt to ensue laxness in all of its forms and with all of its
dangers.” [MARSHALL47]

No one has ever reached a state of perfection in software development. If your program has
successfully achieved its first objectives, do not become disarmed by success. There is danger in
relaxing your management efforts through a sense of well-being. Your challenge is to relentlessly
improve your process through an investment in resources and effort to increase and mature your
development capabilities.

Old habits, doing things the way they have always been done, are major inhibitors to innovation,
growth, and progress. You must relentlessly improve your process and your management skills.
The time to initiate improvement is not when things are broken, but when they are working well.
Robert J. Kriegel, a performance psychology pioneer explains:

• To ride the wave of change, move before the wave hits you.
• Always mess with success.
• Speed kills quality, performance, and innovation.
• The best time to change is when you don’t have to.
• Playing it safe is dangerous.
• Get in the habit of breaking your habits.
• Round up your sacred cows and put them out to pasture.
• Stoke the fire, don’t soak it; and,
• If it ain’t broke, BREAK IT! [DRAKE93]

Transitioning a software development program into a mature, software production requires sound
management practices, an unremitting obsession for process improvement, and a wise use of
technology. Elevating your program’s software quality and productivity is neither simple nor
cheap, but well worth the investment. New methods can include transitioning to Ada, adding
new tools, or altering development methods and practices. As you have learned throughout
these Guidelines, there are many practices, processes, methods, tools, and technologies that offer
improvements. These transitions are not always free and may involve some initial schedule and
cost impact. You and your contractor(s) should evaluate together the relative merits of the
improved practices that seem to offer the greatest potential for reducing overall cost and schedule
risk. They must also be assessed for their ability to decrease defects and increase the quality of
your product. Software technology transitions are an opportunity for significant gains in quality
and productivity, but poorly planned and executed transitions can result in serious program
setbacks.

14-12

Chapter 14: The Management Challenge GSAM Version 3.0

Successful implementation of “new ways of doing business” in on-going programs cannot be the
exclusive province of either the contractor or the government program manager. Since these
best practices were not foreseen at contract award, contract documents will not reflect their use
and may (or may not) need to be modified. Generally, contractors will need to absorb some
initial unplanned cost, and the Government will need to concede to some schedule delays.
However, if technology transition planning is performed successfully, cost and schedule
investments will reap substantial dividends.

The key is to enlighten your customer — educate your contractor — gain a consensus about
“what to do” and “how to do it.” Be sure they read these Guidelines! Take advantage of the
infrastructure of support organizations that are doing a lot of the homework for you. They are
there to evaluate your needs and advise you on how to proceed. Remember the Vision; make it
work for you and keep on pressing!

14.3.3 Managing a PDSS Program

If you are managing a PDSS program, you employ the same tactics as new-start and on-going
programs. Follow the software engineering discipline discussed in these Guidelines with the
ceaseless goal of improving your process. This can include re-engineering part or all of your
code to Ada, incorporating reuse and COTS for enhanced functionality, or restructuring your
code so it is more maintainable and modifiable.

14.3.4 Determining If Your Program Is In Trouble

You most likely already know if your program is in trouble! Your developer is not providing
orderly documentation, the software development plan is inadequate, or not being followed.
Your program is over budget, behind schedule, and the user-discovered defect rate in delivered
modules is above the acceptable range. These are not uncommon problems where a program is
on its way to a near disastrous situation. Programs in trouble can run into delays and budget
overruns of 200% to 300%, and, in some cases, must be abandoned. [BENNATAN92]

Most software engineering methodologies focus on preventing (not correcting) these types of
problems. Preventing problems is always easier and less costly than solving them. As you have
learned throughout these Guidelines, problems become more expensive the further into the
development they are discovered. Once neglected, problems propagate into other areas of the
development process, making them more difficult and costly to reverse. Your challenge is to
determine if your program can be salvaged by enacting a radical change that adopts the ingredients
for success found in these Guidelines.

NOTE: If you are not sure whether your program is in trouble, look at management
metrics variances. If the current set looks “abnormal,” you are in trouble!

Before you can make a decision about a cure, you must first determine the cause of your program’s
sickness and the severity of the disease. You must determine whether your program is so sick it
should either be terminated, started over from scratch, or whether upgrading your technology
and improving your process will provide sufficient remedy. To make this assessment, apply the

14-13

Chapter 14: The Management Challenge GSAM Version 3.0

same software engineering discipline used to prevent problems. The best way to identify and
assess the severity of your problems is to go looking for them. There are a few basic sources of
problems common to almost all DoD software programs in trouble. These include:

• Software’s inherent complexity,
• Our inability to estimate cost, schedule, and size,
• Unstable requirements, and
• Poor problem-solving/decision making (which includes reliance on Silver Bullets).

Colonel Lyons noted some addition problems:

• Failure to recognize or accept that a software challenge exists,
• Questionable developer capability, capacity, and tools,
• Inadequate development process discipline; and,
• Failure to manage subcontracts. [LYONS91]

Cost, schedule, and quality problems associated with software products are merely symptoms of
problems in the process that produced them. Defects, design errors, and major schedule slips are
not the causes of problems — they are the symptoms. Behind the symptoms, something was
done by someone during the creation or evolution of that activity that caused the problem. By
analyzing the cause (e.g., of design errors) and concentrating your resources on the software
process, you can determine what must be done to improve that process, and thus, to solve your
problems. [ARTHUR93] To determine where in your development process the cause of your
problems lie, you have to quantify it. To accomplish this, you must:

• Define your process,
• Measure your process and product,
• Analyze the metrics to determine deficiencies in your process and the quality of your product;

and,
• Institute the software engineering practices and methods discussed in these Guidelines.

Process improvement implies there is some definable and measurable process to improve. In
software engineering, all processes at each development phase are targets for improvement.
There are also ancillary processes, such as configuration management, software quality, test and
integration, in-process reviews, and formal peer inspections. Each of these ancillary processes
supports your overall development process, and each can be improved.

To quantify your process, and thus improve it, you must have a baseline. This baseline is used as
the measured starting point for each phase of problem solving. You must, therefore, become
sufficiently organized to have a definable, quantifiable process that can be measured. [REIFER92]
Once measurement data is collected, it must be pondered, analyzed, placed in a larger context,
and woven into the fabric of where you have been and where you are going. Measurement
information must be transformed into “insight” for it to be meaningful.

The following Software Program Managers Network “Breathalyzer” questions will give you a
quick-look into the status of your program’s health. If at any time you cannot answer any of these
questions or must answer one or more with a “no,” you should schedule an immediate program
review.

14-14

Chapter 14: The Management Challenge GSAM Version 3.0

Figure 14-3. Activity Network Example

1. Do you have a current, credible activity network supported by a work breakdown structure
(WBS)? As illustrated on Figure 14-3, an activity network is the primary means to organize
and allocate work.
− Have you identified your critical path items?
− What explicit provisions have you made for work that is not on your WBS?
− Does the activity network clearly organize, define, and graphically display the work to be

accomplished?
− Does the top-level activity network graphically define the program from start to finish,

including dependencies?
− Does the lowest-level WBS show work packages with measurable tasks of short duration?
− Are program objectives fully supported by lower-level objectives?
− Does each task on the network have a well-defined deliverable?
− Is each work package under budget control (expressed in labor hours, dollars, or other

numerical units)?

NOTE: A well-constructed activity network is essential for accurate estimates of program
time, cost, and personnel needs, because estimates should begin with specific work
packages.

14-15

Chapter 14: The Management Challenge GSAM Version 3.0

2. Do you have a current, credible schedule?
− Is the schedule based on a program activity network supported by the WBS?
− Is the schedule based on realistic historical, quantitative performance estimates?
− Does the schedule provide time for education, holidays, vacations, sick leave, etc.?
− Does the schedule provide time for quality assurance activities?
− Does the schedule allow for all interdependencies?
− Does the schedule account for resource overlap?
− Is the schedule for the next 3-6 months as detailed as possible?
− Is the schedule consistently updated at all levels on Gantt, PERT, and critical path charts

every two weeks?
− Is the budget clearly based on the schedule and required resources over time?
− Can you perform to the schedule and budget?

3. Do you know what you have to deliver?
− Are system operational requirements clearly specified?
− Are definitions of what the software must do to support system operational requirements

clearly specified?
− Are system interfaces clearly specified, and, if appropriate, prototyped?
− Is the selection of software architecture and design method traceable to system operational

characteristics?
− Are descriptions of the system environment and relationships of the software application

to the system architecture specified clearly?
− Are specific development requirements expertly defined?
− Are specific acceptance and delivery requirements expertly defined?
− Are user requirements agreed to by joint teams of developers and users?
− Are system requirements traceable through the software design?

4. Do you have a list of your Top Ten risk items? If so, what are they? [See Chapter 6, Risk
Management, for more information on the Top Ten List.]
− Has a Risk Officer been assigned to the program?
− Are risks determined through established processes for risk identification, assessment,

and mitigation?
− Is there a database that includes all non-negligible risks in terms of probability, earliest

expected visible symptom, and estimated and actual schedule and cost effects?
− Are all program personnel encouraged to become risk identifiers?
− Is there an anonymous communications channel for transmitting and receiving bad news?
− Are correction plans written, followed-up, and reported?
− Is the database of top-ten risk lists updated regularly?
− Are transfers of all deliverables/products controlled?
− Are user requirements reasonably stable?
− How are risks changing over time?

14-16

Chapter 14: The Management Challenge GSAM Version 3.0

5. Do you know your schedule compression? (Schedule compression is an indication of the
percent by which this program is expected to outperform the statistical norm for programs of
its size and class.)
− Has the schedule been constructed bottom up from quantitative estimates, not by

predetermined end dates?
− Has the schedule been modified when major modifications in the software take place?
− Have programmers and test personnel received training in the principal domain area, the

hardware, support software, and tools?
− Have very detailed unit-level and interface design specifications been created for maximum

parallel programmer effort?
− Does the program avoid extreme dependence on specific individuals?
− Are people working abnormal hours?
− Do you know the historical schedule compression percentage on similar programs, and

the results of those programs?
− Is any part of the schedule compression based on the use of new technologies?
− Has the percent of software functionality been decreased in proportion to the percent of

schedule compression?

ScheduleCompressionPercentage
CalendarTimeScheduled

NormalExpectedTime
= −

•100 100.

(Nominal Expected Time is a function of total effort expressed in person months.)

For example, Boehm found that for a class of DoD programs of 500 person months or more:

Nominal Expected Time – 2.14 • [Expected Person Months].33

(Nominal Expected time was measured from System Requirements Review to System Acceptance
Test.) [BOEHM81]

NOTE: Attempts to compress a schedule to less than 80% of its nominal schedule aren’t
usually successful. New technologies offer additional risk in time and cost.

6. What is the estimated size of your software deliverable? How was it derived?
− Has the program scope been clearly established?
− Were measurements from previous programs used as a basis for size estimates?
− Were source lines-of-code (SLOC) used as a basis for estimates?
− Were function points used as a basis for estimates?
− What estimating tools were used?
− Are the developers who do the estimating experienced in the domain area?
− Were estimates of program size corroborated by estimate verification?
− Are estimates regularly updated to reflect software development realities?

NOTE: Software size estimation is a process that should continue as the program
proceeds.

14-17

Chapter 14: The Management Challenge GSAM Version 3.0

7. Do you know the percentage of external interfaces that are not under your control?
− Has each external interface been identified?
− Have critical dependencies of each external interface been documented?
− Has each external interface been ranked based on potential program impact?
− Have procedures been established to monitor external interfaces until the risk is eliminated

or substantially reduced?
− Have agreements with the external interface controlling organizations been reached and

documented?

8. Does your staff have sufficient expertise in the key program domains?
− Do you know what the user needs, wants, and expects?
− Does the staffing plan include a list of the key expertise areas and estimated number of

personnel needed?
− Does most of the program staff have experience with the specific type of system (business,

personnel, weapon, etc.) being developed?
− Does most of the program staff have extensive experience in the software language to be

used?
− Are the developers able to proceed without undue requests for additional time and cost to

help resolve technical problems?
− Do the developers understand their program role and are they committed to its success?
− Are the developers knowledgeable in domain engineering — the process of choosing the

best model for the program and using it throughout design, code, and test?
− Is there a domain area expert assigned to each domain?

9. Have you identified adequate staff to allocate to the scheduled tasks at the scheduled time?
− Do you have sufficient staff to support the tasks identified in the activity network?
− Is the staffing plan based on historical data of level of effort, or staff months on similar

programs?
− Do you have staffing for the current tasks and all the tasks scheduled to occur in the next

two months?
− Have alternative staff buildup approaches been planned?
− Does the staff buildup rate match the rate at which the program leaders identify unsolved

problems?
− Is there sufficient range and coverage of skills on the program?
− Is there adequate time allocated for staff vacations, sick leave, training and education?

14.3.4.1 What to Do With a Troubled Program

The following sections offer suggestions on how to deal with a troubled program. If you decide,
after you have thoroughly analyzed your process and identified the root causes of your problems,
that your program is salvageable, you might consider a 3-6 month hiatus to institute the guidance
found in this book and get your house in order. In addition, there are some quick-fix strategies (as
opposed to long-term cures) you can employ if you are truly desperate. Quick-fix strategies
include the following:

• Increase your schedule, and
• Reduce the number of requirements to be satisfied.

14-18

Chapter 14: The Management Challenge GSAM Version 3.0

Improving your acquisition or development process can help to bring your project under control.
Using a hiatus or quick fixes may bring immediate relief. But if these tactics work, you must,
must implement software engineering discipline to sustain any permanent improvement.
Remember, if quick-fixes work in the short-term, whatever in your process was causing your
problems in the first place must be identified and rectified to sustain long-term improvement. If
the root causes are not dealt with, your process will revert back to the problems you identified in
your initial process assessment, on an order of magnitude worse. Of course, improving your
process is the ideal solution.

14.3.4.1.1 Take a Hiatus

By following the software engineering practices discussed here, there is a significant probability
you will gain back some or all of the hiatus time you invest in rescuing your program. The Air
Traffic Control System in Canada is an excellent example. The program was in trouble. The
contractor brought in a new manager whose first action was to educate the customer. Then, it
was agreed that a hiatus would occur. It lasted 8 months. During this time many changes were
made, including the adoption of the Rome Laboratory Software Quality Framework, acquisition
of the Universal Network Architecture Services (UNAS) tool and the Rational Environment,™
and training of the software development team to a new mindset. As of this writing, the program
is on schedule, at cost, and expects to recover most, if not all, of the hiatus time.

14.3.4.1.2 Increase Your Schedule

“More software programs have gone awry for lack of calendar time than for all other causes
combined. Why is this cause of disaster so common?” — Frederick P. Brooks, Jr. [BROOKS75]

When you set your schedule to the minimum development time, effort is at its maximum to meet
deadlines, but the number of defects is also correspondingly high. For the troubled (but
salvageable) program, the temptation is to throw additional manpower at the problem and hold
the schedule. This will not work! Instead of adding manpower in a desperate attempt to meet
unrealistic schedules, extend the development time — without increasing or decreasing manpower.
This can substantially reduce the effort (and associated cost) compared to what it would have
taken to accomplish the task on the compressed schedule. In addition, the number of defects will
drop. Regrettably, this is often not possible once the program is well underway. If your program
is in the 12th month of a 12-month schedule, it is just too late to decide you should have planned
in terms of a 17-month schedule. [PUTNAM92] Therefore, the sooner you decide to extend
your schedule, the more likely it will be viewed as a credible move by those above you.

BEWARE! Adding extra staff to reduce schedule has often not worked. In fact, studies
show that it can increase your schedule and increase your defects. Brooks’ well-known
observation rings true: “Adding manpower to a late software program makes it later.”
[BROOKS75]

14.3.4.1.3 Reduce the Number of Requirements to be Satisfied

If your program is in trouble, reducing the number of requirements to be satisfied will reduce
development time, effort, the number of defects, and improve programmer productivity by reducing
the size of the software to be developed. Software size can be reduced by paring the less essential
functions from your software, or by deferring the development of separate functions not needed

14-19

Chapter 14: The Management Challenge GSAM Version 3.0

for immediate delivery [i.e., strip the product (with the user’s involvement) to the greatest number
of essential functions that can be delivered in the time available].

14.3.4.1.4 Improve Your Process

Improving your process will reduce effort, cost, development time, and the number of defects.
This is the ideal solution because all management indicators improve. Remember, improving
your process takes time and should not be considered a quick-fix. It takes a long-term strategic
commitment. The software development process must be measured for improvements that are
both objective and management-oriented. Through measurement, you can determine which are
the best strategies to employ for improvement. Choosing a strategy that is, indeed, better will
result in software developed in less time, with less effort and money, and increased quality.
Improvement requires the ability to answer questions such as:

• When in the software life cycle do errors/defects occur?
• When and how are errors/defects detected?
• What can be done to detect errors/defects earlier?
• When are errors/defects corrected and at what cost?
• What causes the errors/defects, and what can prevent the errors/defects that do occur?

Solving software development problems is not just the application of a set of tools, methods, or
motivational campaigns. It requires commitment and a dedication to a standard-of-excellence.
It is instituting a cultural change, and changing how your team members think and work. It
involves understanding and enhancing the human process that underlies software development
at all levels. Improvements can be achieved by changes in procedures, training of personnel,
addition of tools, increased automation, and simulated faults insertion. [KENETT92] However,
changing the way people think — cultural change — is the greatest challenge, and the key to
your success with process changes.

Improvements only occur when rigorous software engineering discipline is applied to improve
the human process. The human process must be organized around improvement objectives,
properly supported by technology. Whatever it takes to cure your program, there must be no
turning back to the old ways of doing business! DoD has seen its share of software fiascoes.
Your challenge is not to let a fiasco turn into a catastrophe, which occurs when we have not
learned from our collective mistakes. [REIFER92] There are many techniques and lessons-
learned for solving software problems. A few have been introduced here. Others are being
discovered daily. Your challenge is to find out what will work for you and implement them!
Remember Vince Lombardi’s advice,

“The greatest accomplishment is not in never falling, but in rising again after you fall.”
[LOMBARDI68]

14.3.4.2 What To Do With a Program Catastrophe?

A program catastrophe occurs when the only viable solution is program termination. Examples
of circumstances leading to program termination are:

14-20

Chapter 14: The Management Challenge GSAM Version 3.0

• The program appears to be technically infeasible; i.e., the work cannot be completed given
the current state of technology.

• The costs to complete the program far exceed the utility of the final system, or the software
will be so costly to operate that the user is better off never implementing it.

• The software will never be completed by a critical date, after which it will not be needed
(e.g., an old system will be made to make-do).

• The performance quality or maintainability of the software is so bad that the software will be
useless when completed — the best way to correct the problem is to start over.

• The software development process is so chaotic, and/or its personnel are so lacking in talent,
as to provide no expectation of improvement within a reasonable time, at a reasonable cost.

14.3.4.2.1 Abandoning the Catastrophe

If your program is a catastrophe, you must recognize the problem as soon as possible! The
nature of the catastrophe must be identified, and you should treat all efforts and costs expended
to date as sunk. This decision is based on a cost/benefit analysis of completing the program,
versus restarting it, versus canceling it. Contracting officials should be called in to see if any
penalties or restitution to the Government is possible. Sunk costs must be completely disregarded
on the common sense principle of don’t throw good money after bad. [ROETZHEIM88]

NOTE: If you have to abandon your program, you should be praised for having the
wisdom and fortitude to do so! But, remember, we are all still learning. So by all means,
document your lessons-learned and send them to us at the address in the Foreword and
last page of this Volume. The benefits of your insights may more than offset present
financial losses by helping others to better understand the software management
challenge.

14.4. The Continuous Improvement Challenge

As discussed throughout these Guidelines, to achieve continuous improvement you must establish
a software improvement culture within your program. Everyone on the team (not just the software
developers) must be committed to attaining the standard-of-excellence you set for your program.
Because maintaining high standards requires persistent correction, process improvement should
be a regular topic of discussion at all in-process reviews and peer inspections. It should also be
on the agenda of working group and management meetings held at all levels. Process improvement
metrics should be published, discussed, and assessed, the same as budget and schedule status
metrics. Your management guidance must support a “software process first” philosophy. It is
your responsibility to allocate the necessary resources to make improvement happen.

14.4.1 Measurement

The most critical factor in the process improvement equation is the collection of metrics. Software
quality metrics must be collected and analyzed throughout software development. Once you
specify a desired standard-of-quality for each element of importance to your program, achieved
levels of quality must be measured at all predefined development milestones. These periodic
measures will allow you to assess current quality status, predict the quality level of the final

14-21

Chapter 14: The Management Challenge GSAM Version 3.0

product, and determine where quality is below desired levels. They give you the ability to zero in
on problem areas on which process improvement activities can concentrate.

NOTE: See Chapter 13, Software Estimation, Measurement and Metrics, for a discussion
on how to set up a measurement program.

14.4.2 Baselines

A key element in a measurement program is the baseline. It gives you a quantitative view of
where you are today. It provides a framework for comparing your development program with
historical data, and a context for improvement and innovation. It identifies strengths and
weaknesses of the existing process, and helps to communicate them to all stakeholders.
[HETZEL93] Baselines are usually established at key milestone points. A meaningful baseline
for process improvement must go beyond productivity and quality measures. A complete baseline
involves all measurable and improvable facets of the process. These include human resources,
organizational structure, user environment, software engineering environment (tools, procedures,
technology infrastructure), cost, schedule, funding, management practices — all those things
that impact your process. [RUBIN93]

14.4.3 Benchmarks

Software benchmarking is a concept borrowed from the hardware manufacturing industry.
Measurements (e.g., failure rates, specifications, time-to-market, cost to produce) are compared
with those of competitors. Using these measures, understanding that your production process
takes, for instance, 30% more time, costs 20% more, or produces 14% more latent defects than
your competitors, makes you realize you are doing something wrong. These figures alone do not
tell you what is wrong, they just tell you that you are doing something different that affects your
competitive marketplace position.

“Benchmarking is a method for establishing baselines by which your development process can be
compared and rated against recognized industry leaders. This comparison is used to establish
targets and priorities for improving your process to achieve benchmarked levels of performance
and quality.” — Walter J. Utz, Jr. [UTZ92]

The quality approach is to fix the process causing the problem rather than fixing the product over
and over again. Optimizing your development process can be accomplished by assessing the
maturity of your software development capabilities [discussed in Chapter 10, Software
Development Maturity]. Each time your capabilities are assessed, you will gain insight into
those problem areas where you can concentrate your efforts in each subsequent round of process
improvement activities. Studies show that process improvement goals continually mature your
process, increase quality and productivity, and lower cost. Process improvement and control
continues until it is finally time to abandon the process by making a technology transition to a
superior process. [UTZ92]

14-22

Chapter 14: The Management Challenge GSAM Version 3.0

BEWARE! Studies show that programs operating at low levels of maturity tend to
abandon long-term improvement plans when faced with short-term crises.

Quantifiable improvement of software development capabilities requires buy-in by all stakeholders
in the product and by the owners of all aspects of the process. Improvement activities must be
continued and sustained over the entire software life cycle. Improvements should be implemented
on all DoD programs in a phased-in, incremental, well-planned manner. Incentives and rewards
should be budgeted and granted for improving software capabilities. Your continuous
improvement efforts should be sustained until the methods and procedures for improvement
become so ingrained in your program’s culture that they are performed routinely, as an integral
part of every day activities.

14.5 Your Management Challenge

Frederick Brooks is one of the true pioneers of software engineering. In a now classic collection
of essays, Brooks includes a line drawing of a prehistoric tar pit, where great, now extinct creatures
are struggling to pull themselves from the gooey abyss. He explains:

The tar pit of software engineering will continue to be sticky for a long time to come. One can
expect the human race to continue attempting systems just within or just beyond our reach; and
software systems are perhaps the most intricate and complex of man’s handiwork. The
management of this complex craft will demand our best use of new languages and systems, our
best adoption of proven engineering management methods, liberal doses of common sense, and
a God-given humility to recognize our fallibility and limitations. [BROOKS75]

Your challenge as a software manager is to use the information found in these Guidelines, take
control of your acquisition, and develop software with predictable cost, schedule, performance,
and quality.

Lloyd K. Mosemann, II, while Deputy Assistant Secretary of the Air Force for Communications,
Computers and Support Systems, challenged the software community with eight tasks. He
remarked that the number eight is inadvertently prophetic in that the number eight is the number
for new beginnings. There are seven days in a week and on the eighth day you start all over.
Your generation of software managers is at a turning point in history as you have the opportunity
to start all over with a new order of successful software management. The software community’s
eight management tasks are:

1. To stimulate infrastructure investment,
2. To accelerate the pace of technology advance,
3. To adopt an architecture mentality,
4. To encourage functional managers to become more involved, and to address the fundamentals

of how they do their business,
5. To advocate technology transition,
6. To make greater use of meaningful metrics,
7. To reduce the overhead burdens associated with software development, and
8. To have defined processes and to institutionalize engineering discipline.

14-23

Chapter 14: The Management Challenge GSAM Version 3.0

Oliver Cromwell, a famous English statesman and soldier, was on the side of Parliament during
the English Civil War. He created the New Model Army (the first professional army in British
history), defeated the Scots and the Irish, destroyed the monarchy, executed King Charles I, and
ruled England. This illustrious military leader’s motto was:

“Not only strike while the iron is hot, but make it hot by striking.” [CROMWELL47]

The iron is hot! You are equipped with the tools, the repositories, the education, the programs,
the technology, the agents (labs, institutes, and centers), and the software infrastructure to help
you do your job smarter and better. They are your opportunity to make the iron hot by striking!

14-24

Chapter 14: The Management Challenge GSAM Version 3.0

14.6 References

[ARTHUR93] Arthur, Lowell Jay, Improving Software Quality: An Insider’s Guide to TQM, John Wiley
& Sons, Inc., New York, 1993

[BENNATAN92] Bennatan, E.M., On Time, Within Budget: Software Project Management Practices and
Techniques, QED Publishing Group, Wellesley, Massachusetts, 1992

[BOEHM81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc, Upper Saddle River,
New Jersey, 1981

[BROOKS75] Brooks, Frederick P., Jr., The Mythical Man-Month: Essays on Software Engineering,
Addison-Wesley, Reading, Massachusetts, 1975

[COSBY79] Cosby, Philip B., Quality Is Free, New American Library, Inc., New York, 1979
[CROMWELL47] Cromwell, Oliver, Writings and Speeches of Oliver Cromwell, Harvard University

Press, Cambridge, Massachusetts, 1947
[DRAKE93] Drake, Dick, review of the book If It Ain’t Broke, Break It! by Robert J Kriegel, August 18,

1993
[HETZEL93] Hetzel, Bill, Making Software Measurement Work: Building an Effective Measurement

Program, QED Publishing Group, Boston, 1993
[KENETT92] Kenett, Ron S., “Understanding the Software Process,” G. Gordon Schulmeyer and James I.

McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992
[LOMBARDI68] Lombardi, Vince, as quoted by Jerry Kramer, Instant Replay, 1968
[LYONS91] Lyons, Lt Col Robert P., Jr., “Acquisition Perspectives: F-22 Advanced Tactical Fighter,”

briefing presented to Boldstroke Senior Executive Forum on Software Management, October 16, 1991
[MACHIAVELLI21] Machiavelli, Niccolo, from 1421 writings, The Art of War, The Robbs-Merill Co.,

Inc., Indianapolis, 1965
[MARSHALL47] Marshall, BGEN S.L.A., Men Against Fire, 1947
[MOSEMANN93] Mosemann, Lloyd K., II, as quoted in Ada Information Clearinghouse Newsletter, Vol.

XI, No. 2, August 1993
[POWELL89] Powell, GEN Colin L., as quoted in the Washington Post, January 14, 1989
[PUTNAM92] Putnam, Lawrence H., and Ware Myers, Measures for Excellence: Reliable Software on

Time, Within Budget, Yourdon Press, Englewood Cliffs, New Jersey, 1992
[REIFER92] Reifer, Donald J., “Software Reuse for TQM,” G. Gordon Schulmeyer and James I. McManus,

eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992
[ROETZHEIM88] Roetzheim, William H., Structured Computer Project Management, Prentice Hall,

Englewood Cliffs, New Jersey, 1988
[RUBIN93] Rubin, Howard, “Putting a Measurement Program in Place,” Jessica Keyes, ed., Software

Engineering Productivity Handbook, Windcrest/McGraw-Hill, New York, 1993
[SCHULMEYER92] Schulmeyer, G. Gordon, “Zero Defect Software Development,” G. Gordon Schulmeyer

and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New
York, 1992

[UTZ92] Utz, Walter J., Jr., Software Technology Transitions: Making the Transition to Software
Engineering, Prentise Hall, Englewood Cliffs, New Jersey, 1992

Attachment 1: Acronyms GSAM Version 3.0

Acronyms

Attachment 1: Acronyms GSAM Version 3.0

Acronym-2

Contents

A ... Acronym-3
B .. Acronym-5
C ... Acronym-5
D ... Acronym-7
E .. Acronym-8
F .. Acronym-9
G ... Acronym-10
H ... Acronym-10
I ... Acronym-11
J .. Acronym-12
K ... Acronym-12
L .. Acronym-13
M ... Acronym-13
N ... Acronym-14
O ... Acronym-15
P .. Acronym-15
Q ... Acronym-16
R ... Acronym-17
S .. Acronym-18
T .. Acronym-20
U ... Acronym-21
V ... Acronym-21
W .. Acronym-22
Y ... Acronym-22

Acronym-3

Attachment 1: Acronyms GSAM Version 3.0

3GL third-generation language
4GL fourth-generation language
5GL fifth-generation language

A

A&I analysis and integration
AAM application architectural model
AAS Advanced Automated System (FAA)
ABBET A Broad-Based Environment for Test
ABICS Ada-Based Integrated Control System
ACAT I Programs that are MDAPs designated Acquisition Category I by the MDA and

having two subcategories, ACAT ID and ACAT IC.
ACAT IA Programs that are MAISs designated by the ASD (C3I) and having two

subcategories, ACAT IAM and ACAT IAC
ACAT IAC MAISs for which the MDA is the CIO of DoD (ASC C3I)
ACAT IC MDAPs for which the MDA is the DoD Component Head or if delegated the

DoD CAE
ACAT ID MDAPs for which the MDA is the USD (AT&L).
ACC Air Combat Command
ACEC Ada Compiler Evaluation Capability
ACM Association for Computing Machinery
ACT Advanced Computer Technology (Program)

Analysis of Complexity Tool
ACAT Advanced Concept Technical Demonstrations
ACO Administrative Contracting Officer
ACTD Advanced Concept Technology Demonstration
ACVC Ada Compiler Validation Capability
ACWP actual cost of work performed
ADAGE Avionics Domain Application Generation Environment
AdaIC Ada Information Clearinghouse
ADARTS Ada-based Design Approach for Real-Time Systems
ADM Acquisition Decision Management
ADP automated data processing
ADPA American Defense Preparedness Association
AEA American Electronics Association
AES Ada Evaluation System
AETC Air Education and Training Command
AF Air Force
AFAC Air Force Advisory Committee
AFAM Air Force Acquisition Model
AFB Air Force Base
AFC2S Air Force Command and Control System
AFCAA Air Force Cost Analysis Agency
AFCC Air Force Communications Command
AFCEA Armed Forces Communications and Electronics Association
AFI Air Force Instruction
AFIT Air Force Institute of Technology

Acronym-4

Attachment 1: Acronyms GSAM Version 3.0

AFLIF Air Force Logistics Information File
AFMC Air Force Materiel Command
AFMCP Air Force Materiel Command Pamphlet
AFOTEC Air Force Operational Test and Evaluation Center
AFP Air Force Pamphlet (also AFPAM)
AFPAM Air Force Pamphlet (also AFP)
AFR Air Force Regulation
AFSC Air Force Systems Command
AFSCN/CUE Air Force Satellite Control Network Common User Element
AFSPACECOM Air Force Space Command
AFSPC Air Force Space Command
AGM 114 HELLFIRE Tactical Missile
AI artificial intelligence
AIA Aerospace Industries Association
AIS automated information system
AITS adopted information technology standards
AJPO Ada Joint Program Office
ALC Air Logistics Center
ALU arithmetic logic unit
AMRAAM Advanced Medium Range Air-to-Air Missile
AMSDL Acquisition Management System Data Requirements Control List
ANSI American National Standards Institute
AOA Analysis of Alternatives
APB acquisition program baseline
API application program interface
APL Applied Physics Laboratory
APP application portability profile
APSE Ada programming support environment
ARPA Advanced Research Projects Agency
ASC Aeronautical Systems Center (USAF)
ASC/SEE Aeronautical Systems Center/Software Engineering Environment
ASD Acquisition Support Division (USAF)
ASIS Ada Semantic Interface Specification
ASRRC Avionics System Requirements Review Conferences
ASSET Asset Source for Software Engineering Technology
ASSIST Acquisition Streamlining and Standardization Information System
ASST-R Analytic Software Sizing Tool—Real-time
ATE Automated Test Equipment
ATF Advanced Tactical Fighter
AWACS Airborne Warning and Control System
AWNAM Automated Weather Network Communications

Acronym-5

Attachment 1: Acronyms GSAM Version 3.0

B

B&P Bid & Proposal
BAA Broad Agency Announcement
BAFO best and final offer
BAT Battlemap Analysis Tool
BCWP budgeted cost of work performed
BCWS budgeted cost of work scheduled
BES budget estimate submission
BLS Bureau of Labor Statistics
BLSM Base-Level Systems Modernization (USAF)
BMD Ballistic Missile Defense
BPG Baseline Process Guide
BPR business process engineering

C

C/SCSC Cost/Schedule Control System Criteria
C/SSR Cost/Schedule Status Report
C2 command and control
C3 command, control, and communications
C3I command, control, communications, and intelligence
C4 command, control, communications, and computers
C4I command, control, communications, computers, and intelligence
C4IFTW command, control, communications, computers, and intelligence for the Warrior
C4ISR command, control, communications, computers, intelligence, surveillance, and

reconnaissance
CAATS Canadian Automated Air Traffic Control System
CAD Computer-Aided Design
CAID Clear Accountability in Design
CAIV Cost of an Independent Variable
CALS Continuous Acquisition and Life-cycle Support
CAM Computer-Aided Manufacturing
CARD Cost Analysis Requirements Document
CARDS Comprehensive Approach for Reusable Defense Software
CASE computer-aided software engineering
CAST computer-aided software testing
CBA-IPI CMMSM Base Appraisal — Internal Process Improvement
CBD Commerce Business Daily
CCA circuit card assembly

Clinger-Cohen Act
CCPDS-R Command Center Processing and Display System - Replacement
CD critical defect
CDA Central Design Activity (Agency)

Commercial Derivative Aircraft
CDE Commercial Derivative Engine
CDR Critical Design Review

Acronym-6

Attachment 1: Acronyms GSAM Version 3.0

CDRL Contract Data Requirements List
CE Concept Exploration

concurrent engineering
CECOM Communications Electronics Command (Army)
CENTCOM Central Command
CEO chief executive officer
CER cost estimating relationship
CES Commander’s Estimate of the Situation (Navy)
CFO Chief Financial Officer
CI communications interface

configuration item
CID commercial item description
CIM Corporate Information Management
CIO Chief Information Officer
CIO Act Clinger-Cohen Act
CJCS Chairman, Joint Chiefs of Staff
CLIN Contract Line Item Number
CLS contractor logistics support
CM configuration management
CMI continuous measurable improvement
CMMSM Capability Maturity Model
CMMi Software, Systems Engineering & Integrated Product Development Model
CMOS Cargo Management Operations System
CMU/SEI Carnegie-Mellon University/Software Engineering Institute
CMUP Conventional Mission Upgrade Program (B-1B Bomber)
CNAM Conservatoire Nationale des Arts et Metiers
COBOL Common Business Oriented Language
COCOMO COnstructive COst MOdel
COE common operating environment
COFT Conduct of Fire Trainer
COM Computer Operations Manual
COMPES Contingency Operations/Mobility Planning and Execution System
COP Current Operating Plan
CORBA Common Object Request Broker Architecture
COTS commercial-off-the-shelf
CPAF cost-plus-award-fee
CPAR Contractor Performance Assessment Report
CPI cost performance index
CPFF cost-plus-fixed-fee
CPIF cost-plus-incentive-fee
CPM cost performance measure
CPR Cost Performance Report
CPU central processing unit
CRCB Computer Resources Control Board
CRD Capstone Requirements Document
CRISD Computer Resources Integrated Support Document
CRLCMP Computer Resources Life Cycle Management Plan
CRM Continuous Risk Management
CRTT Computer Resource Technology Transition

Acronym-7

Attachment 1: Acronyms GSAM Version 3.0

CRWG Computer Resources Working Group
CSAD Computer Systems Authorization Directory
CSC computer software component
CSCI computer software configuration item
CSGA Computer Systems Group Software
CSOM Computer System Operator’s Manual
CSRB Computer Systems Requirement Board
CSU computer software unit
CTS COHESION™ Team/SEE

D

DAA Defense Auditing Agency
DAB Defense Acquisition Board
DAC Designated Acquisition Commander
DACS Data & Analysis Center for Software
DAES Defense Acquisition Executive Summary
DAL data accessions list
DAPP Defense Acquisition Pilot Programs
DAR Defense Acquisition Regulations
DCAA Defense Contracts Audit Agency
DCE distributed computing environment
DCMC Defense Contract Management Command
DDN Defense Data Network
DDR&E Director of Defense Research and Engineering
DEG document evaluation guidelines
Dem/Val Demonstration/Validation
DFARS Defense Federal Acquisition Regulation Supplement
DFAS Defense Financial Audit Service
DI data item
DIA Defense Intelligence Agency
DID data item description
DII COE Defense Information Infrastructure Common Operating Environment
DIM Defense Information Management
DIS Distributed Interactive Simulation
DISA Defense Information Systems Agency
DISN Defense Information Systems Network
DIST Defense Integration Support Tools
DLA Defense Logistics Agency
DMA Defense Material Administration (Netherlands)
DMM dynamic memory management
DMMIS Depot Management Information System (DMMIS) (USAF)
DMP Data Management Plan
DMRD Defense Management Report Decision
DMSP Defense Meteorological Satellite Program
DNA Defense Nuclear Agency
DoD Department of Defense
DoDD DoD Directive

Acronym-8

Attachment 1: Acronyms GSAM Version 3.0

DoDI DoD Instruction
DoDISS Department of Defense Index of Specifications and Standards
DoDM DoD Manual
DPA Delegation of Procurement Authority
DPG Defense Planning Guidance
DPR Defense Performances Review
DPSC Defense Personnel Support Center
DRI Defense Reform Initiative
DRM domain requirements model
DS Database Specification
DSB Defense Science Board
DSE Deputy for Software Engineering

Deputy for Software Evaluation
DSIC Defense Standards Improvement Council
DSLOC Delivered Source Lines-of-Code
DSMC Defense Systems Management College
DSP digital signal processor
DSRS Defense Software Repository System
DSSA domain-specific software architecture
DT developmental testing
DT&E developmental test and evaluation
DTIC Defense Technical Information Center

E

E2 Electromagnetic Environment
E3 Electromagnetic Environment Effects
EAC estimate at completion
EAP Evolutionary Acquisition Phases
EC/EDI Electronic Commerce/Electronic Data Interchange
ECP Engineering Change Proposal
ECS embedded computer system
EDI electronic data interchange
EDR Evolutionary Decision Review
EDS Electronic Data Systems
EEI external environment interface
EIA Electronics Industries Association
ELSA Electronic Library Services and Applications
EMD Engineering and Manufacturing Development
EMX electronic mobile exchange
EOA early operational assessments
EPIP Evolutionary Phase Implementation Plan
EPROM erasable programmable read-only memory
E-R entity-relationship
ERD entity-relationship diagram
ESC Electronic Systems Center (USAF)
ESD Electronic Systems Division (now ESC)
ESIP Embedded Computer Resources Support Improvement Program

Acronym-9

Attachment 1: Acronyms GSAM Version 3.0

ESLOC Equivalent Source Lines-of-Code
ESP evolutionary spiral process
EUM End User’s Manual
EVMS Earned Value Management System
EXFOR Experimental Force

F

FAA Federal Aviation Administration
FACNET Federal Acquisition Computer Network
FAR Federal Acquisition Regulation
FARA Federal Acquisition Reform Act
FASA Federal Acquisition Streamlining Act
FATDS Field Artillery Technical Data System (Army)
FCA Functional Configuration Audit
FCT Functional Certification Test
FD Functional Description
FEA functional economic analysis
FEMA Federal Emergency Management Agency
FFH fleet flying hours
FFP firm-fixed-price
FFPIF firm-fixed price incentive fee
FIPS Federal Information Processing Standard
FIRMR Federal Information Resources Management Regulation
FMECA Failure Modes and Effects and Criticality Analysis
FOC full operational capability
Fortran Formula Translation for Scientific Applications
FOT&E Follow-On Test & Evaluation
FPI functional process improvement
FPIF fixed-price-incentive-fee
FQR Formal Qualification Review

Functional Qualification Review
FQT Formal Qualification Test

Functional Qualification Test
FSCATT Fire Support Combined Arms Tactical Trainer
FSD Full Scale Development
FSM Firmware Support Manual
FTA Fault Tree Analysis
FY Fiscal Year
FYDP Fiscal Year Defense Plan

Acronym-10

Attachment 1: Acronyms GSAM Version 3.0

G

GAA Government Auditing Agency
GAO General Accounting Office
GCCS Global Command and Control System
GCSS Global Combat Support System
GDP gross domestic product
GFE government-furnished equipment
GFI government-furnished information
GFS government-furnished software
GITSB Government Information Technical Services Board
GKS Graphics Kernel System
GMRA Government Management Reform Act
GOSIP Government Open Systems Interconnect Profile
GOTS government-off-the-shelf
GPEF generic package of elementary functions
GPPF Generic Package of Primitive Functions
GPRA Government Performance and Results Act
GPS global positioning system
GQM Goal, Question, Metric
GRMS generalized rate monotonic scheduling
GSA General Services Administration
GSBCA General Services Board of Contract Appeals
GSIS Graphics Standard Interface Standard
GTE General Telephone
GTN Global Transportation Network
GUI graphical user interface

H

HCI human-computer interface
HDBK handbook
HIL human-in-the-loop
HOL higher-order language
HP Hewlett-Packard
HQ headquarters
HSC Human Systems Center
HTML HyperText Markup Language
HW hardware
HWCI hardware configuration item
HWIL hardware-in-the-loop

Acronym-11

Attachment 1: Acronyms GSAM Version 3.0

I

I/O input/output
IASL Integrated Aircraft Simulation Laboratory
IBM International Business Machines
ICAF Industrial College of the Air Force
ICAM Integrated Computer-Aided Manufacturing
I-CASE Integrated-Computer Aided Software Engineering
ICD Interface Control Document
ICE independent cost estimate
iCMM Integrated Capability Maturity Model
ID/ATS Integrated Diagnostic/Automatic Test System
IDA Institute for Defense Analyses
IDD Interface Design Description

Interface Design Document
IDEF Integrated Computer-Aided Manufacturing Definition Language
IDIQ indefinite delivery indefinite quantity
IDL interface definition language

interface design language
IE information engineering
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IEW intelligence electronic warfare
IFPP Instructions for Preparation of Proposals
IFPUG International Function Point Users Group
ILP Integrated Logistics Plan
ILS integrated logistics support
ILSP Integrated Logistics Support Plan
IM information management
IMCSRS Installation Materiel Condition Status Reporting System
IMOM Improved (Many-on-Many)
IMP Integrated Master Plan
IMS Integrated Master Schedule
IMTEC Information Management and Technology Division
IOC initial operational capability
IOT&E initial operational test and evaluation
IP implementation procedure
IPD integrated product development
IPPD Integrated Product and Process Development
IPQM in-process quality metrics
IPS information processing system
IPT integrated product team
IRD Interface Control Document
IRDS Information Resource Dictionary System
IRM information resource management
IRMP integrated risk management process
IRMS information resource management software

Acronym-12

Attachment 1: Acronyms GSAM Version 3.0

IRS Interface Requirements Specification
Internal Revenue Service

ISO International Standards Organization
ISR information system resources
ISRI information storage and retrieval interface
ISRS information system resource software
ITAP Information Technology Acquisition Paper
ITD Instructions to Defense
ITM Information Technology Management
ITMRA Information Technology Management Reform Act
ITO Instructions to Offerors
ITSG Information Technology Standards Guidance
IV&V independent verification and validation
IWSM Integrated Weapon System Management
IWSSF Integrated Weapon System Support Facility (USAF)

J

JAST Joint Advanced Strike Technology
J-CALS Joint-Computer-aided Acquisition and Logistics System
JCS Joint Chiefs of Staff
JDAM Joint Direct Attack Munitions
JLASS Joint Land, Aerospace, and Sea Simulation
JLC Joint Logistics Commanders
JLSC Joint Logistics Systems Center
JPATS Joint Primary Aircraft Training System
JOVIAL Jules Own Version of the International Algebraic Language
JROC Joint Requirements Oversight Council
JSF Joint Strike Fighter (formerly called JAST)
J-STARS Joint-Surveillance Target Attack Radar System
JTA Joint Technical Architecture

K

KESLOC Thousand Equivalent Source Lines-of-code
KLOC thousand lines-of-code
KPA key process area
KSLOC thousand source lines-of-code

Acronym-13

Attachment 1: Acronyms GSAM Version 3.0

L

L(ou) loss by unsatisfactory outcome
LAN local area network
LANT Atlantic
LANTIRN Low-Altitude Navigating and Targeting Infrared for Night (Operations)
LCC life cycle costs
LCM life cycle management
LCSS life cycle software support
LCSSE life cycle software support environment
LFT&E Live Fire Test & Evaluation
LOC line-of-code
LOE level of effort
LRIP low-rate initial production
LRU line replaceable unit
LSA logistics support analysis
LSAR logistics support analysis record

M

M&S Modeling & Simulation
MAA Mission Area Assessment
MAC Materiel Acquisition Command

Military Airlift Command
month after contract

MAIS Major Automated Information System
MAISRC Major Automated Information System Review Council
MAJCOM Major Command
MAP Mission Area Plan
MAPI Messaging Application Programming Interface (Microsoft)
MAPSE Minimal Ada Programming Support Environment
MBC Mortar Ballistics Computer
MBI manpower buildup index
MC Mission Computer
MCDC modified condition decision coverage
MDA Milestone Decision Authority
MDAP Major Defense Acquisition Program
ME manpower estimate
MICOM Missile Command (Army)
MIL military
MilSpec military specification
MIL-STD military standard
MilStd military standard
MIS management information system
MM Maintenance Manual
MNA Mission Needs Analysis
MNS Mission Need Statement

Acronym-14

Attachment 1: Acronyms GSAM Version 3.0

MOE measures of effectiveness
MOP measures of performance
MOR memorandum of record
MRC major regional conflict
MPR Mobilization Readiness Priority (Army)
MTA Maintenance Task Analysis
MTBCF mean-time-between-critical-failure
MTBCFHW mean-time-between-critical-failure hardware
MTBF mean-time-between-failure
MTTD mean-time-to-defect
MTTF mean-time-to-failure
MTTR mean-time-to-repair-and-restore

N

NALCOMIS Naval Aviation Logistics Command Management Information System
NASA National Air and Space Administration
NATO North Atlantic Treaty Organization
NAVMASSO Naval Management Systems Support Office
NBC nuclear, biological, and chemical
NCCOSC Naval Command and Control Ocean Surveillance Center
NCPII Fleet Interface for Navy Communications Processing and Routing Re-

engineered System
NCSC National Computer Security Classification
NCTAMS Naval Computer and Telecommunications Area Master Station LANT
NDI non-developmental item
NDS non-developmental software
NHPP Non-Homogeneous Poisson Process
NII National Information Infrastructure
NIPS Naval Intelligence Processing System
NISMC Naval Information Systems Management Center
NIST National Institute of Standards and Technology
NMPPS Nuclear Mission Planning and Production System
NORAD North American Aerospace Defense Command
NPR National Partners for Reinventing Government
NRaD NCCOSC RDT&E Division
NSA National Security Agency

National Software Alliance
NSF National Science Foundation
NSIA National Security Industrial Association
NSS National Security Systems
NTDS Naval Tactical Data System
NWPSIP Naval Warfare Planning and Support Integration Project

Acronym-15

Attachment 1: Acronyms GSAM Version 3.0

O

O&M Operations & Maintenance
OC-ALC Oklahoma City - Air Logistics Center (USAF)
OCD Operational Concept Description
ODC other direct costs
OFP operational flight program
OIPT overarching IPT
OIRA Office of Information and Regulatory Affairs
OMA organizational maintenance activity
OMB Object Management Group

Office of Management and Budget
OO object-oriented
OOA object-oriented analysis
OOD object-oriented design

object-oriented development
OOP object-oriented programming
OPR Office of Primary Responsibility
OPSEC Operations Security
ORB Object Request Broker
ORD Operational Readiness Document

Operational Requirements Document
ORWG Operational Requirements Working Group
OSD Office of the Secretary of Defense
OSE open system environment
OST Operational Requirements Document Support Team
OT&E operational test and evaluation

P

P(ou) probability of unsatisfactory outcome
P3I pre-planned product improvement
PA&E Office of Program Analysis & Evaluation
PAIL Patrol Aircraft Test Laboratory
PAL Public Ada Library
PAT process action team
PB President’s Budget
PBBE Performance-Based Business Environment
PBBS Planning, Programming, and Budgeting System
PC personal computer
PCA Physical Configuration Audit
PCMCIA Personal Computer Memory Card International Association
P-CMMSM People — Capability Maturity Model
PCMS Process Configuration Management Software
PCO Project Contracting Officer
PDL program design language
PDM Program Decision Memoranda

Acronym-16

Attachment 1: Acronyms GSAM Version 3.0

PDMSS Programmed Depot Maintenance Scheduling System
PDP Program Decision Package
PDR Preliminary Design Review
PDSS post-deployment software support
PDSSC Post-Deployment Software Support Concept
PDSSCD Post-Deployment Software Support Concept Document
PDSSP Post-Deployment Software Support Plan
PEO Program Executive Officer
PHIGS Programmers Hierarchical Interactive Graphics System
PIDS Prime Item Development Specification
PIF Productivity Improvement Fund
PIWG Performance Interface Working Group
PL Public Law
PM Project Manager
PMD Program Management Directive
PMIP Process Maturity Implementation Project
PMP Program Management Plan
PMSS Program Management Support System
POC point of contact
POE program office estimate
POM Program Objective Memorandum
POSIX Portable Operating System Interface for Unix Computer Environments
PPBS Planning, Programming and Budgeting System
PPI Preparation Instructions
PRA Paperwork Reduction Act
PRAG Performance Risk Management Group
PRICE-S Parametric Review of Information for Costing and Evaluation - Software
PRISM Portable Reusable Integrated Software Modules
PROM programmable read-only memory
PRT Program Requirements Team
PSA Principal Staff Assistant
PTR Program Trouble Report
PVI pilot vehicle interface

Q

QA quality assurance
QDR Quadrennial Defense Review
QIP Quality Indicator Program
QPMIS Quantitative Process Management Information System
QPR Quantitative Performance Requirement

Acronym-17

Attachment 1: Acronyms GSAM Version 3.0

R

R&D research and development
RAASP Reusable Ada Avionics Software Package
RADC Rome Air Development Center (now Rome Laboratory)
RAH-66 Comanche helicopter
RAP Risk Aversion Plan
RAPID Reusable Ada Products for Information Systems Development
RBA Revolution in Business Affairs
RBSE repository-based software engineering
RCM requirements correlation matrix
RCS radar cross section

Range Control System
RDBMS rational database management system
RDT&E research, development, test and evaluation
RE risk exposure
REE Requirements Engineering Environment
RES risk estimate of the situation
REVIC Revised Intermediate COCOMO
RFC Request for Comments
RFI Request for Information
RFP Request for Proposal
RIC Reinvention Impact Center
RICC Reusable Integrated Command Center
RMA rate monotonic analysis
RM&A Reliability, Maintainability & Availability
RMARTS Rate Monotonic Analysis for Real-Time Systems
RMP Risk Management Plan
RMS reliability, maintainability, and supportability
RO risk officer
ROADS Rapid Open Architecture Distribution System (Army)
ROCOF rate of occurrence of critical software failures
ROI return on investment
ROM read-only memory
RPC remote procedure call
RPO Reuse Project Officer
R&R removing & replacing
RTE run-time efficiency

run-time environment
RTS run-time system

Acronym-18

Attachment 1: Acronyms GSAM Version 3.0

S

S&T science and technology
SAA Software Support Activity
SAC Strategic Air Command
SA-CMMSM Software Acquisition — Capability Maturity Model
SAE Society of Automotive Engineers
SAF Secretary of the Air Force
SAIC Science Applications International Corporation
SAME SQL Ada Module Extension
SAMeDL SQL Ada Module Description Language
SAR Selected Acquisition Report
SASET Software Architecture, Sizing, and Estimating Tool
SBA standards-based architecture
SBIS Sustaining Base Information System (USAF)
SCAI Space Command and Control Architectural Infrastructure
SCE Software Capability Evaluation
SCN Specification Change Notice
SCO Software Change Order
SCP System Concept Paper
SDCA Software Development Capability Assessment
SDCCR Software Development Capability/Capacity Review (now the SDCE)
SDCE Software Development Capability Evaluation
SDD Software Design Description

Software Design Document
SDF software development folder
SDI Strategic Defense Initiative
SDIO Strategic Defense Initiative Organization
SDK Sammi Development Kit
SDP Software Development Plan
SDR Software Design Review
SDRT Software Development Risk Taxonomy
SDSA Software Development and Support Activity
SECDEF Secretary of Defense
SE-CMMSM Systems Engineering — Capability Maturity Model
SEE software engineering environment
SEER-M Software Evaluation and Estimation of Resources - Software Sizing Model
SEER-SEM Software Evaluation and Estimation of Resources - Software Estimating Model
SEI Software Engineering Institute (Carnegie-Mellon University)
SEL Software Engineering Laboratory (NASA)
SEMP Systems Engineering Management Plan
SEMS Systems Engineering Master Schedule
SEPG Software Engineering Process Group
SIDPERS-3 Standard Installation Division Personnel System -Version 3
SIGAda Special Interest Group on Ada
SISMA Streamlined Integrated Software Metrics Approach (Army)
SLCSE Software Life Cycle Support Environment
SLOC source lines-of-code

Acronym-19

Attachment 1: Acronyms GSAM Version 3.0

SMC Space and Missile Systems Center
SMM System Maturity Matrix
SOLE Society of Logistics Engineers
SOO Statement of Objectives
SORTS SOftware Reliability Modeling and Analysis Tool Set
SOW Statement of Work
SPA software process assessment
SPAT software process action team
SPC Software Productivity Consortium

Statistical Process Control
SPD System Program Director

System Program Directorate
SPE software product evaluation
SPI schedule performance index

software process improvement
SPICE Software Process Improvement Capability dEtermination
SPIP Software Process Improvement Plan
SPM Software Programmer’s Manual
SPMN Software Program Managers Network
SPO System Program Office
SPR Software Problem Report
SPS Software Product Specification
SQA software quality assurance
SQL Structured Query Language
SQM software quality management

software quality maturity
SQPP Software Quality Program Plan
SrA Senior Airman
SRAMII Short-Range Attack Missile II
SRC Software Re-engineering Center
SRE Software Risk Evaluation
SRI Software Reuse Initiative
SRR System Requirements Review
SRS Software Requirements Specification

System Requirements Specification
SSA Software Support Agency (Activity)

Source Selection Authority
SSC Standard Systems Center
SSDD System/Segment Design Description

System/Segment Design Document
SSE Source Selection Evaluation
SSEB Source Selection Evaluation Board
SSE-CMMSM Systems Security Engineering — Capability Maturity Model
SSET Source Selection Evaluation Team
SSG Standard Systems Group (USAF)
SSN 21 USS Seawolf Submarine
SSO System Security Officer
SSP Source Selection Plan
SSPM Software Standards and Procedures Manual

Acronym-20

Attachment 1: Acronyms GSAM Version 3.0

SSR Software Specification Review
SSRT Single-Stage Rocket Technology
SSS System/Segment Specification

System/Subsystem Specification
STAMIS Standard Army Management Information Systems
STANFINS-R Standard Finance System - Redesign (Army)
STAR System Threat Assessment Report
STARS Software Technology for Adaptable, Reliable Systems
STC Software Technology Conference
STD Software Test Description

Software Test Document
standard

STE software test environment
STEP Software Test and Evaluation Panel (Army)
STP Software Test Plan

software test procedure
System Test Plan

STR Software Test Report
Software Trouble Report

STSC Software Technology Support Center
SUM Software User’s Manual
SUS Software Unit Specification
SWCI software configuration item
SWIL software in the loop
SWSC Space and Warning Systems Center (USAF)

T

T&E test and evaluation
TAC Tactical Air Command
TAFIM Technical Architecture Framework for Information Management
TAR Test Analysis Report
TBQ Taxonomy-based Questionnaire
TCO total cost ownership
TCP/IP Transmission Control Protocol/Interconnect Protocol
TCRMS Type Commander Readiness Management System
TCSEC trusted computer system evaluation criteria
TCTO time-compliance technical orders
TD Technical Director
TDT Theater Display Terminal
TDY temporary duty
TEMP Test and Evaluation Master Plan
THAAD Theatre High-Altitude Area Defense
THAIS Type Commander’s Headquarters Automated Information System
TIM Technical Interchange Meeting
TMD tactical munitions dispenser
TMP Technical Management Plan
TOA total obligation authority

Acronym-21

Attachment 1: Acronyms GSAM Version 3.0

TOC Total Ownership Cost
TP Test Plan
TPM technical performance measurement
TPS test program set
TQAE test quality assurance evaluator
TQM Total Quality Management
TQMP Total Quality Management Plan
TRM Team Risk Management

technical reference model
TRMS TYCOM Readiness Management System
TRR Test Readiness Review
T-SCE Trusted Software Capability Evaluation
TS-CMMSM Trusted Software — Capability Maturity Model
TWG technical working group

U

UM User’s Manual
UNAS Universal Network Architecture Services
USAISC US Army Information Systems Center
USAISSDCL US Army Information Systems Software Development Center - Lee
USD/A Under Secretary of Defense for Acquisition
USI User-System Interface
USSTRATCOM US Strategic Command
UVPROM ultraviolet PROM
UX Unix

V

VCC VHSIC central computer
VDD Version Description Document
VHDL VHSIC Hardware Description Language
VHLL very high-level language
VHSIC very high-speed integrated circuit
VSCS Voice Switching and Control System
VV&A Verification, Validation & Accreditation

Acronym-22

Attachment 1: Acronyms GSAM Version 3.0

W

WBS work breakdown structure
WMMP Woman Marine Model Prototype
WPFA War Planning Systems Directorate
WR-ALC Warner Robbins Air Logistics Center (USAF)
WSRD Worldwide Software Resource Directory
WWMCCS Worldwide Military Command and Control System
WWSS Warfare and Warfare Support System

Y

Y2K Year 2000

Part 1: Points of Contact and Websites GSAM Version 3.0

Appendix A

Points of Contact and
Websites

A-2

Appendix A: Point of Contacts and Websites GSAM Version 3.0

Content

A.1 DoD Acquisition Polcy and Information ... A-3
A.1.1 DoD Acquisition Programs ... A-5
A.1.2 DoD Acquisition Publications ...A-10

A.2 Federal Acquisition Policy and Information... A-11
A.2.1 Federal Acquisition Programs and Services ..A-13

A.3 Software Engineering Policy and Information.......................................A-15
A.3.1 Software Engineering Programs and ServicesA-17
A.3.2 Software-Related Professional OrganizationsA-18
A.3.3 Software Education and Classes ...A-19
A.3.4 Software-Related Publications ..A-20

A-3

Appendix A: POC’s and Websites GSAM Version 3.0

A.1 DoD Acquisition Polcy and Information

ACQWeb Office of the Undersecretary of Defense (Acquisition & Technology)
• USD Documents
• Video Services
• Jump Points
• Highlights
• Links
• Announcements

Air Force Acquisition Policy
• Policy, Guidance, and Programs
• Air Force Innovation Network
• Air Force Acquisition Reform (AR) Newsletter
• SAF AQ Organizations
• Library
• Conferences
• Training
• Career Development
• Links to other AR sites

American National Standards Institute (ANSI)
• Catalogs
• Standards information
• Reference Library
• Links

Army Acquisition Corps
• Army Acquisition Corps News
• Personnel Demo
• Career Development
• Policy
• Publications
• Workforce
• Organization
• Contacts
• Links to other sites

Assistant Secretary of the Army (Research, Development, & Acquisition) (SARDA)
• Policies
• Publications
• Resource Management
• Library
• Links to other sites

http://www.acq.osd.mil/
http://www.safaq.hq.af.mil/
http://www.ansi.org/
http://dacm.sarda.army.mil/
http://www.sarda.army.mil/default.htm

A-4

Appendix A: POC’s and Websites GSAM Version 3.0

AFOTEC (Air Force Operational Test and Evaluation Center)
• Document
• Links

Defense Contract Management Command
• Conference
• Suspenses
• Management Councils
• Command Briefing

Defense Procurement Home Page
• Contract Policy and Administration
• Strategies
• Customer Pricing and Finance
• Initiatives
• Defense Acquisition Regulations Directorate
• Foreign Contracting
• Links to other sites

Defense Science Board
• Task Force Reports
• History
• Charter
• Membership

Department of Navy Acquisition Reform Home Page
• Specifications and Standards
• Training and Education
• World Class Practices
• Acquisition Policy and Guidance
• Briefings
• Industrial Base Integration
• Partnering and Customers
• Acquisition Center

Information Technology Standards Integrated (ITSI)
• Standards Library
• Work Groups
• DoD Representatives
• Data DoD Administration
• Utilities
• Links

http:///www.afotec.af.mil
http://www.dcmc.hq.dla.mil/
http://www.acq.osd.mil/dp/dp.htm
http://www.acq.osd.mil/dsb/
http://www.acq-ref.navy.mil/
http://www.itsi.disa.mil/

A-5

Appendix A: POC’s and Websites GSAM Version 3.0

National Performance Review Centers
• Briefings
• NPR Lessons Learned
• Metric Links
• Links to NPR organizations

Naval Sea Systems Command
• AR Initiatives
• AR Forum
• Training
• Tools
• AR Principles
• AR Newsletter
• Opportunities
• Fact File
• News Room
• Employment
• Links to other AR sites

Office of Assistant Secretary of Defense Command, Control, Communications, & Intelligence &
ASD C31 (OASD C3I)
• Acquisition Documents
• Organization

Space and Missile Systems Center (SMC)
• Organizations
• Facts
• Acquisition Development
• Business Opportunities
• Strategic Plan
• Links to other AR sites Space and Missile Systems Center (SMC)

A.1.1 DoD Acquisition Programs

Acquisition Reform Communication Center (ARCC)
• Broadcasts
• Training
• ARCC Information
• Forums
• Updates
• Links
• Acquisition Reform Week Information

http://www.acq.osd.mil/nprhia/
http://www.navsea.navy.mil/
http://www.c3i.osd.mil/
http://www.c3i.osd.mil/
http://www.losangeles.af.mil/
http://www.acq.osd.mil/dau/arcc/index.html

A-6

Appendix A: POC’s and Websites GSAM Version 3.0

Acquisition Systems Management (ASM)
• DoD Directives
• Major Defense Acquisition Programs List
• Rules of the Road

Air Force Country Store
• Software
• Hardware
• Vendor Sites
• Resource Links
• Contracts
• Contract Sites

Army Armament Research Development & Engineering Center (ARDEC) Procurement
Information Center
• Technical Expertise and Facilities
• Engineer Employment Opportunities
• Picatinny’s Acquisition Center (Procurement Network)
• International Programs
• Business Opportunities
• Technical Transfer Opportunities
• TACOM-ARDEC Cost Management Initiatives
• Public/Private Partnerships: Site Assists

Army Aviation & Missile Command (AMCOM)
• News
• History
• Business Opportunities
• Areas of Interest

Army C4IEWS Team
• Army Acquisition Corps
• Army Acquisition Workforce
• Acquisition Reform
• Team C4IEWS Acquisition Reform Handbook
• Cost as an Independent Variable (CAIV)
• Specifications and Standards Acquisition Reform (SSAR)
• C4IEWS Value Concept Office
• Links

Army Material Command
• Business Opportunities
• News and Publications
• Commands and Activities

http://www.acq.osd.mil/sa/asm
http://www.hanscom.af.mil/Orgs/Spo/AVC/Cstore/index.html
http://pica.army.mil/
http://pica.army.mil/
http://www.redstone.army.mil/
http://www.monmouth.army.mil/
http://www.amc.army.mil/

A-7

Appendix A: POC’s and Websites GSAM Version 3.0

Army Modeling & Simulation Resource Repository (MSRR)
• M&S Standards
• M&S Domains
• MSRR Nodes

Army Simulation, Training, & Instrumentation Command (STRICOM) Acquisition Center
• Business Opportunities
• Business/Internal Operations
• Acquisition Reform
• Links

Army TACOM Acquisition Center
• Policy Statement on Acquisition Reform
• TECOM Acquisition Reform Plan
• Acquisition News
• Links to related sites

Army War College
• Education
• Library
• Job Opportunities

Center for Army Lessons Learned (CALL)
• CALL Products
• CALL Database
• Training and Doctrine
• Operations Resources
• Thesauris
• Schools

Commercial Advocates Forum
• Terms and Conditions
• Supplies
• Logistics
• Training
• Metrics
• Directories
• Comments
• Reference

http://www.msrr.army.mil/
http://www.stricom.army.mil/STRICOM/A-DIR
http://www.tacom.army.mil/acqcen/index.html
http://carlisle-www.army.mil/
http://call.army.mil/call.html
http://www.cadv.org/

A-8

Appendix A: POC’s and Websites GSAM Version 3.0

Defense Acquisition University (DAU) & Acquisition Reform Communications Center (ARCC)
• Catalog
• Schedules
• ARCC
• Training
• Documents
• Links
• AET & CD

Defense Advanced Research Projects Agency (DARPA)
• Mission and Overview
• Organization
• Business Opportunities
• News
• Budget
• Solicitations

Defense Contract Audit Agency (DCAA)
• Products and Services
• Organization
• POC’s
• Activities
• Audit Guidance
• Standard Audit Programs
• Contractor Information
• DCAA Contract Audit Manual

Defense Directives & Instructions
• DoD Directives
• Instructions
• Publications
• Administrative Instructions
• Memoranda
• Information
• Links

Defense Logistics Agency
• News
• Library
• Links

Defense Modeling & Simulation Office (DMSO)
• Master Plan
• Document Library
• Projects
• Services

http://www.acq.osd.mil/dau
http://www.arpa.mil/
http://www.dcaa.mil
http://web7.whs.osd.mil/corres.html
http://www.dla.mil/
http://www.dmso.mil/

A-9

Appendix A: POC’s and Websites GSAM Version 3.0

Defense Reform Initiative
• Policy

Defense Science & Technology Planning
• Strategy
• Vision
• Plans

DoD Electronic Commerce Office (EC/EDI)
• Handbook
• Newsletter
• Policies

DoD Specification & Standards Home Page
• Library
• Related Links

Earned Value Management
• Policy
• Paper
• Tools
• Services
• Links to EV&D Acquisition Professionals

FAR-site
• FAR
• DFARS
• AFFARS

Integrated Product Teams
• Guides
• Articles
• Success Stories

Navy Acquisition & Business Management On-line
• Policy
• Guides
• Tools and Related Links
• Events
• Career Development
• Organization
• Navy SPS
• Paperless Acquisition
• Navy NPR Acquisition Goals
• Business Opportunities

http://web5.whs.osd.mil/drid23.htm
http://www.dtic.mil/dstp
http://www.acq.osd.mil/ec
http://www.dsp.dla.mil/
http://www.acq.osd.mil/pm
http://farsite.hill.af.mil
http://www.acq.osd.mil/ar/ipt.htm
http://www.abm.rda.hq.navy.mil/

A-10

Appendix A: POC’s and Websites GSAM Version 3.0

Navy Continuous Acquisition & Life Cycle Support (CALS)
• CALS Standards
• Navy DTD/FOSI Repository
• Interactive Electronic Technology Manuals
• Standard Generalized Language
• ATIS Compatibility Testing Procedures
• Acquisition of Digital Data Spec Guidance
• Links
• SYSCOMS

Ogden ALC Acquistion Support Team
• Acquisition Support Division
• Acquisition Reform Topics
• Aircraft
• ICBM
• Commodities
• Base Contracting
• Other Contracting
• Links

Software Engineering Institute (SEI)
• Training and Education
• Publications
• Documents

U.S. Space Command (USSPACECOM)
• News
• Key Personnel Information
• Plans
• Catalog
• Speeches and Testimony
• Organizations
• Links to Related Sites

A.1.2 DoD Acquisition Publications

Acquisition Review Quarterly
• Article archives
• Subscription information

Air Force Acquisition Reform Success Stories
• Library of success stories

http://navycals.dt.navy.mil/
http://contracting.hill.af.mil/HTML/asd/rfpsohom.html
http://www.sei.cmm.edu
http://www.usspacecom.af.mil/usspace/index.htm
http://www.dsmc.dsm.mil/pubs/arqtoc.htm
http://www.safaq.hq.af.mil/acq_ref/stories/stories.html

A-11

Appendix A: POC’s and Websites GSAM Version 3.0

Air Force Federal Acquisition Regulation Site
• Regulations and Regulation status/changes
• FAR Cases
• DFAR Cases
• Federal Register
• Electronic Forms

Army Acquisition Reform Success Stories
• Library of success stories
• Contacts

CrossTell
• Newsletter

DefenseLINK
• DoD Organization
• News
• Links to publications

DoD Acquisition Deskbook
Download or order from website
To order via e-mail: cust_supp@deskbook.wpafb.af.mil
• Document

Procurement Management Assistance Team (PMAT)
• Newsletter

Program Manager
• Library of articles
• Subscription information

A.2 Federal Acquisition Policy and Information

Department of Energy
• Online Approved DOE Technical Standards
• Draft DOE Technical Standards
• DOE Technical Standards Development Tool Kit
• Information Searches (including DOE-TSL-1, DOE-TSL-4, Technical Standards Managers

List and Project Registration Information)
• The Standards Forum
• Standards Actions
• Ordering Information
• General Information
• Links to Other Standards Organizations
• Contacts

http://farsite.hill.af.mil/
http://acqnet.sarda.army.mil/acqinfo/zpsucc.htm
http://www.afmc-mil.wpafb.af.mil/HQ-AFMC/IG
http://www.defenselink.mil/
http://www.acq.osd.mil/
http://acqnet.sarda.army.mil/profdev/pmatnews.htm
http://www.dsmc.dsm.mil/pubs/pmtoc.htm
http://www.doe.gov

A-12

Appendix A: POC’s and Websites GSAM Version 3.0

Federal Acquisition Institute (FAI)
• OFPP Memorandum
• Glossary
• Online University
• Procurement Curriculum
• Certification
• NCMA/NAPM Course
• Acquisition Career Management

Federal Acquisition Jumpstation
• Procurement Sites
• Business Opportunities
• Reference Library

Federal Acquisition Regulation
• Current FAR
• Forms Library
• Archives
• Small Entity Compliance Guide
• Federal Acquisition Circulars

FedWorld Information
• Government Information
• Government Reports

General Services Administration (GSA)
• Policy
• Training
• Links

Library of Congress
• News
• Directories
• Links
• Processes
• Historical Documents
• Congressional Documents and Debates

National Institute of Standards and Technology
• Measurements and Standards Laboratories
• Advanced Technology Program
• Manufacturing Extension Partnership
• Baldridge Quality Program
• Events
• Publications

http://www.gsa.gov/staff/v/training.htm
http://nais.nasa.gov/fedproc/home.html
http://www.arnet.gov/far
http://www.fedworld.gov/
http://www.gsa.gov/staff/ap.htm
http://thomas.loc.gov/
http://www.nist.gov/

A-13

Appendix A: POC’s and Websites GSAM Version 3.0

National Performance Review Home Page
• Tools
• Speeches
• Awards
• Initiatives
• Library
• Links

National Science Foundation
• Policy
• Library

U.S. Office of Governmentwide Policy
• Policy
• Links to other programs

U.S. General Accounting Office
• GAO Reports and Testimony
• Comptroller General Decisions and Opinions
• Reports on Federal Agency Rules
• GAO Policy/Guidance Publications
• GAO FraudNET
• Special Publications
• Cost Accounting Standards Board Review Panel

A.2.1 Federal Acquisition Programs and Services

Acquisition Best Practices
• Library

Acquisition Reform Net
• Best Practices
• Training
• References
• Library
• Federal Acquisition Procurement Opportunities
• Electronic Forums about Acquisition Issues
• Links
Army Information Systems Software Center
• Policies
• Publications
• Resource Management
• Library
• Links to other sites

http://www.npr.gov/
http://www.nsf.gov/
http://www.policyworks.gov/
http://www.gao.gov/
http://www.arnet.gov/BestP/BestP.html
http://www.arnet.gov/
http://www.sarda.army.mil/default.htm

A-14

Appendix A: POC’s and Websites GSAM Version 3.0

Commerce Business Daily (CBD)
• Business Opportunities
• Regulations for Doing Business with the Government

Federal Acquisition Institute
• Courses
• Certification Workbooks
• Acquisition Career Management

Federal Acquisition Virtual Library
• Policy
• Procurement Resources
• Library
• Training
• Codes
• Links

Fedstats One Stop Shopping for Federal Statistics
• Statistics
• Library
• Agencies
• Programs
• Contacts
• Press Releases
• Policy
• Links

Government Printing Office
• Government Information Products
• Services
• Business and Contracting Opportunities
• Employment
• Links

National Contract Management Association
• Training
• Library

National Technical Information Service (NTIS)
• Library

Performance-Based Contracting
http://www.itpolicy.gsa.gov/mkm/pathways/pb-contr.htm
• Contracting Guidance

http://www.govcon.com/
http://www.gsa.gov/staff/v/training.html
http://www.arnet.gov/References/References.html
http://www.fedstats.gov/
http://www.access.gpo.gov
http://www.ncmahq.org/index1.html
http://www.ntis.gov/
http://www.itpolicy.gsa.gov/mkm/pathways/pb-contr.htm

A-15

Appendix A: POC’s and Websites GSAM Version 3.0

A.3 Software Engineering Policy and Information

Ada Information Clearinghouse
E-mail: adainfo@sw-eng.falls-church..va.us
• Training/Education
• Products/Tools
• Standards
• Library

Air Force Chief Information Officer
• Events
• Laws
• Authority
• Policy
• Documents
• Links

Air Force Cost Analysis Agency (AFCAA)
(Manually select AFCAA tab at top of page)
• Tools
• Models

Air Force Software Acquisition Policy
• News
• Single Process Initiatives
• Links

Air Force Software Technology Support Center (STSC)
E-mail: consulting@stsc1.hill.af.mil
• Documents
• Services
• Links
• CrossTalk, The Journal of Defense Software Engineering

Army Chief Information Officer C4(ODISC4)
• Laws
• Guidance
• Councils
• Training
• Planning
• Best Practices
• Links

http://www.adaic.org/
http://www.cio.hq.af.mil/
http://www.saffm.hq.af.mil
http://www.safaq.hq.af.mil
http://www.stsc.hill.af.mil/
http://www.army.mil/disc4/default.htm

A-16

Appendix A: POC’s and Websites GSAM Version 3.0

Defense Information Systems Agency (DISA)
• Library
• Opportunities
• Forms
• DISA Direct
• Links

DoD Chief Information Officer
• Library
• Tools
• Links

Department of the Navy (DON) Chief Information Officer
• Library
• Working Group
• Links

Federal Chief Information Officer (CIO) Council
• Regulations
• Library
• Links

GSA IT Policy Onramp
• Best Practices
• Policies
• Library
• Links

Reuse Information Clearinghouse
E-mail: reuseic@sw-eng.fallschurch.va.us
• Training
• Guidelines
• Policy
• Source Code
• Lessons Learned
• Links

Software Development Integrity Program
• Ada Programming Information
• Independent Review Questions
• Templates
• Courses
• Library

http://www.disa.mil/
http://www.c3i.osd.mil
http://www.doncio.navy.mil/links/default.htm
http://cio.gov/
http://www.itpolicy.gsa.gov/
http://dii-sw.ncr.disa.mil/ReuseIC/
http://www.en.wpafb.af.mil/enc/enchome.htm

A-17

Appendix A: POC’s and Websites GSAM Version 3.0

Rome Labs
• Library
• Links

Software Operational Test and Evaluation
• Links

A.3.1 Software Engineering Programs and Services

Air Force Software Technology Support Center (STSC)
E-mail: consulting@stsc1.hill.af.mil
• Documents
• Services
• Links
• CrossTalk, The Journal of Defense Software Engineering

Army Total Asset Visibility Functional Architecture
• Repositories
• Process Flowcharts and Tables

Data & Analysis Center for Software (DACS)
• Library
• Software Information Clearinghouse

GCSS Operational Architecture
• Global Combat Support System Operation Architecture

Product Evaluations
• Product Evaluations

Software Program Managers Network (SPMN)
E-mail: spmn@aol.com
• Products
• Training
• Focus Teams
• Best Practices
• Links

Software Engineering Institute (SEI)
• Library
• Practices
• Products and Services
• Education/Training

http://www.rl.af.mil/
http://www.afotec.af.mil/
http://www.stsc.hill.af.mil/
http://204.255.70.40/tavfa/
http://www.dacs.dtic.mil/
http://www.gcss.jsj4.com/gcssoa/index.html
http://www.afca.scott.af.mil/category14.html
http://www.spmn.com/
http://www.sei.cmm.edu

A-18

Appendix A: POC’s and Websites GSAM Version 3.0

A.3.2 Software-Related Professional Organizations

American Productivity & Quality Center
• Training
• Publications
• Services
• Links

Armed Forces Communications & Electronics Association (AFCEA)
• Education/Training

Association for Computing Machinery (ACM)
E-mail: acmhelp@acm.org
• Education
• Policies
• Publications
• Special Interest Groups

Business Software Alliance
• Policy
• Statistics
• Freeware
• Links

Center for National Software Studies (CNSS)
• Software Evaluations

Data Interchange Standards Association (DISA)
• National Standards
• Development Standards
• Intranet Standards
• Membership
• Reference Desk
• News

Electronics Industry Alliance (EIA)
• Standards
• Process/Procedures

Information Technology Association of America (ITAA)
• Training
• Publications
• Resources
• Links

http://www.apqc.org/
http://www.afcea.org/
http://www.acm.org/
http://www.bsa.org/
http://www.cnsoftware.org/
http://www.disa.org/
http://www.eia.org/
http://www.itaa.org/

A-19

Appendix A: POC’s and Websites GSAM Version 3.0

Information Technology Industry Council (ITIC)
• Issues and Polices
• Newsroom
• Industry Statistics

Institute of Electrical & Electronics Engineers (IEEE)
• Conferences
• Standards
• Library
• Links

International Electrotechnical Committee (IEC)
• Standards
• Documents and Resources
• Links

International Organization for Standardization (ISO)
• ISO Catalog
• ISO Technical Work
• ISO Contacts
• World Standards Services Network
• News
• Products
• ISO 9000 and 14000

National Committee for Information Technology Standards (NCITS)
• Standards
• Public Reviews
• Press Releases
• New approved projects
• NCTS Information
• Technical Committees

National Software Alliance
• Goals
• Mechanisms
• Focus

A.3.3 Software Education and Classes

Air Force Institute of Technology (AFIT) Software Engineering (Graduate)
• Education

AFMC Systems Acquisition School
• Acquisition Education

http://www.itic.org/
http://www.ieee.org/
http://www.iec.ch/
http://www.iso.ch/
http://www.x3.org/
http://www.software-alliance.org/
http://www.afit.af.mil
http://sasweb.brooks.af.mil/SASHome/master.html

A-20

Appendix A: POC’s and Websites GSAM Version 3.0

Defense Acquisition University (DAU)
• Education/Training
• Library
• Links

School of Systems & Acquisition Management
• Acquisition Education

A.3.4 Software-Related Publications

CHIPS Dedicated to Sharing Information – Technology - Experience
NCTAMS LANT
Editor: Ernest Smith
E-mail: ernest.smith@ccmail.nctamslant.navy.mil
• Subscription Free

Communications of the ACM
Editor: D. Crawford
E-mail: crawford.d@acm.org
• ACM Member ship information
• Other ACM publications

Computerworld
Editor-in-Chief: Paul Gillin
E-mail: paul_gillin@cw.com
• Subscription Free

Computer Reseller News
Editor: Robert Faletra
E-mail: rfaletra@crn.com
• Subscription Free

COTS Journal
Publisher: Peat Yeatman
E-mail: mail@yeatmangroup.com
• Subscription Free

CrossTalk: The Journal of Defense Software Engineering
Sponsor: Lt. Col. Joe Jarzombek of CRSIP Program
E-mail: consulting@stsc1.hill.af.mil
• Subscription Free

Datamation
Editor: Larry Marion
E-mail: lmarion@datamation.earthweb.com
• Subscription Free

http://www.acq.osd.mil/dau
http://www.almc.army.mil
http://www.norfolk.navy.mil/chips
http://www.acm.org/catalog/journals/101.html
http://www.computerworld.com/
http://www.crn.com/
http://www.rtcgroup.com/cotsjournal/
http://www.stsc.hill.af.mil/crosstalk/crosstalk.asp
http://www.datamation.com/

A-21

Appendix A: POC’s and Websites GSAM Version 3.0

Federal Computer Week
Editor-in-chief: Anne A. Armstrong
E-mail: annea@fwc.com
• Subscription Free

Government Computer News
Managing Editor: Vanessa Jo Roberts
E-mail: vroberts@gcn.com
• Subscription Free

IEEE Computer Society Publications
• Publications of teh IEEE Computer Society

IEEE Spectrum
E-mail: spectrum-help@ieee.org
• Library
• IEEE Membership Resources
• Links

InformationWeek
Editor-in-Chief: Bob Evans
E-mail: bevans@cmp.com
• Subscription Free

Journal of Electronic Defense
• Source Guide
• Counter Measurement
• EW101
• Calendar
• Archives
• Job Index
• Reference Shelf
• Links

Practical Software Measurement: A Guide to Objective Program Insight
E-mail: psm@ada.npt.nuwc.navy.mil
• Document
• Links

Software Magazine
President and Publisher: Mark McCourt
E-mail: mmccourt@softwaremag.com
• Subscription Free

Washington Technology Online
Editor: Trish Gilmartin Williams
E-mail: williams@technews.com
• Subscription Free

http://www.fcw.com/
http://www.gcn.com/
http://computer.org/publications
http://www.spectrum.ieee.org/
http://www.informationweek.com/
http://jedefense.com/
http://www.psmsc.com/
http://www.softwaremag.com/
http://www.wtonline.com/

Part 2: Policy and Information-Related Appendices GSAM Version 3.0

Appendix B

Policy Memoranda

B-2

Appendix B: Policy Memoranda GSAM Version 3.0

Contents
B.1 SECDEF Memoranda ...B-3

B.1.1 ASD Memoranda .. B-4
B.1.2 USD (A&T), ASD (C3I) Memoranda... B-5
B.1.3 USD Memoranda .. B-5
B.1.4 DUSD (AR) Memoranda .. B-6
B.1.5 PDUSD (AT&T) Memoranda ... B-7
B.1.6 DCS/C4, DSAF/CCS Memoranda .. B-7
B.1.7 DUSA (OR), DISC4 Memoranda ... B-8
B.1.8 CSAF Memoranda .. B-8

B-3

Appendix B: Policy Memoranda GSAM Version 3.0

B.1 SECDEF Memoranda

SECDEF Memorandum of 31 May 1994
Subject: Software Maturity Criteria for Dedicated Operational Test and Evaluation of Software-
Intensive Systems
Reference: GAO/NSIAD-93-198, “Test and Evaluation: DoD Has Been Slow in Improving
Testing of Software-Intensive Systems,” dated September 29, 1993
Signed by: L.H. Frame for Director
• Part of the Department’s initiative to address the General Accounting Office’s (GAO)

recommendations on the Department’s test and evaluation policy of software-intensive systems,
the following guidance to establish the software maturity criteria for the dedicated OT&E (in
support of full rate production decisions or deployment decisions) of software-intensive systems.
The intent is to include this guidance in the revisions to the DoD 5000 and 8120 policy
documents

• Improve the success rate of OT&E for software-intensive systems, and to prevent immature
software-intensive systems from entering OT&E, software maturity must be demonstrated
prior to the start of the dedicated OT&E

Attachment: None

SECDEF Memorandum of 29 June 1994
Subject: Specifications & Standards – A New Way of Doing Business
Signed by: William Perry, Secretary of Defense
• Increase accesses to commercial state-of-the-art technology and facilitate the adoption by its

suppliers of business processes characteristic of world class suppliers
• Assigns the Under Secretary of Defense (Acquisition and Technology) overall implementation

responsibility
· Intended to improve the internal management of the Department of Defense and
does not create any right or benefit, substantive or procedural, enforceable at law or
equity by a party against the Department of Defense or its officers and employees
Attachment: None

SECDEF Memorandum of 2 June 1997
Subject: Implementation of Subdivision E of the Clinger-Cohen Act of 1996 (Public Law 104-
106)
Signed by: William S. Cohen, Secretary of Defense
• Assigns Assistant Secretary of Defense for Command, Control, Communications and

Intelligence (ASD(C3I), Chief Information Officer (CIO) of the Department of Defense (DoD)
• Assignment of DoD CIO duties and delegation of authorities
• Establishes DoD CIO Council
Attachment: CIO Council Charter

PDUSD Memorandum of 28 August 1998
Subject: Single Process Initiative – Executive Council
Signed by: Dave Oliver, Principal Deputy Under Secretary of Defense
• The Under Secretary of Defense (Acquisition and Technology) established a new vision for

the Single Process Initiative (SPI)
• Establishes the Single Process Initiative Council to facilitate the SPI initiative
Attachment: None

B-4

Appendix B: Policy Memoranda GSAM Version 3.0

SECDEF Memorandum of 28 October 1999
Subject: Software Evaluations for ACAT I Programs
Signed by: J.S. Gansler, Unders Secretary of Defense (AT&T)
• This memorandum gives guidance on the selection of contractors for ACAT I programs
• Gives the direction that ACAT I contractors must be in full compliance with the SEI Capability

Maturity Model Level 3 or its equivalent levil in an approved evaluation tool
Attachment: None

B.1.1 ASD Memoranda

ASD(C3I) Memorandum of 31 May 1994
Subject: Software Maturity Criteria for Dedicated Operational Test and Evaluation of Software-
Intensive Systems
Reference: GAO/NSIAD-93-198, “Test and Evaluation: DoD Has Been Slow in Improving
Testing of Software-Intensive Systems,” dated September 29, 1993
Attachment: None

ASD(C3I) Memorandum of 23 June 1994
Subject: Technical Architecture Framework for Information Management (TAFIM)
Signed by: Emmett Paige, Jr., Assistance Secretary of Defense (C3I)
• Affirms Department of Defense (DoD) commitment to the Technical Architecture Framework

for Information Management (TAFIM). The TAFIM will guide the evolution of the
Department’s information system technical architectures

• Establishes the direction for an open systems environment that focuses on a standards-based
architecture critical to achieving interoperability and cross-functional integration

• Maintained by Defense Information systems Agency’s (DISA’s) Center for Architecture and
is available through the National Technical Information Service (NTIS) and the Defense
Technical Information Center (DTIC)

Attachment: DTIC ACCESSION NUMBERS FOR TAFIM
• Implementation Concept, Vol 1, AD-A261 911
• Architecture Guidance and Design Concepts, Vol 2, AD-A261 912
• Reference Model and Standards Profile, Vol 3, AD-A261 913

ASD(C3I) Memorandum of 30 March 1995
Subject: Technical Architecture Framework for Information Management (TAFIM), Version
2.0
Signed by: Emmett Paige, Jr., Assistant Secretary of Defense (C4I)
• New DoD information systems development and modernization programs and evolutionary

changes to migration systems must conform to the TAFIM
Attachment: Technical Architecture Framework for Information Management Version 2.0

B-5

Appendix B: Policy Memoranda GSAM Version 3.0

B.1.2 USD (A&T), ASD (C3I) Memoranda

USD (A&T), ASD (C3I) Memorandum of 8 July 1994
Subject: Software Acquisition Best Practices Initiative
Signed by: Noel Longuemare, Under Secretary of Defense Acquisition and Technology (Acting),
Emmett Paige, Jr., Assistant Secretary of Defense Command, Control, Communications,
and Intelligence
• Improves and restructures the software acquisition management process
• Provide Program Managers and staff with the training and tools necessary to effectively use

and achieve the benefits of these practices
• The Director, Test and Evaluation, OUSD(A&T) and the Deputy Assistant Secretary (C3I

Acquisition) are directed to jointly define, implement, and manage this initiative
Attachment: None

B.1.3 USD Memoranda

USD (C) Memorandum of 21 May 1997
Subject: Management Reform Memorandum #2 – Moving to a Paper-free Contracting Process
by January 1, 2000
Signed by: John J. Hamre, Under Secretary of Defense (Comptroller)
• Simplify and modernize the acquisition process in the area of contract writing, administration,

finance, and auditing with the use of purchase cards, electronic catalogues, electronic commerce
and imaging

Attachment: None

USD (C) Memorandum of 16 June 1997
Subject: Management Reform Memorandum #11 – Adoption of Commercial Identifiers in DoD
Business Systems by January 1, 2000
Signed by: John J. Hamre, Under Secretary of Defense (Comptroller)
• Incorporate commercial identification numbers of DoD business entities and contractors to

replace the DoD Activity Address Code (DODAAC) and the Commercial And Government
Entity (CAGE) codes

Attachment: None

USD (C) Memorandum of 20 June 1997
Subject: Management Reform Memorandum #13 – Adopting Standard Commercial Products
for Registration Files
Signed by: John J. Hamre, Under Secretary of Defense (Comptroller)
• Reduce redundant databases for business process applications for vendors, commercial and

DoD activities
Attachment: None

B-6

Appendix B: Policy Memoranda GSAM Version 3.0

USD Memorandum of 20 February 1998
Subject:Automation of Past Performance Information
Signed by: J.S. Gansler, Under Secretary of Defense (AT&T)
• Demonstrates connectivity with the Air Force and Navy Contractor Performance Assessment

Reporting Systems, the Army past Performance Information Management System, the Navy
Product Data Reporting and Evaluation Program and Red/Yellow/Green systems, the Defense
Logistics Agency Automated Best Value Method (ABVM), and the Defense Information system
Agencies Contractor Past Performance Evaluation Toolkit

Attachment: Automated past Performance Information Systems

USD Memorandum of 16 Mar 1998
Subject: Modeling and Simulation (M&S) in Defense Acquisition
Signed by: J.S. Gansler, Under Secretary of Defense (A&T)
• Application of M&S throughout a program’s life cycle can help achieve it’s goals
• Encourages the use of M&S and focus on the strategy to make it an integral part of DoD’s

acquisition future
Attachment: None

USD Memorandum of 13 Apr 1998
Subject: Total Ownership Cost (TOC) Pilot Programs
Signed by: J.S. Gansler, Under Secretary of Defense (AT&T)
• Provides guidance for Total Ownership Cost (TOC) Pilot Programs
Attachments: None

USD (A&T) Memorandum of 3 June 1998
Subject: The Single Process Initiative – A Long Term Perspective
Signed by: J.S. Gansler, Under Secretary of Defense (AT&T)
• Provides guidance on utilizing Single Process Initiative (SPI) as the mechanism to transition

the DoD to a Performance Based Business Environment
Attachment: None

B.1.4 DUSD (AR) Memoranda

DUSD (AR) Memorandum of 2 July 1998
Subject: Performance-Based Service Contracting (PBSC)
Signed by: Stan Z. Soloway, Deputy Under Secretary of Defense (Acquisition Reform)
• Gives guidance on how and when to submit a report
• Converts service contracts to PBSC
Attachment(s):
• Required Reports: Format, Content and Frequency
• PBSC Conversion Plan Status Report
• Customer Satisfaction Contract Survey Criteria
• PBSC Converted Contracts

B-7

Appendix B: Policy Memoranda GSAM Version 3.0

B.1.5 PDUSD (AT&T) Memoranda

PDUSD (A&T) Memorandum of 28 March 1997
Subject: Study on the Effectiveness of Modeling and Stimulation in the Weapon System
Acquisition Process
Signed by: R. Noel Longuemare, Principal Deputy Under Secretary of Defense
• This study will aid in getting a perspective on the modeling and simulation (M&S) tools and

technologies available that can positively impact your program management
Attachment: As stated

PDUSD (A&T) Memorandum of 2 May 1997
Subject: Simulation Support Plans
Signed by: R. Noel Longuemare, Principal Deputy Under Secretary of Defense
• Effective strategy for the use of modeling and simulation (M&S) throughout a program’s life

cycle, and facilitates a Program Manager’s (PM) thinking through and resourcing a M&S
program

Attachment: Simulation Support Plan (SSP) Guidelines

B.1.6 DCS/C4, DSAF/CCS Memoranda

DCS/C4, DSAF/CCS Memorandum of 8 September 1994
Subject: Data Element Standardization in Automated Information Systems Development
Signed by: Carl G. O’Berry, Lt. Gen., USAF, DCS/Command, Control,
Communications, and Computers, Lloyd K Mosemann, II, Deputy Assistant Secretary of the Air
Force (Communications, Computers, and Support Systems)
• The DoD program to establish standard data elements is central to the goal of improving

information system interoperability across the department. It is an essential element in the
Joint Staff goals within the C4I for the Warrior initiative and the Air Force “Horizon” strategy

• Provides policy and direction to the Air Force automated information systems development
community, clarifying steps program managers will take to use approved DoD standard data
elements in their applications development and acquisition

• Highlights the importance of organizing data according to the classes of data identified in
DoD Manual 83201-M-1 as an evolutionary step to creating standard data elements where
none yet exist

Attachment: Implementation of Data Standards in AIS Development

B-8

Appendix B: Policy Memoranda GSAM Version 3.0

B.1.7 DUSA (OR), DISC4 Memoranda

DUSA (OR), DISC4 Memorandum of 4 January 1993
Subject: Preparation for Implementing Army Software Test and Evaluation Panel (STEP) Metrics
Recommendations
Signed by: Walter W. Hollis, Deputy Under Secretary of the Army (Operations Research),
Peter A. Kind, Lt.Gen., GS Director of Information Systems for Command, Control,
Communications and Computers
• Announces the Army’s intent to implement the use of STEP metrics
• Improves the readiness of Army software using testing and evaluation (T&E) methods and

processes
Attachment: None

B.1.8 CSAF Memoranda

CSAF Memorandum of 23 July 1993
Subject: Air Force Software Release Policy
Signed by: For the Chief of Staff Carl G. O’Berry, Lt. Gen. USAF, DSC/Command, Control,
Communications, and Computers
• DoD acquisition policy to reuse software to maximum extent possible
Attachment: Distribution List Software Release Policy

CSAF Memorandum of 4 Oct 1993
Subject: C41 Systems policy and Standards
Signed by: Lt. Col. Michael E. Ryan, Air Force Chief of Staff
• The USAF/SC is the Air Force C4I systems focal point with the responsibility for C4I Systems,

Policy, Standards, and Architecture. USAF/SC is also implementing a Strategic Planning
Process (SRP) to guide C4I system integration and ensure future development and acquisition
efforts are consistent with DoD and joint policy

Attachment: None

Part 2: Policy and Information-Related Appendices GSAM Version 3.0

Appendix C

Selected Technical
References

C-2

Appendix C: Selected Technical References GSAM Version 3.0

Content

C.1 Technical Reports.. C-3

C-3

Appendix C: Selected Technical References GSAM Version 3.0

C.1 Technical Reports

NOTE: The World-Wide Web has information available at your fingertips. To find and
access reports not listed here, browse the Web sites listed in Appendix A.

Ada83/Ada9X Compatibility Guide, Version 6
Aimed at alerting projects currently writing Ada applications where enhancement or maintenance is
required beyond 1997 of any incompatibilities between Ada 83 and Ada 95.

AdaIC
PO Box 46593
Washington, DC 20050-6593
(703) 685-1477
(800) AdaIC-11
http://www.adaic.org/standards/ada95.html

Ada 95 Adoption Handbook
A comprehensive guide to aid Program Executive Officers and Program Managers understand
and implement the transition to Ada 95.

AdaIC
PO Box 46593
Washington, DC 20050-6593
(703) 685-1477
(800) AdaIC-11
http://www.adaic.org/standards/ada95.html

Ada 95 Quality and Style: Guidelines for Professional Programmers, Version 1.00.10, October
1995
Prepared by the Software Productivity Consortium. Available through the Ada Information
Clearinghouse either electronically or by mail.

AdaIC
PO Box 46593
Washington, DC 20050-6593
(703) 685-1477
(800) AdaIC-11
http://www.adaic.org/standards/ada95.html

http://www.adaic.org/standards/ada95.html
http://www.adaic.org/standards/ada95.html
http://www.adaic.org/standards/ada95.html

C-4

Appendix C: Selected Technical References GSAM Version 3.0

AdaIC Available Bindings Report
An authoritative reference that describes the status of the major standards and bindings available
to Ada programmers, provides a list of relevant reusable resources, and lists vendors supporting
commercial implementations. Available electronically through the AdaIC home page or by mail.

AdaIC
PO Box 46593
Washington, DC 20050-6593
(703) 685-1477
(800) AdaIC-11
http://www.adaic.org/tools/bindings//bindings95/html/toc.html

Ada Implementation Guide (Navy), Vols I and II, March 1992

Naval Information Systems Management
Center Space and Naval Warfare Systems
Command
(703) 602-6903

Ada 95 Language Reference Manual (LRM)
The revised international standard (ISO/IEC 8652:1995) Information Technology – Programming
Languages – Ada.

AdaIC
PO Box 46593
Washington, DC 20050-6593
(703) 685-1477
(800) AdaIC-11
http://www.adaic.org/standards/ada95.html

Rationale for Ada 95 Standard
An introduction and explanation of Ada’s new features.

AdaIC
PO Box 46593
Washington, DC 20050-6593
(703) 685-1477
(800) AdaIC-11
http://www.adaic.org/standards/ada95.html

http://www.adaic.org/tools/bindings/bindings95/html/toc.html
http://www.adaic.org/standards/ada95.html
http://www.adaic.org/standards/ada95.html

C-5

Appendix C: Selected Technical References GSAM Version 3.0

CMU/SEI-92-TR-11, Software Measurement Concepts for Acquisition Managers, January
1992
Provides basic concept program managers can use to integrate measurement into the process for
managing software development. Offers initial measures to help resolve issues that arise in software
intensive acquisitions. Contains information on measures data definition and collection, software
measures for software development issues and sample techniques on: trend analysis, multiple
metric relationship analysis, modeling input data analysis, and data interpretation warnings.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

CMU/SEI-92-TR-19, Software Measurement for DoD Systems: Recommendations for Initial
Core Measures, September 1992
Presents recommendations for a set of basic software measures to help plan and manage acquisition,
development, and support software systems. Reviews integrating measurement with software
process and recommends use of core measures: size (SLOC), effort (staff hours), and quality
(counting problems and defects). Provides basic measures implementation guidance. [Does not
address “rework” as a core measure.]

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

CMU/SEI-92-TR-21, Software Effort and Schedule Measurement: A Framework for
Counting Staff Hours and Reporting Schedule Information, September 1992
Provides guidance for defining, recording and reporting staff-hours (S-H). Addresses dates
concerned with project milestones and contract deliverables and measures of project progress.
Discusses how S-H measures can meet the needs of a variety of users and contains recommendations
on project applications.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

http://www.sei.cmu.edu
http://www.sei.cmu.edu
http://www.sei.cmu.edu

C-6

Appendix C: Selected Technical References GSAM Version 3.0

CMU/SEI-92-TR-22, Software Quality Measurement: A Framework for Counting Problems
and Defects, September 1992
Presents mechanisms for describing and specifying software problems and software defect
measures. Explains why problems and defects should be measured and their affects on project
software quality, cost, and schedule. Checklists, supporting forms, and measurement results are
provided. Includes recommendations for application in ongoing, new, and expanding software
projects.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmuedu

CMU/SEI-92-TR-29, Ada Adoption Handbook: A Program Manager’s Guide, Version 2.0,
October 1992
Provides guidance on adopting the Ada programming language to include what practices have
worked and what pitfalls to avoid.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

CMU/SEI-93-TR-24, Capability Maturity Model for Software, February 1993
Provides an overview of the SEI developed 5-level Capability Maturity Model (CMM) for software
process improvement. Describes the CMM process maturity architecture, how CMM is used in
practice, and how CMM can be used in the future. Companion report to CMU/SEI-93-TR-25,
Key Practices of the Capability Maturity Model, February 1993 (below).

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

CMU/SEI-93-TR-25, Key Practices of the Capability Maturity Model, February 1993
Companion report to CMU/SEI-93-TR-24 (above). Provides overview of CMM, a description of
how to use and interpret key practices associated with the model, and information on how to use
the format of the key practices. Key process areas are: requirement management, software project
planning, software project tracking and oversight, software subcontract management, software
quality assurance, and software configuration management.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

http://www.sei.cmu.edu
http://www.sei.cmu.edu
http://www.sei.cmu.edu
http://www.sei.cmu.edu

C-7

Appendix C: Selected Technical References GSAM Version 3.0

CMU/SEI-93-TR-23/NIST, Special Publication 500-213, Reference Model for Project Support
Environments, Version 2.0, 1993
Contains a comprehensive list of tool capabilities to look for in a SEE developed by the Navy’s
Next Generation Computer Resources (NGCR) Program.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

CMU/SEI-94-SREv0.2, Software Risk Evaluation Method, Version 0.2, January 1994
Contains a high-level description of the current version of the Software Risk Evaluation (SRE)
method. The SRE is as method to identify, analyze, communicate, and mitigate software technical
risks.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

CMU/SEI-95-SR-004, A Manager’s Checklist for Validating Software Cost and Schedule
Estimates, 1995
This report provides a checklist of questions to ask and evidence to look for when assessing the
credibility of a software cost and schedule estimate. The checklist can be used either to review
individual estimates or to motivate and guide organizations toward improving their software
estimating processes and practices.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

CMU/SEI-95-SR-005, Checklists and Criteria for Evaluating the Cost and Schedule
Estimating Capabilities of Software Organizations, 1995
This report provides criteria and checklists for evaluating the capability of an organization’s software
estimating process and the infrastructure that supports it. It also supplies guidelines for good
estimating practice. The checklists and guidelines can be used to elicit information for process
assessments and to motivate and guide organizations in process improvement efforts.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

http://www.sei.cmu.edu
http://www.sei.cmu.edu
http://www.sei.cmu.edu
http://www.sei.cmu.edu

C-8

Appendix C: Selected Technical References GSAM Version 3.0

CMU/SEI-96-HB-002, Goal-Driven Software Measurement — A Guidebook
The materials in this guidebook are designed to help you identify, select, define and implement
software measures to support your business goals. The measures that result are traceable back to
your business goals, so that data collection efforts are better able to stay focused on their intended
objectives.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

CMU/SEI-97-HB-OO3, Practical Software Measurement: Measuring for Process
Management and Improvement
This guidebook shows how well-established principles and methods for evaluating and controlling
process performance can be applied in software settings to help achieve an organization’s business
and technical goals.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
(412) 268-7700
http://www.sei.cmu.edu

Software Technology Support Center (STSC), Documentation Technology Report, April 1994
Presents ideas on the documentation tools domain and discusses their value in improving software
quality. Explains the features of current documentation tools products available in the marketplace.
Includes data on tools, cost, vendor, and acquisition data.

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
(801) 775-5555
DSN 775-5555
http://www.stsc.hill.af.mil

STSC, Process Technologies Method and Tool Report, Volume I, March 1994
Defines process technologies, identifies tools and software engineering environments that support
process technologies, discusses the value of emphasizing process in improving software quality,
and examines the effective use of process technologies.

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
(801) 775-5555
DSN 775-5555
http://www.stsc.hill.af.mil

http://www.sei.cmu.edu
http://www.sei.cmu.edu
http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil

C-9

Appendix C: Selected Technical References GSAM Version 3.0

STSC, Project Management and Software Cost Estimation, April 1995
This report increases awareness and understanding of project management technologies, and
provides the first step in transferring effective project management principles, methods and products
into practical use. This report defines concepts of the software estimation tools domain and identifies
their value in improving software quality and productivity. It also explains the capabilities of
current project management products available in the marketplace and provides cost, vendor, and
acquisition data.

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
(801) 775-5555
DSN 775-5555
http://www.stsc.hill.af.mil

STSC, Reengineering Tools Report, Volume I, August 1994
Defines the concepts of software reengineering and discusses their value in improving software
quality. Explains how features of current reengineering tools can improve software development
and maintenance. Volume 2 provides information about tools products available in the marketplaces
including cost, vendor, and acquisition data.

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
(801) 775-5555
DSN 775-5555
http://www.stsc.hill.af.mil

STSC, Requirements Engineering and Design Technology Report, October 1995
Defines upper CASE (UC) products and discusses their value in improving software quality.
Explains how features of current UC tools can improve software development and maintenance.
Provides information on tool products available in the marketplace along with cost, vendor, and
acquisition data.

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
(801) 775-5555
DSN 775-5555
http://www.stsc.hill.af.mil

http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil

C-10

Appendix C: Selected Technical References GSAM Version 3.0

STSC, Software Engineering Environment Technology Report, April 1994
Defines the concepts of the software engineering environment (SEE) domain and discusses their
value in improving software productivity and quality. Explains how features of the current SEE
technology can improve software development and maintenance. Includes information on the
tools available in the marketplace along with cost, vendor, and acquisition data.

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
(801) 775-5555
DSN 775-5555
http://www.stsc.hill.af.mil

STSC, Software Test Technologies Report, August 1994
Defines the concepts of software testing and identifies their value in improving software quality.
Explains how features of current testing tools can improve software development and maintenance.
Contains information about current testing tools available in the market place and data on cost,
vendors, and acquisition of the tools.

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
(801) 775-5555
DSN 775-5555
http://www.stsc.hill.af.mil

http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil

Part 2: Policy and Information-Related Appendices GSAM Version 3.0

Appendix D

Selected Reading and
Reference Material

D-2

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

Content

D.1 Software Engineering...D-3
D.1.1 Software Requirements and Design ...D-3
D.1.2 Information Engineering ..D-3
D.1.3 Software Quality ...D-3

D.1.3.1 Software Inspections ..D-4
D.1.3.2 Software Testing ...D-4

D.1.4 Software Reuse ...D-4
D.1.5 Object-Oriented Development ..D-5
D.1.6 Software Support ..D-5

D.2 Software Program Management...D-6
D.2.1 Process Management ..D-7
D.2.2 Productivity ..D-7
D.2.3 Software Economics ...D-7
D.2.4 Risk Management ...D-8
D.2.5 Measurement ..D-8

D.3 Systems Engineering...D-8
D.4 Modern Management...D-9

D.4.1 Teamwork ...D-10
D.4.2 Leadership ..D-10
D.4.3 People ... D-11

D.5 National Defense... D-11
D.5.1 Information Warfare ...D-12

D.6 Information Age and Beyond...D-12

D-3

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

D.1 Software Engineering

Blum, Bruce I., Software Engineering: A Holistic View, Oxford University Press, New York, New York,
1992.

Booch, Grady, Software Engineering with Ada, Third Edition, Benjamin/Cummings Publishing Company,
Menlo Park, California, 1994.

Denton, Lynn, and Jody Kelly, Designing, Writing, & Producing Computer Documentation, McGraw Hill,
New York, New York, 1993.

Glass, Robert L., Software Conflict: Essays on the Art & Science of Software Engineering, Prentice Hall,
New Jersey, 1990.

Humphrey, Watts S., A Discipline for Software Engineering, Addison-Wesley Publishing Company, Inc.,
New York, New York, 1995.

Krell, Dr. Bruce E., Developing with Ada: Lif e-Cycle Methods, Bantam Professional Books, New York,
New York, 1993.

Pratt, Philip J., and Joseph J. Adamski, Database Systems: Management and Design, Grand Valley State
College, Boyd & Fraser Publishing Company, Boston, Massachusetts, 1987.

Pressman, Roger S., A Manager’s Guide to Software Engineering, McGraw-Hill, New York, New York,
1993.

Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition, McGraw-Hill, Inc.,
New York, 1992.

D.1.1 Software Requirements and Design

Bass, Len, Paul Clements, and Rick Kazman, Software Architecture in Practice, AddisonWesley, Reading,
Massachusetts, 1998.

Gause, Donald C., and Gerald M. Weinberg, Exploring Requirements: Quality Before Design, Dorset House
Publishing, New York, New York, 1989.

McConnell, Steve, Rapid Development: Taming Wild Software Schedules, Microsoft Press, Redmond,
Washington, 1996.

Shumate, Ken, and Marilyn Keller, Software Specification and Design: A Disciplined Approach to Real-
time Systems, John Wiley & Sons, New York, New York, 1992.

D.1.2 Information Engineering

Martin, James, Information Engineering, (Book 1 of 3), Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1989.

Finkelstein, Clive, An Introduction to Information Engineering, Addison-Wesley Publishing Company,
New York, New York, 1989.

D.1.3 Software Quality

Arthur, Lowell Jay, Improving Software Quality: An Insider’s Guide to TQM, John Wiley & Sons, Inc.,
New York, New York, 1993.

Glass, Robert L., Building Quality Software, Prentice Hall, Englewood Cliffs, New Jersey, 1992.

D-4

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

Moore, James W., Software Engineering Standards: A User’s Road Map, IEEE Computer Society, Los
Alamitos, California, 1998.

Musa, John D., et al, Software Reliability: Measurement, Prediction, Application, McGraw-Hill Book
Company, New York, New York, 1987.

Roetzheim, William H., Developing Software to Government Standards, Prentice-Hall, Englewood Cliffs,
New Jersey, 1991.

Stavely, Allan M., Toward Zero-Defect Programming, New Mexico Tech, Addison-Wesley, Reading,
Massachusetts, 1999.

Östen Oskarsson, and Robert L. Glass, An ISO 9000 Approach to Building Quality Software, Prentice Hall
PTR, Upper Saddle River, New Jersey, 1996.

D.1.3.1 Software Inspections

Ebenau, Robert G. and Susan H. Strauss, Software Inspection Process, McGraw Hill, New York, New York,
1994.

Freedman, Daniel P., and Gerald M. Weinberg, Handbook of Walkthroughs, Inspections, and Technical
Reviews: Evaluating Programs, Projects, and Products, Dorset House Publishing, New York, New York,
1990.

D.1.3.2 Software Testing

Beizer, Boris, Black-Box Testing: Techniques for Functional Testing of Software and Systems, John Wiley
& Sons, Inc., New York, New York, 1995.

Dyer, Michael, The Cleanroom Approach to Quality Software Development, John Wiley & Sons, Inc., New
York, New York, 1992.

Kaner, Cem, Jack Falk, and Hung Quoc Nguyen, Testing Computer Software, Second Edition, International
Thomson Computer Press, Boston, Massachusetts, 1993.

Kit, Edward, Software Testing in the Real World: Improving the Process, ACM Press Books, Addison-
Wesley Publishing Company, New York, New York, 1995.

Mosely, Daniel J., The Handbook of MIS Application Software Testing: Methods, Techniques, and Tools
for Assuring Quality Through Testing, Yourdon Press, Englewood Cliffs, New Jersey, 1993.

Phan, Hoang, Software Reliability and Testing, IEEE Computer Society Press, Los Alamitos, California,
1995.

D.1.4 Software Reuse

Bassett, Paul G., Framing Software Reuse: Lessons from the Real World, Yourdon Press, Upper Saddle
River, New Jersey, 1997.

Leach, Ronald J., Software Reuse: Methods, Models, and Costs, McGraw-Hill, New York, New York, 1997.
Lim, Wayne C., Managing Software Reuse: A Comprehensive Guide to Strategically Reengineering the

Organization for Reusable Components, Prentice Hall PRT, Upper Saddle River, New Jersey, 1998.
Meyer, Bertrand, Reusable Software: The Base Object-Oriented Component Libraries, Prentice Hall Inc.,

Englewood Cliffs, New Jersey, 1994.

D-5

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

D.1.5 Object-Oriented Development

Baudoin, Claude, and Glenn Hollowell, Realizing the Object-Oriented Lifecycle, Prentice Hall, Upper
Saddle River, New Jersey, 1996.

Booch, Grady, Best of Booch: Designing Strategies for Object Technology, SIGS Books & Multimedia,
New York, New York, 1996.

Booch, Grady, Object Oriented Design, Benjamin/Cummins Publishing Company, Menlo Park, California,
1991.

Booch, Grady, Object Solutions: Managing the Object-Oriented Project, Addison-Wesley Publishing
Company, Inc., Menlo Park, California, 1996.

Coad, Peter, and Edward Yourdon, Object-Oriented Analysis, Yourdon Press, Prentice-Hall, Englewood
Cliffs, New Jersey, 1990.

de Champeaux, Dennis, Object-Oriented Development Process and Metrics, Prentice Hall, Upper Saddle
River, New Jersey, 1997.

Firesmith, Donald G., Object-Oriented Requirements Analysis and Logical Design: A Software Engineering
Approach, John Wiley & Sons, Inc., New York, 1993.

Henderson-Sellers, Brian, A Book of Object-Oriented Knowledge: An Introduction to Object-Oriented
Software Engineering, Second Edition, Prentice Hall PTR, Upper Saddle River, New Jersey, 1997.

Jacobson, Ivar, The Object Advantage: Business Process Reengineering with Object Technology, Addison-
Wesley Publishing Company, ACM Press Books, New York, New York, 1995.

McGibbon, Barry, Managing Your Move to Object Technology: Guidelines and Strategies for a Smooth
Transition, SIGS Books, New York, New York, 1995.

Selic, Bran, Garth Gullekson, and Paul T. Ward, Real-Time Object-Oriented Modeling, John Wiley & Sons,
Inc., New York, New York, 1994.

Siegel, Shel, with contributions by Robert J. Muller, Object Oriented Software Testing: Hierarchical
Approach, John Wiley & Sons, Inc., New York, New York, 1996.

Singer, Gilbert L., Object Technology Strategies and Tactics, SIGS Books & Multimedia, New York, New
York, 1996.

Taylor, David A., Object-Oriented Technology: A Manager’s Guide, Addison-Wesley Publishing Co, New
York, New York, 1990.

Williams, John D., What Every Software Manager Must Know to Succeed with Object Technology, SIGS
Books, New York, New York, 1995.

D.1.6 Software Support

Bohner, Shawn A., and Robert S. Arnold, Software Change Impact Analysis, IEEE Computer Society
Press, Los Alamitos, California, 1996.

Ganti, Narsim, and William Brayman, The Transition of Legacy Systems to a Distributed Architecture,
John Wiley & Sons, Inc., New York, New York, 1995.

Martino, Joseph P., Technological Forecasting for Decision Making, Third Edition, McGraw Hill, New
York, New York, 1993.

McClure, Carma, The Three Rs of Software Automation: Reengineering, Repository, Reusability, Prentice
Hall, Englewood Cliffs, New Jersey, 1992.

Miller, Howard Wilbert, Reengineering Legacy Software Systems, Digital Press, Boston, Massachusetts,
1998.

D-6

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

Ulrich, Wiliam M., and Ian S. Hayes, The Year 2000 Software Crisis: Challenge of the Century, Yourdon
Press, Upper Saddle River, New Jersey, 1997.

Utz, Walter J., Software Technology Transitions: Making the Transition to Software Engineering, Prentice
Hall, Englewood Cliffs, New Jersey, 1992.

D.2 Software Program Management

Bennatan, E.M., On Time, Within Budget: Software Project Management Practices and Techniques, QED
Publishing Group, Boston, 1992.

Berlack, H. Ronald, Software Configuration Management, John Wiley & Sons, Inc., New York, New York,
1992.

Brown, William J., Ralpael C. Malveau, Hays W. McCormick III, Thomas J. Mowbray, AntiPatterns:
Refactoring Software, Architecture, and Projects in Crisis, John Wiley & Sons, Inc., New York, New
York, 1998.

DeGrace, Peter, and Leslie Hulet Stahl, Wicked Problems, Righteous Solutions: A Catalog of Modern
Software Engineering Paradigms, Yourdon Press, Englewood Cliffs, New Jersey, 1990.

DeMarco, Tom, and Timothy Lister, Software State-of-the-Art: Selected Papers, Dorset House Publishing,
New York, New York, 1990.

Donaldson, Scott E., and Stanley G. Siegel, Cultivating Successful Software Development: A Practitioner’s
View, Science Applications International Corporation, Prentice Hall, Upper Saddle River, New Jersey,
1997.

Glass, Robert L., Computing Catastrophes, Computing Trends, Bloomington, Indiana, 1983.
Glass, Robert L., In the Beginning: Personal Recollections of Software Pioneers, IEEE Computer Society,

Los Alamitos, California, 1998.
Glass, Robert L., Software Folklore, Computing Trends, Bloomington, Indiana, 1991.
Glass, Robert L., Software Soliloquies, Computing Trends, Bloomington, Indiana, 1981.
Hyman, Michael, PC Roadkill, IDG Books Worldwide, Inc., Foster City, California, 1995.
Marciniak, John J. and Donald J. Reifer, Software Acquisition Management: Managing the Acquisition of

Custom Software Systems, John Wiley & Sons, Inc., New York, New York, 1990.
Purba, Sanjiv, David Sawh, and Bharat Shah, How to Manage a Successful Software Project: Methodologies,

Techniques, Tools, John Wiley & Sons, Inc., New York, New York, 1995.
Roetzheim, William H., Structured Computer Project Management, Prentice Hall, Englewood Cliffs, New

Jersey, 1988.
Schulmeyer, G. Gordon, and James I. McManus, editors, Total Quality Management for Software, Van

Nostrand Reinhold, New York, New York, 1992.
Weinberg, Gerald M., Quality Software Management, Volume 1, Systems Thinking, Dorset House Publishing,

New York, New York, 1992.
Whitten, Neal, Managing Software Development Projects: Formula for Success, Second Edition, John

Wiley & Sons, New York, New York, 1995.
Yourdon, Edward, Death March: The Complete Software Developer’s Guide to Surviving “Mission

Impossible” Projects, Prentice Hall PTR, Upper Saddle River, New Jersey, 1997.

D-7

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

D.2.1 Process Management

Fuggetta, Alfonso, and Alexander Wolf, editors, Software Process, John Wiley & Sons, New York, New
York, 1996.

Holdsworth, Jacqueline, Software Process Design: Out of the Tar Pit, McGraw-Hill Book Company, New
York, New York, 1994.

Humphrey, Watts S., Managing the Software Process, Software Engineering Institute, Addison-Wesley
Publishing Company, New York, 1990.

Maguire, Steve, Debugging the Development Process: Practical Strategies for Staying Focused, Hitting
Ship Dates, and Building Solid Teams, Microsoft Press, Redmond, Washington, 1994.

Software Productivity Consortium, Improving the Software Process through Process Definition and
Modeling, International Thompson Computer Press, Boston Massachusetts, 1996.

D.2.2 Productivity

Brooks, Frederick P., Jr., The Mythical Man-Month: Essays on Software Engineering, Addison-Wesley,
Reading, Massachusetts, 1975.

DeMarco, Tom, and Timothy Lister, Peopleware: Productive Projects and Teams, Dorset House Publishing,
New York, New York, 1987.

Fisher, David T., Myths and Methods: A Guide to Software Productivity, Prentice Hall, New York, 1991.
Jones, Capers, Programming Productivity, McGraw-Hill Book Company, New York, New York, 1986.
Keyes, Jessica, editor, Software Engineering Productivity Handbook, Windcrest/McGraw-Hill, New York,

New York, 1993.
Walsh, Mike, Productivity Sand Traps and Tar Pits: How to Detect and Avoid Them, Dorset House Publishing,

New York, New York, 1991.
Yourdon, Edward, Decline & Fall of the American Programmer, Yourdon Press, Englewood Cliffs, New

Jersey, 1992.
Yourdon, Edward, Rise & Resurrection of the American Programmer, Yourdon Press, Upper Saddle River,

New Jersey, 1996.

D.2.3 Software Economics

Boehm, Barry, Software Engineering Economics, Prentice Hall, New Jersey, 1981.
DeMarco, Tom, Why Does Software Cost So Much? Dorset House Publishing, New York, New York, 1995.
Gulledge, Thomas R., et al, editors, Cost Estimation and Analysis: Balancing Technology and Declining

Budgets, Springer-Verlag, 1992.
Jones, Capers, The Year 2000 Software Problem: Quantifying the Costs and Assessing the Consequences,

Addison-Wesley Longman, Inc., Reading, Massachusetts, 1998.
Jones, T. Capers, Estimating Software Costs, McGraw-Hill, New York, New York, 1998.
Strassmann, Paul A., The Business Value of Computers: An Executive’s Guide, The Information Economics

Press, New Canaan, Connecticut, 1990.
Strassmann, Paul A., The Squandered Computer: Evaluating the Business Alignment of Information

Technologies, The Information Economics Press, New Canaan, Connecticut, 1997.

D-8

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

D.2.4 Risk Management

Charette, Robert H., Software Engineering Risk Analysis and Management, McGraw-Hill Book Company,
New York, New York, 1989.

Dorofee, Audrey J., et al, Continuous Risk Management Guidebook, Software Engineering Institute, Carnegie
Mellon University, SEI Joint Program Office, Hanscom Air Force Base, Massachusetts, 1996.

Hall, Elaine M., Managing Risk: Methods for Software Systems Development, Addison-Wesley, Reading,
Massachusetts, 1998.

Jones, Capers, Assessment and Control of Software Risk, PTR Prentice-Hall, Englewood Cliffs, New Jersey,
1994.

D.2.5 Measurement

Card, David N. and Robert L. Glass, Measuring Software Design Quality, Prentice Hall, New Jersey, 1990.
Hetzel, Bill, Making Software Measurement Work: Building an Effective Measurement Program, QED

Publishing Group, Boston, Massachusetts, 1993.
Joint Logistics Commanders Joint Group on Systems Engineering, Practical Software Measurement: A

Guide to Objective Program Insight, Version 2.1, Naval Undersea Warfare Center, Newport, Rhode
Island, 27 March 1997.

Jones, Capers, Applied Software Measurement: Assuring Productivity and Quality, McGraw-Hill, Inc.,
New York, New York, 1991.

Landsbaum, Jerome B., and Robert L. Glass, Measuring and Motivating Maintenance Programmers, Prentice
Hall, Englewood Cliffs, New Jersey, 1992.

Putman, Lawrence, Measures for Excellence: Reliable Software on Time, Within Budget, Yourdon Press,
Englewood Cliffs, New Jersey, 1992.

Putnam, Lawrence H., and Ware Myers, Executive Briefing: Controlling Software Development, IEEE
Computer Society Press, Los Alamitos, California, 1996.

Putnam, Lawrence H., and Ware Myers, Industrial Strength Software: Effective Management Using
Measurement, IEEE Society Press, Los Alamitos, California, 1997.

Putnam, Lawrence H., and Ware Myers, Measures for Excellence: Reliable Software On Time, Within
Budget, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1992.

Weinberg, Gerald M., Quality Software Management, Volume 2, First-Order Measurement, Dorset House
Publishing, New York, New York, 1993.

D.3 Systems Engineering

Andriole, Stephen J., ed., Advanced Technology for Command and Control Systems Engineering, AFCEA
International Press, Fairfax, Virginia 1990.

Davis, William S., et al, Systems Analysis and Design: A Structured Approach, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1983.

Eisner, Howard, Essentials of Project and Systems Engineering Management, John Wiley & Sons, Inc.,
New York, New York, 1997.

Kosko, Bart, Fuzzy Thinking: The New Science of Fuzzy Logic, Hyperion, New York, New York, 1993.
McMenamin, Steve and John Palmer, Essential Systems Analysis, Yourdon Press, Englewood Cliffs, New

Jersey, 1984.

D-9

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

Microsoft Press Computer Dictionary, Third Edition, Microsoft Press, Redmond, Washington, 1997.
Mills, Harlan D., Richard C. Linger, and Alan R. Hevner, Principles of Information Systems Analysis and

Design, Academic Press Inc., Harcourt Brace Jovanovich, New York, 1986.
Minoli, Daniel, Analyzing Outsourcing: Reengineering Information and Communication Systems, McGraw-

Hill, Inc., New York, New York, 1995.
Muller, Nathan J., Desktop Encyclopedia of Telecommunications, McGraw-Hill, New York, New York,

1998.
Spewak, Steven H., with Steven C. Hill, Enterprise Architecture Planning: Developing a Blueprint for Data,

Applications, and Technology, QED Publishing Group, Wellesley, Massachusetts, 1993.
Whitten, Jeffrey L., Lonnie D. Bentley, Victor M. Barlow, Systems Analysis & Design Methods, Second

Edition, Irwin, Homewood, Illinois, 1989.
Yourdon, Edward N., Modern Structured Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1990.

D.4 Modern Management

Augustine, Norman R., Augustine’s Laws, Sixth Edition, American Institute of Aeronautics and Astronautics,
Inc., Reston, Virginia, 1997.

Ball, James R., DNA Leadership through Goal-Driven Management, The Goals Institute, Inc., Reston,
Virginia, 1997.

Camp, Robert C., Benchmarking: The Search for Industry Best Practices that Lead to Superior Performance,
ASQC Quality Press, Milwaukee, Wisconsin, 1989.

Corey, E. Raymond, Technology Fountainheads: The Management Challenge of R&D Consortia, Harvard
Business School Press, Boston, Massachusetts, 1997.

Creech, Bill, The Five Pillars of TQM: How to Make Total Quality Management Work for You, Truman
Talley Books/Dutton, New York, New York, 1994.

Cringely, Robert X., Accidental Empires: How the Boys of Silicon Valley Make Their Millions, Battle
Foreign Competition, and Still Can’t Get a Date, HarperBusiness, New York, New York, 1993.

Cusumano, Michael A., and Richard W. Selby, Microsoft Secrets: How the World’s Most Powerful Software
Company Creates Technology, Shapes Markets, and Manages People, The Free Press, New York, New
York, 1995.

Fox, J. Ronald, with James L. Field, The Defense Management Challenge: Weapons Acquisition, Harvard
Business School Press, Boston, Massachusetts, 1988.

Goldratt, Eliyahu, Critical Chain, The North River Press, Great Barrington, MA, 1997.
Gore, Vice President Al, Access America: Reengineering Through Information Technology, Report of the

National Performance Review and the Government Information Technology Services Board, 3 February
1997.

Green, Cynthia, with the editors of Business Week, A Business Week Guide: The Quality Imperative, McGraw-
Hill, Inc., New York, New York, 1994.

Hammer, Michael, Beyond Reengineering: How the Process-Centered Organization Is Changing Our Work
and Our Lives, HarperBusiness, HarperCollins Publishers, Inc., New York, New York, 1996.

Hesselbein, Frances, Marshall Goldsmith, and Richard Beckhard, editors, The Organization of the Future,
The Peter F. Drucker Foundation for Nonprofit Management, Jossey-Bass Publishers, San Francisco,
California, 1997.

Howe, Roger J., Dee Gaeddert, and Maynard A. Howe, Quality On Trial: Bringing Bottom-Line
Accountability to the Quality Effort, Second Edition, McGraw-Hill, Inc., New York, New York, 1995.

Kriegel, Robert J., and Louis Patler, If It Ain’ t Broke…Break It: and Other Unconventional Wisdom for a
Changing Business World, Warner Books, New York, New York, 1991.

D-10

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

Lynch, Richard L., and Kelvin F. Cross, Measure Up! Yardsticks for Continuous Improvement, Blackwell
Business, New York, 1991.

Martin, James, Cybercorp: The New Business Revolution, American Management Association, New York,
New York, 1996.

Peters, Tom, and Robert H. Waterman, Jr., In Search of Excellence: Lessons from America’s Best-Run
Companies; Tom Peters and Nancy Austin, A Passion for Excellence: The Leadership Difference, Book-
of-the-Month Club, Inc., New York, New York, 1992.

Peters, Tom, Liberation Management: Necessary Disorganization for the Nanosecond Nineties, Alfred A.
Knopf, Inc., New York, New York, 1992.

Robbins, Harvey, and Michael Finley, Why Change Doesn’t Work: Why Initiatives Go Wrong and How to
Try Again ? and Succeed, Peterson’s, Princeton, New Jersey, 1996.

Sabbagh, Karl, 21st Century Jet: The Making and Marketing of the Boeing 777, Scribner, New York, New
York, 1996.

Senge, Peter M., The Fifth Discipline: The Art & Practice of The Learning Organization, Currency Doubleday,
New York, New York, 1994.

Wilson, Thomas, B., Innovative Reward Systems for the Changing Workplace, McGraw-Hill, Inc., New
York, New York, 1994.

D.4.1 Teamwork

Bennis, Warren, and Patricia Ward Biederman, Organizing Genius: The Secrets of Creative Collaboration,
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1997.

Hackman, J. Richard, editor, Groups That Work (and Those That Don’t): Creating Conditions for Effective
Teamwork, Jossey-Bass Publishers, San Francisco, California, 1990.

Katzenbach, Jon R., and Douglas K. Smith, The Wisdom of Teams: Creating the High-Performance
Organization, Harvard Business School Press, Boston, Massachusetts, 1993.

Lundy, James L., Teams: How to Develop Peak Performance Teams for World-Class Results, The Dartnell
Corporation, Chicago, Illinois, 1994.

McLagan, Patricia, and Christo Nel, The Age of Participation: New Governance for the Workplace and the
World, Berret-Koehler Publishers, San Francisco, California, 1995.

Parker, Glenn M., Cross-Functional Teams: Working with Allies, Enemies, and Other Strangers, Jossey-
Bass Publishers, San Francisco, California, 1994.

Spencer, Lyle M., Jr., and Signe M. Spencer, Competence At Work: Models for Superior Performance, John
Wiley & Sons, Inc., New York, New York, 1993.

Wellins, Richard S., William C. Byham, and Jeanne M. Wilson, Empowered Teams: Creating Self-Directed
Work Groups That Improve Quality, Productivity, and Participation, Jossey-Bass Publishers, San
Francisco, California, 1991.

D.4.2 Leadership

Champy, James, Reengineering Management: The Mandate for New Leadership, HarperBusiness, New
York, New York, 1995.

Kouzes, James M., and Barry Z. Posner, Credibility: How Leaders Gain and Lose it, Why People Demand
It, Jossey-Bass Publishers, San Francisco, California, 1993.

Oliver, RADM Dave, Jr., Lead On: A Practical Approach to Leadership, Presidio Press, Navato, California,
1992.

D-11

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

D.4.3 People

Edvinsson, Leif, and Michael S. Malone, Intellectual Capital: Realizing Your Company’s True Value by
Finding Its Hidden Brainpower, HarperCollins Publishers, New York, New York, 1997.

Fitz-enz, Jac, The Eight Practices of Exceptional Companies: How Great Organizations Make the Most of
Their Human Assets, American Management Association, New York, New York, 1997.

Garfield, Charles, Peak Performers: The New Heroes of American Business, Avon Books, New York, New
York, 1987.

McAdams, Jerry L., The Reward Plan Advantage: A Manager’s Guide to Improving Business Performance
Through People, Jossey-Bass Publishers, San Francisco, California, 1996.

Thomas, Brian, The Human Dimension of Quality, McGraw-Hill Book Company, London, England, 1994.
Waterman, Robert H., Jr., What America Does Right: Learning from Companies That Put People First,

W.W. Norton & Company, New York, New York, 1994.

D.5 National Defense

Alberts, David S., and Thomas J. Czerwinski, editors, Complexity, Global Politics, and National Security,
Directorate of Advanced Concepts, Technologies, and National Strategic Studies, National Defense
University Press, Fort McNair, Washington, D.C., June 1997.

Alexander, Bevin, The Future of Warfare, W.W. Norton & Company, New York, New York, 1995.
Alic, John A., et al, Beyond Spinoff: Military and Commercial Technologies in a Changing World, Center

for Science and International Affairs, John F. Kennedy School of Government, Harvard Business School
Press, Boston, Massachusetts, 1992.

Allard, Kenneth, Command, Control, and the Common Defense, Revised Edition, Directorate of Advanced
Concepts, Technologies, and National Strategic Studies, National Defense University, U.S. Government
Printing Office, Washington, D.C., October 1996.

Czerwinski, Tom, Coping with the Bounds: Speculations on Nonlinearity in Military Affairs, DoD Command
and Control Research Program, Institute for National Strategic Studies, National Defense University
Press, Fort McNair, Washington, D.C., January 1998.

Dunnigan, James F., The Complete Wargames Handbook: How to Play, Design & Find Them, Revised
Edition, Quill William Morrow, New York, New York, 1992.

Nye, Joseph S., Jr., and Roger K. Smith, editors, After the Storm: Lessons from the Gulf War, The Aspen
Institute, Madison Books, Lanham, Maryland, 1992.

Owens, ADM William A., High Seas: The Naval Passage to an Uncharted World, Naval Institute Press,
Annapolis, Maryland, 1995.

Pagonis, LTG William G., with Jeffrey L. Cruikshank, Moving Mountains: Lessons in Leadership and
Logisitics from the Gulf War, Harvard Business School Press, Boston, Massachusetts, 1992.

Perla, Peter A., The Art of Wargaming: A Guide for Professionals and Hobbyists, Naval Institute Press,
Annapolis, Maryland, 1990.

Prezemieniecki, J. S., editor, Critical Technologies for National Defense, AIAA Publications, 1991.
Shukman, David, Tomorrow’s War: The Threat of High-Technology Weapons, Harcourt Brace & Company,

New York, New York, 1996.
Siegel, Pascale Combelles, Target Bosnia: Integrating Information Activities in Peace Operations: NATO-

Led Operations in Bosnia-Herzegovina, December 1995-1997, DoD Command and Control Research
Program, Institute for National Strategic Studies, National Defense University Press, Fort McNair,
Washington, D.C., January 1998.

D-12

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

Spick, Mike, All-Weather Warriors: The Search for the Ultimate Fighter Aircraft, Arms and Armour Press,
London, England, 1994.

Toffler, Alvin, and Heidi Toffler, War and Anti-War: Survival at the Dawn of the 21st Century, Little, Brown
and Company, Boston, Massachusetts, 1993.

Ullman, Harlan K., James P. Wade, et al, Shock and Awe: Achieving Rapid Dominance, Directorate of
Advanced Concepts, Technologies, and National Strategic Studies, National Defense University Press,
Fort McNair, Washington, D.C., November 1996.

van Creveld, Martin, Technology and War: From 2000 B.C. to the Present, Revised and Expanded Edition,
The Free Press, A Division of Macmillan, Inc., New York, New York, 1991.

Weinberger, Caspar, and Peter Schweizer, The Next War, Regnery Publishing, Inc., Washington, D.C.,
1996.

Wentz, Larry, editor, Lessons From Bosnia: The IFOR Experience, DoD Command and Control Research
Program, Institute for National Strategic Studies, National Defense University Press, Fort McNair,
Washington, D.C., January 1998.

D.5.1 Information Warfare

Alberts, David S., Defense Information Warfare, Directorate of Advanced Concepts, Technologies, and
National Strategic Studies, National Defense University Press, Fort McNair, Washington, D.C., August
1996.

Campen, Alan D., contributing editor, The First Information War: The Story of Communications, Computers,
and Intelligence Systems in the Persian Gulf War, AFCEA International Press, Fairfax, Virginia, October
1992.

Campen, Alan D., Douglas, H. Dearth, and R. Thomas Goodden, editors, Cyberwar: Security, Strategy and
Conflict in the Information Age, AFCEA International Press, Fairfax, Virginia, May 1996.

Greenberg, Lawrence T., Seymour E. Goodman, and Kevin J. Soo Hoo, Information Warfare and International
Law, DoD Command and Control Research Program, Institute for National Strategic Studies, National
Defense University Press, Fort McNair, Washington, D.C., January 1998.

Limbicki, Martin C., Defending Cyberspace and Other Metaphors, Directorate of Advanced Concepts,
Technologies, and National Strategic Studies, National Defense University, U.S. Government Printing
Office, Washington, D.C., February 1997.

Ludwig, Mark, The Little Black Book of Computer Viruses, American Eagle Publications, 1992.
Peters, Ralph, The War in 2020, Pocket Books, New York, 1991.

D.6 Information Age and Beyond

Alberts, David S., and Daniel S. Papp, editors, The Information Age: An Anthology on Its Impacts and
Consequences, Volume I, Part One: The Information and Communication Revolution, Directorate of
Advanced Concepts, Technologies, and National Strategic Studies, National Defense University Press,
Fort McNair, Washington, D.C., June 1997.

Alberts, David S., and Daniel S. Papp, editors, The Information Age: An Anthology on Its Impacts and
Consequences, Volume I, Part Two: Business, Commerce, and Services, Directorate of Advanced
Concepts, Technologies, and National Strategic Studies, National Defense University Press, Fort McNair,
Washington, D.C., June 1997.

D-13

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

Alberts, David S., and Daniel S. Papp, editors, The Information Age: An Anthology on Its Impacts and
Consequences, Volume I, Part Three: Government and the Military, Directorate of Advanced Concepts,
Technologies, and National Strategic Studies, National Defense University Press, Fort McNair,
Washington, D.C., June 1997.

Alberts, David S., and Daniel S. Papp, editors, The Information Age: An Anthology on Its Impacts and
Consequences, Volume I, Part Four: International Af fairs, Directorate of Advanced Concepts,
Technologies, and National Strategic Studies, National Defense University Press, Fort McNair,
Washington, D.C., February 1997.

Casti, John L., Would-Be Worlds: How Simulation Is Changing the Frontiers of Science, John Wiley &
Sons, Inc., New York, New York, 1997.

Cetron, Marvin, and Owen Davies, Probable Tomorrows: How Science and Technology Will Transform
Our Lives in the Next Twenty Years, St. Martin’s Press, New York, New York, June 1997.

Coates, Joseph F., John B. Mahaffie, and Andy Hines, 2025: Scenarios of US and Global Society Reshaped
by Science and Technology, Oakhill Press, Greensboro, North Carolina, February 1997.

Davis, Jim, Thomas A. Hirschl, and Michael Stack, editors, Cutting Edge: Technology, Information
Capitalism, and Social Revolution, Verso, New York, New York, 1997.

Dertouzos, Micahel L., What Will Be: How the New World of Information Will Change Our Lives,
HarperCollins Publishers, New York, New York, 1997.

Gates, Bill, The Road Ahead, Viking, New York, New York, 1995.
Glass, Robert L., Software 2020, Computing Trends, Bloomington, Indiana, 1998.
Judy, Richard W., and Carol D’Amico, et al, Workforce 2020: Work and Workers in the 21st Century,

Hudson Institute, Indianapolis, Indiana, 1997.
Kennedy, Paul, Preparing for the Twenty-First Century, Random House, New York, New York, 1993.
McRae, Hamish, The World in 2020: Power, Culture and Prosperity, Harvard Business School Press, Boston,

Massachusetts, 1994.
Necroponte, Nicholas, Being Digital, Alfred A. Knopf, New York, New York, 1995.
Pressman, Roger S., and Russell S. Herron, Software Shock: The Danger & the Opportunity, Dorset House

Publishing, New York, New York, 1991.
Rheingold, Howard, The Virtual Community: Homesteading on the Electronic Frontier, Addison-Wesley

Publishing Company, New York, New York, 1993.
Rheingold, Howard, Virtual Reality: The Revolutionary Technology of Computer-Generated Artif icial Worlds

? and How It Promises to Transform Society, Simon & Schuster, New York, New York, 1991.
Shenk, David, Data Smog: Surviving the Information Glut, HarperCollins Publishers, New York, New

York, 1997.
Tapscott, Don, and Art Caston, Paradigm Shift: The New Promise of Information Technology, McGraw-

Hill, New York, New York, 1993.
Tapscott, Don, Growing Up Digital: The Rise of the Net Generation, McGraw-Hill, New York, New York,

1998.
Thurow, Lester C., The Future of Capitalism: How Today’s Economic Forces Shape Tomorrow’s World,

Penguin Books, New York, New York, 1996.
Toffler, Alvin, Future Shock, Bantam Books, New York, New York, 1990.
Toffler, Alvin, Power Shift: Knowledge, Wealth, and Violence at the Edge of the 21st Century, Bantam

Books, New York, New York, December 1991.
Yourdon, Edward, and Jennifer Yourdon, Time Bomb 2000: What the Year 2000 Computer Crisis Means to

You! Prentice Hall PTR, Upper Saddle River, New Jersey, 1998.

D-14

Appendix D: Selected Reading and Reference Material GSAM Version 3.0

NOTE: If you find these Guidelines profitable and useful, stay current with the latest
developments in software engineering at no cost! If you are not already receiving
monthly issues of CrossTalk: The DoD Journal of Software Engineering
http://stsc.hill.af.mil published by the Air Force Software Technology Support Center
on behalf of DoD, contact their customer service desk at the following.

CrossTalk
Ogden ALC/TISE
7278 Fourth Street

Hill AFB, UT 84056-5205
(801) 775-5555
DSN 775-5555

E-mail: consulting@stsc1.hill.af.mil

www.stsc.hill.af.mil

If Architects Had to
Work Like
Programmers

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix E

E-2

Appendix E: If Architects Had to Work Like Programmers GSAM Version 3.0

Mike Morgan
PKR2, Defense Information Systems Agency

Dear Mr. Architect:

Please design and build me a house. I am not quite sure what I need, so let’s get started. My house should
have between two and 45 bedrooms. Just make sure the plans are such that the bedrooms can be easily
added or deleted. When you bring the blueprints to me, I’ll make the final decision about what I want. Also,
bring me the cost breakdowns for each configuration so I can arbitrarily pick one at a later time.

Keep in mind that the house I ultimately choose must cost less than the one I am currently living in. Make
sure, however, that you correct all the deficiencies that exist in my current house (the floor of my kitchen
vibrates when I walk across it, and the walls don’t have nearly enough insulation in them).

As you design, also keep in mind that I want to keep yearly maintenance costs as low as possible. This
should mean the incorporation of extra-cost features like insulated windows or composite siding. (If you
choose not to use Anderson insulated windows, be prepared to explain you decision.)

Please take care that modern design practices and the latest materials are used in construction of the house,
as I want it to be a showplace for the most up-to-date ideas and methods. Be alerted, however, that the
kitchen should accommodate (among other things) my 1952 Gibson refrigerator.

To assure that you are building the correct house for our entire family, you will need to contact each of my
children and our in-laws. My mother-in-law will have very strong feelings about how the house should be
designed, since she visits us at least once a year. Make sure you weigh all these options carefully and make
recommendations. However, I retain the right to overrule any recommendation you make.

Please don’t bother me with small details right now. Your job is to develop the overall plans for the house
and get the big picture. At this time, for example, it is not appropriate to be choosing the color of the
carpeting; however, keep in mind that my wife likes blue.

Also, do not worry at this time about acquiring the resources to build the house itself. Your first priority is
to develop detailed plans and specifications. Once I approve these plans, however, I would expect the house
to be under roof within 48 hours.

While you are designing this house specifically for me, keep in mind that sooner or later I will have to sell
it to someone else. It should — therefore appeal to a wide variety of potential buyers. Please make sure,
before you finalize the plans, that there is a consensus of the potential home buyers in my area that they like
the features of this house.

I advise you to run up and look at the house my neighbor built last year, as we like it a great deal. It has many
things that we feel we need in our new home, particularly the 75-foot swimming pool. With careful
engineering, I believe you can design this into our new house without impacting the construction cost.

Please prepare a complete set of blueprints. It is not necessary at this time to do the real design, since they
will be used only for construction bids. Be advised, however, that you will be held accountable for any
increase of construction cost as a result of later design changes.

E-3

Appendix E: If Architects Had to Work Like Programmers GSAM Version 3.0

You must be thrilled to be working on such an interesting project! To be able to use the latest techniques and
materials and to be given such freedom in your designs is something that can’t happen very often. Contact
me as soon as possible with your ideas and completed plans.

Sincerely,
The Client

PS: My wife just told me she disagrees with many of the instructions I have given you in this letter. As the
architect, it is your responsibility to resolve these differences. I have tried in the past and have failed to
accomplish this. If you can’t handle this responsibility, I will have to find another architect.

PPS: Perhaps what I need is not a house at all, but a travel trailer. Please advise me as soon as possible if this
is the case.

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix F

Software
Architecture

F-2

Appendix F: Software Architecture GSAM Version 3.0

Content
F1.0 Tab 1: Importance of Architecture in DoD Software............................ F-4
F1.1 Preface.. F-4

F1.1.1 Acknowledgements ... F-4
F1.2 Introduction: A New Direction for DoD Software Acquisition............ F-4
F1.3 DoD Software: More Important — and More Expensive..................... F-5

F1.3.1 The Value of Software ... F-5
F1.3.2 The Cost of Software... F-6
F1.3.3 Architecture: The Invisible Component .. F-11
F1.3.4 Architecture: A Definition ... F-12
F1.3.5 Architecture: Ramifications ... F-15
F1.3.6 The Complexity of Architecture ... F-16

F1.4 Architecture: The Waiting Solution ... F-17
F1.4.1 Technical Focus ... F-17
F1.4.2 Faulty Emphasis .. F-18
F1.4.3 Commercial Architecture .. F-19
F1.4.4 Availability of Tools .. F-19

F1.5 Recommenations: Finding and Applying Architecture...................... F-20
F1.5.1 System Specification ... F-20
F1.5.2 Early Satisfaction of Architectural Requirements F-21
F1.5.3 Contractor Incentives .. F-22
F1.5.4 Getting Started .. F-22

F1.6 References.. F-23

F2.0 Tab 2: A New Process for Acquiring Software Architecture.............. F-24
F2.1 Preface... F-24
F2.2 Introduction: A Process to Control Software Architecture................ F-24
F2.3 Back-ground: The Importance of Architecture to Software
 Flexibility ... F-25

F2.3.1 Cost Considerations of a Flexible Architecture F-27
F2.3.2 Software Architecture Defined.. F-27
F2.3.3 Preparing a Request for Proposal .. F-28

F2.3.3.1 System/Segment Specification .. F-28
F2.3.3.2 Vision Statement ... F-29
F2.3.3.3 Statement of Work... F-29

F2.3.4 Contract Data Requirements List (CDRL) System/Segment Design
 Document.. F-31

F-3

Appendix F: Software Architecture GSAM Version 3.0

F2.3.4.1 Instructions for Proposal Preparation.. F-33
F2.3.4.2 Evaluation Criteria .. F-34

F2.3.5 Activities After Contract Award.. F-34
F2.3.5.1 Demonstration/Validation Effort .. F-34
F2.3.5.2 Modeling Efforts ... F-34
F2.3.5.3 Design Reviews... F-35
F2.3.5.4 Documentation and Configuration Control F-35

F2.3.6 Attachment I — Statement of Work ... F-35
F2.3.6.1 x.x.x System Engineering — General F-35
F2.3.6.2 x.x.x System Engineering — Analysis..................................... F-35
F2.3.6.3 x.x.x Software Engineering .. F-36

F2.3.6.3.1 x.x.x Software Engineering — General F-36
F2.3.6.3.2 x.x.x Software Engineering — Architecture Change
 Analysis .. F-36
 F2.3.6.3.3 x.x.x Software Engineering — Architectural Model or
 Executable Prototype.. F-37
F2.3.6.3.4 x.x.x Software Engineering — Database Design............. F-37
F2.3.6.3.5 x.x.x Software Engineering — User Interface Design F-37

F2.3.6.4 x.x.x Security Engineering ... F-37
F2.3.7 Attachment II — Proposed Amendment of Data Item Description
 for the System/Segment Design Document F-38
F2.3.8 Attachment III — Proposed Amendment of Data Item Description
 for the Software Development Plan... F-39
F2.3.9 Attachment IV — Instructions for Proposal Preparation F-40

F2.3.9.1 x.x.x System Engineering .. F-40
F2.3.9.2 x.x.x Software Engineering .. F-40
F2.3.9.3 x.x.x Database Engineering ... F-40
F2.3.9.4 x.x.x User Interface Engineering ... F-41
F2.3.9.5 x.x.x Security Engineering ... F-41
F2.3.9.6 x.x.x Modeling and Prototyping .. F-41

F2.4 Glossary.. F-44

F-4

Appendix F: Software Architecture GSAM Version 3.0

F1.0 Tab 1: Importance of Architecture in DoD
Software

Barry M. Horowitz, Ph.D.
ESC-TR-94-208, September 1994

F1.1 Preface

DoD’s automated systems are likely to face more varied military threats than in the past that will require the
ability to make system changes rapidly. In addition, defense budgets are likely to continue to decrease. It
is important then, for both mission effectiveness and cost savings, that these systems be built with as much
flexibility as possible to incorporate new capabilities and new technology. This paper proposes that an
increased focus on digital system architecture can markedly improve system flexibility as well as yield
significant cost savings. The author, Dr. Barry M. Horowitz, is President and Chief Executive Officer of
The MITRE Corporation.

F1.1.1 Acknowledgements

Many people at MITRE contributed data and ideas to this document. Special thanks are expressed to Judith
A. Clapp, Dr. Richard J. Sylvester, and Gerard R. Lacroix.

F1.2 Introduction: A New Direction for DoD
Software Acquisition

Our world is changing. The military threat to the United States posed by the Soviet Union for nearly fifty
years is diminished, but there are new threats from rapidly evolving Third World countries that require
rapid changes to military systems. Crises such as the recent events in the Persian Gulf highlight the need
for flexible systems that can be changed quickly to meet the military’s unanticipated challenges. In addition,
the defense budget continues to be reduced — the government has less money to spend on systems.

The answer to this dual challenge — to make systems more flexible and to reduce the cost of defense
systems — lies in the design of the digital system architecture, which includes the composition of hardware
and software components, the structure that interconnects them, and the rules by which they interact. All
too often, both government and industry focus too narrowly on achieving the initial requirements for systems
and give little thought to being able to adjust to what the system may be required to do five or ten years
later, or to what happens as hardware may no longer be supportable or advanced technology may become
available for incorporation into the system.

Architecture design is the key to achieving the cost savings and operational flexibility inherent in digital
systems. If the system is properly structured, then hardware components can be added or upgraded without
expensive changes to the rest of the system. A good architecture allows a system designed to counter one
threat to counter a different threat through localized modifications to the software that change the functional
capability of the system or allow it to interoperate with other systems. What is more, under the right
circumstances, these changes can be made very quickly.

F-5

Appendix F: Software Architecture GSAM Version 3.0

F1.3 DoD Software: More Important — and More
Expensive

F1.3.1 The Value of Software

Software provides modern defense systems with a flexibility that cannot be achieved in any other reasonable
way. Operation Desert Storm provides several excellent examples.

Patriot is an Army corps-level missile system primarily designed to counter aircraft. Given the inherent
capability of the missile itself, the designers gave some thought to employing it to shoot down incoming
enemy missiles. The Scud attacks during the war, however, focused everyone’s attention on this threat with
much more urgency. Patriot’s designers developed a new software package that increased the Patriot’s
effectiveness to counter the Scud threat. When radar tracks began to show that the Scuds were breaking up
on re-entry, the designers further tuned the package to recognize and attack the Scud warhead, and not the
debris that accompanied it. Without the modified software, Patriot would have been less effective. Yet the
designers were able to implement this capability quickly and at a surprisingly low cost. No new missiles or
radars were required. The software improvements could go to the war region in a briefcase.

Another example of this flexibility also involves Patriot, though at the much higher level of command,
control, communications, and intelligence (C3I). To improve Patriot’s ability to react to the Scud attacks,
which proceeded at much higher speeds than the targets normally confronting Patriot, US space satellites
were redirected to watch for Scud launches. When a launch was detected, the satellite relayed the targeting
cues over a satellite link to the appropriate Patriot battery, leading to a successful interception. Minor
software modifications permitted a network to be set up.

There are other, less dramatic examples of the value of software’s inherent flexibility that came out of
Desert Storm. Navy attack aircraft had been set up for years to attack Soviet targets, either at sea or on land.
A cassette data tape provided the attack computers with the information they needed to launch their stunningly
accurate attacks on targets that had only recently been identified.

Software was also the key to the effectiveness of Air Force jamming aircraft. Programmed for operations
against Soviet-bloc radars, the jammers were faced with a mixture of Soviet, French, British, and Italian
equipment. Software changes enabled the equipment to perform its task against this new threat far more
quickly — and less expensively — than could have been done otherwise.

Precisely because of its flexibility, the DoD is buying more software in its systems and implementing
functions in software that had previously been performed in hardware. Figure F-1 shows this trend in a
number of systems. For example, the latest version of the Cobra Dane radar system uses more software
than did the original release, and the new Milstar terminal uses more software to perform more functions
than did its predecessor, AFSATCOM. Desert Storm demonstrated that the flexibility software offers us is
real and of great value to the military. It will become more so if we continue to have crisis scenarios that are
a lot harder to predict and cause us to apply our systems in unplanned ways.

F-6

Appendix F: Software Architecture GSAM Version 3.0

Figure F-1. Growth of C3 Software Size

Looking at the distribution of software maintenance activities is itself illuminating. About two-thirds of
the software maintenance effort for a system is typically spent on modifying the original system to provide
new capabilities and to add new technology, at least twice the effort spent on making repairs. Figure F-3
confirms this data for an Army command and control system. Taking these two sets of data together
suggests that about 45% of the effort spent on software is used to change the system after it has been
delivered.

F1.3.2 The Cost of Software

Since the DoD has been buying more and more software, its total expenditure on software has been increasing,
and software is expensive. With shrinking military budgets, we have to find ways to use more software and
yet reduce its cost. Typically, two-thirds of what is spent on software is believed to be spent after the
system becomes operational, during the maintenance phase, as illustrated in Figure F-2.

F-7

Appendix F: Software Architecture GSAM Version 3.0

Design 9%

Implementation 7%

Maintenance 67%
Testing 15%

SOURCE: Arthur, 1988

Requirements Definition 3%

Figure F-2. Software Life Cycle Cost Distribution

Documentation 9%

Other 3%

System
Improvements 67%

Defect
Correction 21%

SOURCE: Day

Figure F-3. Software Maintenance Activities

Experience also shows that we often spend part of the system development effort making changes in response
to changing or better understood requirements. We probably spend more than 50% of our software effort to
change the capabilities of a system over its developmental and operational lifetime. If we can design
software systems to take only half as much effort to modify, we can reduce the life cycle cost of the entire
software system by 25%. When applied to the total amount the DoD spends on software, this improvement
can yield enormous cost savings. While it is difficult to determine accurately how much the DoD spends on
software, MITRE staff made a rough analysis that indicates the total amount to be approximately $30
billion per year (see Figure F-4). If we can in fact reduce the life cycle cost of software by 25%, the total
savings will range between five and eight billion dollars every year.

F-8

Appendix F: Software Architecture GSAM Version 3.0

Figure F-4. DoD Software Expenditures

The example in Figure F-5 illustrates how these savings might be possible. Three thousand lines of new
code were required to be added to a system of 50,000 lines. When the changes were made, the cost, time,
and number of defects found in the delivered system were measured. Then, the structure of the software
was improved, and the changes were again made. It cost only half as much to modify the structured
software and it took less than half the time. As an added benefit, there were about one-eighth the number
of errors in the structured software.

Figure F-5A. Structure Versus Cost to Change

F-9

Appendix F: Software Architecture GSAM Version 3.0

Figure F-5B. Structure Versus Defects

Another indication of increases in productivity that may accrue from well-structured software is shown in
Figure F-6. The points on the graph represent software size and productivity for development of some
systems programmed in Ada. One of those systems, the Command Center Processing and Display System
Replacement (CCPDS-R), was developed with special attention to designing a system architecture and
tools to facilitate its modification. The original system was then significantly modified to produce two new
versions. Productivity data for the two modified versions of the system are shown in boxes in Figure F-6.
The high overall productivity is due in part to the architecture that accommodated these changes and in part
to tools that facilitated making changes. Further benefits were realized because the architecture made
general system services more accessible and consequently the application modifications were smaller than
they might otherwise have been. The productivity data were adjusted for the reused and tool-generated
software. This is even more impressive when the usual negative relationship between productivity and
system size is taken into account.

Figure F-5C. Structure Versus Time to Change

F-10

Appendix F: Software Architecture GSAM Version 3.0

Figure F-6. Ada Development Versus Modification

While important, the dollar cost of making changes to the system is only one concern; time is another.
Operation Desert Storm provided many examples of how well the flexibility of software served the allied
cause, but there were also cases where we were not able to exploit software as we would have liked.
Requests for changes to systems were made early in the campaign, and estimates were provided that said it
would take 18 months to make the desired changes. This was obviously unacceptable, and the military
found it hard to understand why it should take so long, given that software is supposed to offer great
flexibility.

Software does provide flexibility, but it must be designed from the start with an architecture that allows it
to do so. Furthermore, everyone concerned must preserve the integrity of the architecture; otherwise,
flexibility can be lost through the process of change. As an example, Figures F-7A and F-7B are plots of
the time it took to create each release of an IBM operating system and the number of modules affected in
each release. The graphs show a progression; that is, it took longer and longer to modify the system as the
system grew older. This was due to the growing complexity of the system — more and more modules had
to be changed for each new release. The software structure degenerated, which made it more difficult to
determine which modules had to be repaired. In addition, the pattern of regression testing had to be more
extensive since so many parts of the system had been affected by the modifications. This complexity and
uncertainty translates into more time and money, and this process begins a vicious circle — modifying the
system makes the next modification even more difficult, time-consuming, and expensive.

Thousand of Equivalent Delivered
Source Instructions (EDSI)

P
ro

du
ct

iv
ity

(E
D

S
I/s

ta
ff-

m
on

th
)

F-11

Appendix F: Software Architecture GSAM Version 3.0

Figure F-7A. Release Interval Versus System Age

Figure F-7B. Increasing Complexity with Age

F1.3.3 Architecture: The Invisible Component

The DoD does not usually buy architectures — it buys systems that meet explicit functional and performance
requirements specified by the user or the acquisition agent. In most cases, the DoD does not ask for an
architecture to be delivered; it should therefore come as no surprise that very few architectures are delivered.
This is not to say that the DoD does not receive a system architecture. Every system has some form of
architecture, but the architecture the DoD receives may be quite convoluted and inflexible by the time the
system moves from concept to fieldable implementation. The DoD does not specifically buy an architecture
because there are no explicit specifications for its characteristics, no formal tests of its capabilities, and no
formal control of its structure to prevent arbitrary changes once it has been defined. This is one reason why
architecture is fundamentally invisible — operational users are not often aware that an architecture is even
present if it does not directly affect the functional capabilities they are using.

F-12

Appendix F: Software Architecture GSAM Version 3.0

Yet architecture is the main determinant of a system’s characteristics. The efficiency of the system, and
thus its performance, depend on how the architecture handles resource utilization; architecture determines
how the system sustains operations when parts of the system fail. The architecture also determines how
maintainable the system is; that is, (1) how much effort is required to find and fix errors; (2) how easy it is
to add new capabilities through software; and (3) how much is required to move the software to different
computer hardware. Although they may be invisible to the user, these characteristics, which are all determined
by architecture, are very visible to developers and maintainers who must modify and add to the operational
capabilities of the system. If the DoD wants to buy architectures, it will first have to know how to ask for
them, specify them, test them, demonstrate them, and prevent them from degenerating; in short it will have
to perform all the operations that it performs now when buying other products.

In addition, DoD must perform a new task that is currently not part of its acquisition strategy — maintain
explicit control of the architecture for the life of the system. One way of accomplishing this is to add
architecture to the other aspects of the system that are controlled by the configuration management system.
Since the maintenance phase contains a large fraction of the system’s software costs, the ultimate maintainer
of the system — and thus, the government — must eventually assume control of the architecture. This will
require a significant change in the way the government currently views architecture and its importance.

F1.3.4 Architecture: A Definition

There is no single, commonly accepted definition of a digital system architecture. In the broadest sense,
architecture is a system or style of building having certain characteristics of structure. When applied to
digital computer systems, architecture includes the hardware and software components, their interfaces,
and the execution concept that underlies system processing.

The simplest level of system architecture defines how the hardware and software that make up the system
are partitioned into components, and how software components are assigned to hardware components.
Figure F-8 is an oversimplified example (only primary functions are shown) of a fighter aircraft’s federated
hardware and software structure, which consists of separate computers networked on a standard bus with
individual software functions assigned to the individual computers. At this level, the defense industry
generally does a fairly thorough job of understanding architecture, mainly because developers need to
understand how much hardware of which types they need to buy.

F-13

Appendix F: Software Architecture GSAM Version 3.0

INS FCC FCR SMS

R/EO CADC HUD

Stores
Stations

Data Bus

INS - Inertial Navigation Set R/EO - Radar/Electro Display
FCC - Fire Control Computer CADC - Central Air Data Computer
FCR - Fire Control Radar HUD - Head-Up Display
SMS - Stores Management System

Figure F-8. Hardware and Software Structure

Figure F-9 is another view of the digital system architecture for the same aircraft, showing both the application
software in the previous figure and the software that performs system-wide functions. The functions can be
described as grouped into layers; in this view, software in any layer may utilize software only in its own
layer or the layer below it. The computers in the lowest layer represent the segregation of hardware from
software to increase their independence and to enhance software portability. This is an example of the first
part of the definition of architecture — the arrangement of hardware and software components (namely, the
structure).

Figure F-9. Digital System Architecture

The second element in the definition deals with the interfaces among key elements — for example, data
communications according to a standard protocol (MIL-STD-1553). All computer-to-computer messages
in the aircraft’s avionics architecture must use this protocol; hence, adding new computers and new functions
to the system is relatively simple (from a communications perspective) as long as the data bus has the
needed capacity.

The third element in the definition of architecture is the execution concept. In the sample avionics system
previously shown, this concept is based on the cyclic execution of each function, precisely timed to repeat

Application Application Application

Executive Software

Data Bus Communication Software

Computer Computer Computer

INS F C C F C R

http://www.ntis.gov

F-14

Appendix F: Software Architecture GSAM Version 3.0

the computation on a planned schedule. Taking structure, interfaces, and execution concept together produces
one definition of architecture. Of course, different vendors interpret the software part of the architecture in
different ways.

Figure F-10 illustrates an IBM view of software architecture. In many cases, commercial companies can
provide off-the-shelf components for the general system capabilities of DoD systems; in addition, groups
of commercial hardware and software vendors are defining standard interfaces among layers and components.
These open system architectures may provide the flexibility necessary to integrate, with a minimum of
effort and system disruption, new hardware and software components with improved capability or
maintainability. For example, the International Standards Organization (ISO) Open Systems Interconnection
reference model defines the functions of each layer and the protocols for peer-level layers of a
communications interface. Standards of this type permit the upgrading of elements of the system at particular
layers without requiring the alteration of elements at other layers.

Figure F-10 also illustrates the concept of service layers in the part of the architecture that is developed
uniquely for one class of application (such as command centers or communications systems). These or
other services must include error detection and recovery, interprocess communications, scheduling, and
synchronization of processes. At this level of architecture, we must rely on the applications designers for
standards within their design, as well as the quality control procedures to assure adherence to their standards.

Figure F-10. IBM View of Software Architecture

A p p l i ca t i o n
S p e c i f ic
P r og ra m m in g

F u n c t io n a l A r e a
S e rv ic es

C om m o n A p p l ica t io n
S e rv ic es

C o m m o n S y ste m s In ter f a c e

U s er
A c c e ss

A p p l i ca t i o n
E n ab l in g

O pe ra t ing S ys t e m

A rc h i t ec t u ral E lem e nt

F-15

Appendix F: Software Architecture GSAM Version 3.0

F1.3.5 Architecture: Ramifications

The lack of a good architecture has a serious bearing on the cost, effectiveness, and availability of DoD
systems. For many applications where high reliability and availability are necessary, the architectural
concepts must incorporate failure management as well as other mission requirements. Trouble follows
when this is not part of the initial architectural design.

Error handling is a critical component of any system, since errors will inevitably occur. Most systems have
software to detect errors and to recover from an error when it is detected (for example, when a numerical
value goes beyond expected bounds or when an operator pushes the wrong button). Given the critical
nature of most DoD systems, it is crucial to keep the system in operation when errors occur. When we leave
it to each programmer who has developed a part of a system to determine how to handle errors, the result is
an unintegrated set of sometimes widely varying procedures that are often completely incompatible and
even dangerous.

Recently, MITRE scanned the software for a large, safety-critical command and control system, and identified
over 200 instances in the code that handled errors incorrectly. In many cases, the system detected the errors
and then ignored them, or passed them to another part of the system that could not handle them. What was
missing was a consistent, coherent, system-wide error-handling strategy, a critical attribute of architecture.
Furthermore, there was no method of ensuring that individual programmers adhered to the failure management
standards that should have been established with the architecture.

Data flow diagrams can show the execution concept of the architecture of a system (see Figure F-11). In
this view, the sequence of processing, and which hardware and software components are involved as specific
data moves through a system, are apparent. This end-to-end view of the system’s treatment of an external
input is called a string; in actuality, there are many levels of detail that can be represented by a hierarchy of
data flows for the same string. A string is useful for assuring users that the system will perform the right
functions on their data; it is also useful for estimating and controlling the time the system will take to
respond to an input. What complicates the design of an architecture to meet response times is the large
number of such strings that may be awaiting execution at the same time (as when many sensor reports are
received or must be transmitted) and the contention over which string will use shared resources such as
computers and communications lines.

F-16

Appendix F: Software Architecture GSAM Version 3.0

Figure F-11. Data Flow Reference Model

To understand the timing aspects of a system, it is often necessary to develop a simulation that models the
system architecture and the load on hardware and software components or to execute benchmark software
on the actual hardware. The validity of the results depends on how accurately the load, the data flows, the
hardware speed and capacity, and the timing of individual processes are represented in the model — even
the most elaborate model yields useless results if the parameters are not accurate. The designer of the
architecture must be given accurate information to design the architecture and to evaluate its performance;
in other words, it is essential that there be good communications between modelers and architects or designers.

Since the demands on the hardware resources will change over time, the architecture must provide the
flexibility necessary to upgrade hardware to faster or larger processors to accommodate requirements for
increased processing loads or faster response time. Similar increases in bandwidth may be necessary in
communications hardware to provide for increased loads. Models that correspond to an architecture can be
useful in planning for and evaluating the effect of changes in the hardware configuration of a system
architecture to meet new demands.

F1.3.6 The Complexity of Architecture

Perhaps the main reason that we fail to address these different aspects of system architecture lies in the
increasingly complex nature of the systems we build. Figure F-12 illustrates the top level system architecture
of the Joint Surveillance Target Attack Radar System, or Joint STARS. The actual architecture includes
many more computers, many different data busses, and a large number of other components (not shown in
the figure) to perform its demanding mission. The result is a large, complicated system that makes it
difficult for developers to consider the many different aspects of architecture.

Input
Request

= Task

= Process

S c r e e n
M a n a g e r
(S M G R)

S C R M G R

W o r k
Sta t ion
Cont ro l
(O P C L)

T a b u l a r
D isp lay
(M E N U)

D D D B

G e o g r a p h -
ical D isp lay

(G E O)

S c r e e n
M a n a g e r
(S M G R)

S C R M G R

MICROVAX

Display Generation (DGN)

Chroma t i cs
C X 2 0 0 0 0

GKS
Commands

1 SEC?

3 Display Screen

F-17

Appendix F: Software Architecture GSAM Version 3.0

Figure F-12. Joint STARS System Architecture

At the same time, the larger and more complicated the system, the more important good structure becomes.
Developing and maintaining structure may be very difficult in a system of such complexity, but the rewards
for doing so are even greater. These rewards include higher quality during the initial development, lower
life cycle software costs, and the increased likelihood that the system will remain in operation far longer
(due to its greater flexibility and ease of upgrading). Furthermore, the reuse of known and expandable
architectures will reduce the amount of new software that has to be developed and increase the quality of
the systems that use them.

F1.4 Architecture: The Waiting Solution

F1.4.1 Technical Focus

At the start of a development program, when considering architecture pays the greatest dividends, the
technical focus in the typical DoD program is often not on architecture. Rather, functional and performance
requirements are generally focused on by both DoD and the contractor (refer to Figure F-13). This lack of
attention to architecture occurs because the government expresses its requirements in terms of specific,
measurable system functions and performance requirements that matter to the immediate user, and not in
terms of flexibility, which matters to the maintainer and next-generation user. Government standards, such
as DoD-STD-2167A, require proof that a design satisfies all functional requirements, not that it is adaptable
to change. Design documentation and reviews track individual system and software components, with less
attention on the overall architecture until the components are integrated.

Note: DoD-STD-2167A has been replaced by J-STD-016-1995 (EIA/IEEE)

http://standards.ieee.org/catalog/software2.html

F-18

Appendix F: Software Architecture GSAM Version 3.0

Figure F-13. Technical Focus (Estimated)

As the figure shows, the failure to consider architecture throughout the program’s development has serious
ramifications as time goes on. The performance and control problems described earlier begin to mount,
and the contractor is often forced to call on Red Teams and other desperate measures to modify the original
architecture. Since it is done in haste and then only to allow the product to meet the specifications, this last-
minute change in architecture does little to ensure the necessary efficiency and flexibility, and usually
results in further degeneration of the basic design.

F1.4.2 Faulty Emphasis

Both government and industry typically put almost all their efforts into the initial performance and
functionality of a program in spite of the fact that these will change substantially over the life of the system.
At the same time, there is a near-total lack of attention to an architectural baseline that would form a stable
foundation for incorporating the system’s changing requirements. What we do ask for does not address the
important architectural issues. For example, we state that the system shall be modular but don’t state a
good way to partition it into modules that will allow future expansion and change.

We also specify requirements for system growth in an ineffective way that does not relate to operational
capabilities such as adding new message types or increasing message traffic. Timing and sizing margins —
for example, half the time and twice the memory — cannot ensure that the resources provided are allocated
in such a way that they can be used to meet future requirements. With the advent of distributed systems,
timing and communications bandwidth margins become important in providing for future growth. The
government needs to assure that growth is expressed in operational terms, and not just in physical terms.

Because of the government emphasis on meeting immediate requirements within schedule and cost, even
industry perceives that the government is not seriously interested in controlling maintenance costs. In a
1990 Air Force Scientific Advisory Board study of software maintenance, 123 businesses were asked what
the government thinks is important when awarding software contracts. Their view of the government’s
stress on cost and system performance, rather than long term maintenance, is readily apparent.

100%

GOV’T
TECHNICAL

EFFORT
REQUIREMENTS

& PLANNING

INTEGRATION
& TESTING

APPLICATIONS
DEVELOPMENT

<10%

ARCHITECTURE

TIME

F-19

Appendix F: Software Architecture GSAM Version 3.0

Overall project cost 6.2 out of 7

Proposed product performance 5.5

Contractor experience in area 5.5

Timeliness 5.3

Last contract an advantage 4.8

Project software development
cost

4.6

Contractor software capability 4.4

Ease of software maintenance 3.4

Software maintenance cost 3.3

Software portability 2.9

F1.4.3 Commercial Architecture

It has recently become evident that commercial software users have become more concerned with architecture.
As users become familiar with vendors’ capabilities, their expectations increase. In turn, many software
vendors are now providing software interface standards that enable interoperability across different computer
hardware families and allow users to pick and choose among competing software vendors. These commercial
architecture trends can do nothing but help DoD software efforts, because DoD is a large buyer of software
and hardware that support these interoperability standards. Even embedded, special-purpose militarized
systems rely heavily on commercial systems to assist in software support. The DoD cannot try to take the
lead because these standards are driven by the commercial marketplace; however, the DoD can use to
advantage the opportunities in the commercial market for open architecture standards. Unfortunately,
these commercial standards cannot include the service standards that are heavily application-dependent;
these must be left to the application designer to establish and implement.

F1.4.4 Availability of Tools

The commercial market is also in the lead in providing tools that support the designer in generating and
documenting architectures. There are tools to enable developers to analyze the linkage between different
software modules, the control flow, the flow of data, and the timing of the various operations, and to assess
and improve architectures. Many tools can only perform their analyses after the software is already written.
These tools can still be used to understand what has been developed and to evaluate how easily it can be
modified, before it is fielded or later. The investment may be small, and the potential payoff large. The
following table lists some representative examples of available tools.

The government must acquire these tools and use them if it is going to buy architectures and understand
them. In addition to commercially available tools, project-specific tools can improve the productivity of
software development for a specific architectural design. Referring to the CCPDS-R program again, the
contractor developed a tool to automatically generate the communications software that linked applications.
The applications programmer needed only to list the elements of data that were required from each application
and were necessary to each application. The tool used this information to generate efficient and correct
communications following a standard pattern.

F-20

Appendix F: Software Architecture GSAM Version 3.0

F1.5 Recommenations: Finding and Applying
Architecture

Good architecture potentially can provide significant cost savings as well as greatly increased system
flexibility. To obtain these benefits, we must put architectural requirements in system specifications,
emphasize the early satisfaction of these architectural requirements, give contractors incentives to use
proven architectural concepts, and control the architectural configuration over the life cycle of the system.
We believe this can be done.

F1.5.1 System Specification

Since contract requirements drive the entire development of a system, the surest way to ensure adherence to
a sound architecture is to put architectural requirements in the system specification. This does not mean
that the specification will define the exact architecture to be used, but rather that it will specify what the
architecture is to do. In cases when the application domain is well understood and a sound architecture is
already available, the government may find it in its best interest to be more restrictive than in other situations
lacking such a clear precedent.

To specify accurately the criteria architectures must meet, we must also determine how to qualify them.
There are few measures of system designs that accurately predict flexibility and expandability. We will
have to depend on a combination of techniques, including demonstrations that the system can be modified
as well as analyses of features of the architecture. We are beginning to establish relationships between
measurable features and rate of errors as well as ease of change. As Figure F-14 shows, the more calls a
module makes on other modules, the more errors occur.

Name Vendor Analyzes

Logiscope Verilog Module structure, path
coverage

ACT/BAT McCabe Flow graphs, structure
graphs

ADAS CADRE Dynamic behavior,
timing

STATEMATE i-Logix Structure, dynamic
behavior

CPN Meta Dynamic behavior,
simulation

Adagen MarkV Ada static structure,
dynamic behavior

CARDtools Ready Timing threads

TAGS Teledyne,
Brown

Dynamic behavior,
simulation

F-21

Appendix F: Software Architecture GSAM Version 3.0

Figure F-14. Effect of Control Structure on Errors

F1.5.2 Early Satisfaction of Architectural Requirements

To reap the maximum possible benefit from architectural requirements, we should specify that contractors
cannot write large amounts of applications software until they have developed an architecture that the DoD
has evaluated and approved. The only applications software that would be written before this point would
be that is necessary to help evaluate the architecture and reduce other serious risks, not to perform the
actual task at hand. We can no longer afford the risk of developing architecture and applications concurrently;
on the other hand, if contractors have successful architectures and control procedures that they have used
before, they can use them again. In fact, the quality and effectiveness of a previous architecture as well as
the tools available to support development of applications within the architecture should be an important
factor in the selection of contractors on a program. We should also control these architectures after we
evaluate and approve them. Changes would be weighed against the need for future flexibility throughout
the life of the program.

ONE CALL

High Fault Rate
22%

M edium Fault Rate
36%

Zero Faults 38%

High Fault Rate
31%

M edium Fault Rate
37%

Zero Faults 32%

2-7 CALLS

High Fault Rate
55%

M edium Fault Rate
33%

Zero Faults 12%

MANY CALLS

F-22

Appendix F: Software Architecture GSAM Version 3.0

F1.5.3 Contractor Incentives

Contractors will have to be given incentives to change from their current emphasis on meeting immediate
requirements to a longer term view. They will have to set up their own controls to keep applications
software writers from corrupting the architecture; in other words, during development, contractors will
have the architecture under configuration control. Rules and standards have to be defined as part of the
architecture. Tools should facilitate the integration and modification of components within the architecture
so we know that the standards of the architecture are observed. Contractors who have good architectural
awareness should be treated better than those who do not. The development community needs to start
working on architecture with the software maintainers to ensure that we deliver to them whatever is necessary
for them to sustain and use the architecture.

F1.5.4 Getting Started

It is recommended that the DoD put together a government and industry team to develop specification and
contractual language for buying architectures. Approaches for evaluating and testing architecture need to
be agreed upon as well. We are confident that this can be done and we have begun to develop an example.
This team should also see that we use the experience that we have acquired on programs to determine what
the contractors and the government have done to create good architectures, and to define the criteria for
evaluating architectures.

We also need to consider buying single architectures for closely similar clusters of systems to reduce the
cost of buying and maintaining unique architectures for each. For existing systems, we must work to
introduce architectural improvements without disrupting operational use of the systems. It is crucial that
industry participate as part of the team that would create the specification language and evaluation criteria.
The insight of a joint government-industry working group on architecture will be of considerable benefit to
the DoD during this time of changing missions and increased need for flexible systems.

F-23

Appendix F: Software Architecture GSAM Version 3.0

F1.6 References

Arthur, L. J., Software Evolution, the Software Maintenance Challenge, John Wiley & Sons, New York,
1988

Card, D. N., Measuring Software Design Quality, Prentice-Hall, Englewood Cliffs, New Jersey, 1990
Day, R. A., “History of Software Maintenance for a Complex US Army Battlefield Automated System,”

Proceedings of the Conference on Software Maintenance, IEEE, New Jersey, 1985
DoD-STD-2167A, Defense System Software Development, 1988
Lehman, M. M., and Belady, L. A., Program Evolution — Processes of Software Change, Academic Press,

New York, Academic Press, 1985
Rock-Evans, R., and Hales, K. Reverse Engineering: Markets, Methods, and Tools, Ovum, Ltd., England,

1990
United States Air Force Scientific Advisory Board, Report of the Ad Hoc Committee on Post-Deployment

Software Support, US Government Printing Office, 1990

F-24

Appendix F: Software Architecture GSAM Version 3.0

F2.0 Tab 2: A New Process for Acquiring Software
Architecture

Barry M. Horowitz, Ph.D.
Thomas F. Saunders
Matt Mleziva
ESC-TR-94-207, September 1994

F2.1 Preface

This paper is the product of a substantial amount of thinking and work on the part of many contributors.
Without their help, the topic might have been covered with an extensive, elaborate, but awkward discourse,
or it might have been discussed at great length, without coming to any specific implementable
recommendations. The quality of contributions from within the government and from the six industrial
organizations who participated in developing the concepts and preparing the paper are greatly appreciated.
The primary contributors were:

ESC
Col T. Mackey, ESC/AL

MITRE
A. Buchanan

Boeing
J. H. Hanson

R. L. Roe

J. A. Clapp
S. W. Dardinski
H. G. Goldman

GTE
C. E. Ellingson

J. Perry
J. Roder

R. D. Haggarty
E. J. Hammond

C. G. Hanley
M. R. Kurland

LORAL
J. Stanfield

C. W. McClure
R. Platcow

H. W. Sorenson

PARAMAX
R. Irwin

D. G. Perry
W. D. Sturm

RAYTHEON
T. J. Haley

TRW
Dr. W. W. Royce

F2.2 Introduction: A Process to Control Software
Architecture

Military systems must be able to change to accommodate new mission needs, threats, and technology. At
the same time, military systems are being developed with budgets that are more and more limited. We need
to find ways to keep costs down and to maximize adaptability — for new systems and for extensions to
existing systems that must be preserved. A system’s software architecture is a key determinant of the
system’s adaptability. A well-conceived and well-maintained architecture allows reusable components to
be included in the original development, custom components to be smoothly integrated via standard interface
protocols, and improved components to be incorporated as replacements or enhancements are needed. To

F-25

Appendix F: Software Architecture GSAM Version 3.0

be useful, the software architecture must first be articulated and include provisions for change; second, it
must be controlled and maintained throughout the system’s life cycle.

In this paper, we define a process that can be used to ensure that system acquisitions include attention to the
software architecture. Attention to software architecture begins with the very first discussions of the system’s
scope and concept, and extends through system maintenance. The periods in a system’s life critical to
establishing and retaining a good architecture extend from formal notification to industry of the government’s
need for the system, through the evaluation of industry’s response, the sequence of design reviews during
the contractor’s design and implementation, and long-term maintenance of the operational system. Before
describing the process, we must first identify how to describe software architecture. In general, the attributes
of software architecture include:

• Software partitioning,
• Flow of data,
• Flow of control,
• Timing and throughput relationships,
• Interface layering and protocol standards, and
• Hardware/software allocation.

Although these attributes may overlap with concepts considered to be system architecture, regardless, these
attributes need to be established before software architecture can be evaluated or controlled. The specific
content of what is controlled under software architecture must be determined for each program. Similarly,
the level of detail contained in descriptions of the software architecture attributes, as well as distinctions
between architecture and design, must be determined for each program. Attributes should be considered
architecture when they express relationships that contribute to the system’s long-term tolerance to changes;
they should be considered design when they are implementation-specific.

We provide some background behind the initiative to have architecture defined and preserved in modern
acquisitions,* and we define the term software architecture. We also provide information that can be used
to structure the package the government uses to solicit proposals from industry for systems that strongly
depend on computer software, and we offer guidance for monitoring the execution of a software development
contract.

We believe that following the process described here for acquiring software will result in systems that
better meet user needs by encouraging the development of more maintainable, flexible, extensible software
architectures. The acquisition of software architectures will be most effective when there is cooperation
between the government and industry, and attention applied by both towards the goal of building systems
that can accommodate change.

F2.3 Back-ground: The Importance of
Architecture to Software Flexibility

One of the prime benefits originally attributed to the use of software is its inherent flexibility. Unfortunately,
for a variety of reasons, the potential benefits of such flexibility have been lost in many systems. In fact,
users identify the lack of flexibility and adaptability as two of the major disadvantages of recent systems.
Users have been forced to continue using outdated (and sometimes improper) procedures solely because of

F-26

Appendix F: Software Architecture GSAM Version 3.0

the expense required (time as well as money) to modify the computer software. The rigidity of some
software has even dictated that obsolete hardware be retained because of the difficulty of moving the
software to newer machines.

If a system is to have a long, useful life, the allocation of software capabilities to components may need to
be altered. For example, technology advances may make available specialized hardware that can substitute
for particular software components, new software algorithms may replace hardware devices, or future
mission capabilities may be predicted. Buyers should not only anticipate such possibilities, they should
provide bidders with an indication of future needs via a vision statement. Likewise, bidders are encouraged
to propose structured architectures with appropriately selected components so that the system can be expected
to have a long and stable life. Bidders must address how one or more proposed architectures provide for the
prospect of a long system life.

With the anticipated duration of modern systems, it is vitally important that systems be able to evolve as
application needs change and as users come to appreciate the potential capabilities of systems. Although at
the outset of a systems development project the designers are able to describe desirable characteristics and
a logical structure, by the time the systems are delivered their structures are too often constrained and
awkward. Instead of receiving well-organized systems with clean interfaces, users receive systems whose
distribution of functions appears contrived.

It has been observed that the original organized structure becomes distorted as the detailed designers choose
expedient solutions to challenging implementation problems. As these expediencies compound, the software
architecture of the delivered system becomes more and more convoluted. This convoluted structure makes
it nearly impossible for the implementers or maintainers to find a logical point for introducing needed
functions, and leads either to prohibitively rising costs or to ossification and eventual discard of the system.
Such an end to well-conceived systems is consistently encountered because modifications, sometimes
extensive, are inevitably needed during the course of a system’s operational life.

To obtain the benefits of flexibility within a system, the software’s structural attributes, which are present
at the beginning of the design thought process, must be captured. These attributes are typically called
“architecture,” although the subtle distinction between architecture and design varies among practitioners.
What is important is that a management process be established for preserving the architecture. This process
must ensure that:

• A vision is established and documented that conveys a sense of direction for future capability growth;
• A structure is defined for the software, and is stable before decisions crucial to the implementation are

fixed;
• The structure and its rationale are formally recorded for the implementers and approvers of the design;

and
• The structure is revisited and reaffirmed, or modified in a controlled manner and preserved, throughout

the life cycle.

For the process proposed here to work effectively, the government and contractor must designate people to
oversee the architecture and ensure the system implementation preserves the architecture’s desirable aspects.

F-27

Appendix F: Software Architecture GSAM Version 3.0

F2.3.1 Cost Considerations of a Flexible Architecture

Cost is sometimes raised as a concern about trying to maintain the integrity of the architecture structure.
Although a software acquisition policy may emphasize software architecture, there is a system architecture
tradeoff to be made. Hardware capabilities and software functions may need to be included that were not in
the initially specified requirements but are necessary to accommodate changes predicted for the future.
Offerors and buyers must consider the long-term payoff for preserving software architecture. With the
falling price of computer components, it is preferable in most situations to spend more money on hardware
rather than sacrifice the system’s extensibility because of a shortsighted compromise of the software
architecture to reduce hardware costs. In fact, an architecture that allows reuse of software components or
use of commercial software products may lower the system’s total cost. Appropriate consideration of the
full life cycle cost consequences must be included in any decisions regarding the generation, preservation,
or abandonment of a software architecture.

F2.3.2 Software Architecture Defined

Software architecture refers to the fundamental structural attributes of a software system. Software
architecture is a top-level definition of a software design that is defined early in a system’s life cycle. It is
the result of system design activity to synthesize a software system that will support the system’s functions;
be in concert with a synthesized hardware system; be responsive to imposed developmental, environmental,
and operational conditions; and be demonstrably supportive of a vision for growth and change. The software
architecture defines the software components that will provide the required algorithmic functions, their
interfaces, and an underlying execution concept for orderly and efficient accomplishment of the algorithmic
functions. As design progresses, the architecture captures more specific information, such as a software
system execution model that includes specific operating system selections, specific interface and
communication protocols, and specific multiprocessing and multiprogramming paradigms.

The distinction between software architecture and software design is not absolute. However, design is
considered more detailed; it is a realization of the architecture into a product that fulfills the system
requirements. The essential properties that must be described to express a software architecture include:

• Partitioning software into components. These should be the major software entities that will be
recognized and manipulated by the software developers as the natural partitions within the software. In
this context, “component” is used in a general sense and does not specifically refer to Computer Software
Components (CSCs). Components may be determined by grouping algorithmic functions, objects, and
reusable components such as operating systems and database systems, or by any other scheme appropriate
to the proposer’s development methodology.

• Flow of data. This should reveal the mechanisms for managing the flow of data through the components.
It should show the major data paths between and among transformation processes as well as to/from
data storage. Where the flow of data is controlled by table-driven design, the table data structures and
their rules for modifying data flow should be described. It should define data structures and how file
management and database management structures will be used.

F-28

Appendix F: Software Architecture GSAM Version 3.0

• Flow of control. This should reveal the mechanisms for managing the flow of control among the
components. It should show the major execution sequences, where execution sequences may be
asynchronous or parallel, and how synchronization is managed. Where execution control uses data-
driven design, the mechanisms for accessing the table and managing execution should be described. It
should also show how anomalous conditions such as error handling and exception conditions that may
dynamically alter the flow of execution are managed.

• Critical timing and throughput attributes . The architectural devices used to manage critical timing
events, interrupts, throughput demands, and data buffering should be described.

• Interconnection layers, standards, and protocols. The layered view should show the grouping of
software components into layers containing collections of services whose interfaces to the rest of the
system are defined. It should specify the rules for allowable interconnections among the layers. The
use of standardized interface protocols and bindings within and between layers, such as SQL, GOSIP,
Motif, OSI, IEEE 806.X, etc., should be indicated.

• Allocation of software to hardware. The mechanism for assigning software to specific hardware
devices should be defined. Where critical design performance is determined by such allocation (e.g.,
signal processing software might need to be executed on custom systolic array hardware), the allocation
should be defined.

The definition of what constitutes a “good” software architecture is not provided here. Goodness must be
judged on a case-by-case basis during source selection and each time modifications or refinements to the
software architecture are proposed during a system’s life cycle. In general, architectures are judged to be
good when they satisfy the objectives outlined in the government’s specification and vision statement.

F2.3.3 Preparing a Request for Proposal

The government’s expectations about a new system are conveyed to industry as a Request for Proposal
(RFP), which comprises a number of documents. For software architecture information to be adequately
evoked, the RFP package must include specific information that traditionally has not been included in the
RFP. The package must make clear to potential bidders that the government’s assessment of the proposal
will include assessing the software architecture.

F2.3.3.1 System/Segment Specification

The System/Segment Specification (SSS) provided with the RFP package provides functional and
performance requirements that must be satisfied by the contractor. The SSS also contains requirements,
such as interface standards, language constraints, fault tolerance, and security, that influence architecture
and must be considered by the contractor when the architecture is being defined. The SSS should include
the requirements necessary for the system to meet the user’s known needs. These may include architectural
requirements when specific (testable) flexibility and extensibility requirements are known. However, the
SSS should not be developed so as to dictate a particular architectural solution. Rather, it should emphasize
the need for long-lived viability of the proposed architecture. If an acquisition has a requirement for exact
interfacing with (or replacement for) an existing system, then the architecture may be constrained to the
extent that architectural properties constitute a legitimate requirement, such as conforming to standards or
using standard components. Even in this case, though, the SSS should not impose unnecessary restrictions
on the architecture.

F-29

Appendix F: Software Architecture GSAM Version 3.0

F2.3.3.2 Vision Statement

In this new process for acquiring software architecture, acquisitions or developments should include a
vision statement in the RFP package. The capabilities described in the vision are not prerequisites for the
successful proposal; however, architectural flexibility sufficient to accommodate those capabilities is sought
by the government. The SSS contains known requirements the delivered system must fulfill; the vision
statement describes new capabilities the system might need to provide in the future.

In the vision statement, the user should provide, to the extent possible, potential future changes in threats
and in the role and mission of the system. The acquisition organization should integrate the user’s vision of
future changes with other potential changes, including technology advances, and prepare the vision statement.
Examples of what might appear in a vision statement include new functions (e.g., provide routing directives
in addition to tracking targets), anticipated technological improvements (e.g., provide larger or better
displays), and radically innovative technology improvements (e.g., direct input through voice recognition).
The architecture-relevant topics in the SSS and the vision statement together create the basis for evaluating
proposals.

If there are known requirements for flexibility, maintainability, and future growth that must be met in the
delivered system and are firm when the RFP is issued, then they must be a part of the SSS (e.g., if the
system must accommodate growth and changes in the message catalog), and the software architecture must
meet them. The vision statement adds another dimension to the SSS by helping the offeror make tradeoffs
in selecting an architecture that can easily adapt to fulfill potential future requirements at minimum risk to
the government, the user, and the maintainer.

A vision statement is important to the architecture process because major system benefits may emerge if the
chosen structure is capable of handling different demands. With a robust and flexible underlying structure,
a system can absorb tasks different from those identified to meet the initial deployment. The vision statement
requires thinking beyond the immediate objectives of the users in acquiring a new system. It should be
linked to the user’s long-range planning and speculation (10 to 20 years), or to potential alternative users,
and should not be restricted by predefined allocations of functions to organizations, systems, or persons.

F2.3.3.3 Statement of Work

The Statement of Work (SOW) must reinforce the importance of the architecture in the acquisition by
identifying tasks related to documenting the architecture, keeping the documentation relevant as the design
progresses, and validating that the architecture is used in the actual software design and implementation
and that it allows satisfaction of system requirements.

The System/Segment Design Document (S/SDD) is the vehicle for expressing and controlling the architecture.
Consequently, a specific task must be included in the SOW to ensure that the S/SDD is produced, updated,
and maintained under configuration control by the contractor.

The Software Development Plan (SDP) is the vehicle for defining the software development process the
contractor expects to use. The SDP must include a description of the processes and the tools or software
engineering environment the contractor will use to ensure the architecture is preserved by the software
implementation. Consequently, a specific task to develop and maintain the SDP must be included in the
SOW.

F-30

Appendix F: Software Architecture GSAM Version 3.0

Although this process is devoted to preserving architecture, it is not devoted to preventing its refinement or
modification. Consequently, engineering analysis tasks to evaluate, refine, or demonstrate the validity of
the software architecture must be included in the SOW. Results of these analyses should be discussed
within design reviews (e.g., at the software walkthrough) and at presentations to the government. These
engineering analysis tasks should reveal how the architecture will behave in the proposed application, and
how it can be generated, modeled, or prototyped with the contractor’s proposed software development
process and environment. These tasks should commence prior to the System Requirements Review (SRR).
Because of the need to perform these studies, the schedule for the contract must allow time before the SRR.
The results of the analyses must be presented to the government at the SRR, and again prior to the SDR, as
drafts of the architecture portion of the S/SDD. Both the architecture and the analyses that provide the
rationale should be documented in the S/SDD and used to reach an agreement between the developer and
the government on the architecture. At SDR, the architecture portion of the S/SDD should be placed under
configuration control. A task must be defined to conduct at least one Technical Interchange Meeting (TIM)
for the contractor and the government to review and agree on the architecture between SRR and SDR.

Additional engineering tasks should be included in the SOW for validation of the architecture itself, and
preservation of the architecture throughout the implementation. At a minimum, updates to the S/SDD
should be provided at each formal design review (after the SDR, PDR, and CDR), at any time an architectural
change is proposed, and at Test Readiness Reviews (TRRs).

Most software architectures involve a complex structure that is difficult to understand and therefore difficult
to predict. Early in the formulation of the software architecture, a model or prototype is needed; this should
be an executable model that could be simulated to yield insights into the software component interface
relationships, data flow, execution flow, and timing and sizing performance of the ultimate system. Where
complexity of the ultimate system warrants (to be decided case-by-case), a specific task to develop, document,
and use such a prototype/model should be included in the SOW. The prototype/model will validate that the
architecture and the implementation coincide and that the architecture can meet system and software
requirements. The prototype/model is not required to be an extract of the final version of the system,
although it could be; rather, it is prepared to allow meaningful examination of the architecture. Results of
analysis of the prototype/model should be delivered to the government at each design review. In some
cases, the prototype/model may also be a deliverable for use during the support phase of the system.

Within the context of any implementation, the risk of failing to meet some of the requirements must be
carefully managed. To ensure that architectural features are not needlessly abandoned when attempting to
resolve other problems, the contractor should be required to analyze the proposed system for features likely
to pose implementation difficulties or increased costs. Any requirement, capability, feature, or option that,
during the course of the contract, is discovered to fall into the realm of a potential risk to preserving the
architecture and its attributes must be identified to the government and a risk management action proposed.

A task must be defined to conduct tradeoff studies whenever a change to the architecture is contemplated.
The tradeoff studies should involve simulation modeling or demonstration-based results that provide a
quantifiable impact to the architecture attributes. The results of such tradeoff studies must be presented to
the government, which must concur before any efforts are initiated that implement the changes. Government
concurrence should be managed according to the procedures for managing the S/SDD configuration.
Attachment I contains sample wording that should be in the SOW. However, the exact definition of the
tasks to be performed must agree with the goals of the system under development.

F-31

Appendix F: Software Architecture GSAM Version 3.0

F2.3.4 Contract Data Requirements List (CDRL) System/Segment
Design Document

The S/SDD is the vehicle for defining the design of a system/segment and its operational and support
environments. Under this new process for acquiring software architecture, the architectural portions of the
S/SDD will be expanded. Further, architecture information will be requested from the contractor at the
time of the proposal, at SRR, and before SDR. The proposal submittal may be in the form of a draft of the
architecture material from the S/SDD or it may be separately formatted. In either case the information
necessary to understand and evaluate the software architecture must be presented.

In accordance with DI-CMAN-80534 (S/SDD DID) and Attachment II of this paper, a description of the
architecture should be provided with the proposal, a preliminary description should be provided at SRR,
and an approved architecture description should be provided before SDR. Obviously, the early submissions
will have less detail defined than the later ones. For example, specific choices for software decomposition
are not expected in the proposal. Only the components that represent significant software capabilities
should be identified as software architecture components (e.g., operating system, database management
system, signal processing system, or other breakdown of components consistent with the developer’s proposed
methodology, such as functional decomposition or object-oriented design). The contractor must also be
required to submit revisions to the S/SDD whenever an architecture modification has been approved and
the architectural information has become outdated. In general, the software architecture information should
be contained in Section 3.4 of the S/SDD.

Many diagrammatic or textual representations are possible to emphasize software attributes such as data
flow, execution flow, layering, or interface protocols. The specifics of the notation and format of the
information are not as important as recording all the architectural information; for that reason, one or more
contractor-preferred representations may be selected to complement one another when assembling an
architecture description. Regardless of the forms used, to be acceptable the architecture representation
must cover the essential properties listed in our definition of software architecture. In addition to the
architecture description, the S/SDD must be supplemented with explanatory material for the architecture.
The contractor must include the following rationales for:

• Structure of software. Explain why the partition of software components was selected, emphasizing
why it offers tolerance for changes in later stages of the system’s life cycle. Similarly, explain why
architectural features such as table-driven design were selected and what attributes of tolerance for
change, e.g., flexibility and extensibility, are provided by the chosen software structure. Mechanisms
for managing the flow of data and the flow of execution should also be described, with the rationale
behind how they were selected.

• Rules for interaction of system components. Explain why particular standards or de facto standards
(e.g., Motif, Windows, POSIX GOSIP, Hewlett Packard New Wave Object Management Facility) are
being adopted. Provide the rationale for how an architecture model or profile was selected and how
interconnection rules or layered protocols will be enforced in the architecture.

• Structure of the hardware and software. Provide the rationale for the choices made to aggregate
software components on processors or to distribute them on separate processors.

In addition to discussing how the architecture relates to the needs of the current system, the S/SDD should
address how the architecture will handle new capabilities and features as noted in the vision statement. The
architecture description should include provisions for exploiting migration paths associated with improved

F-32

Appendix F: Software Architecture GSAM Version 3.0

versions of nondevelopmental item (NDI) products, and it should describe the limitations or capabilities to
migrate to improved custom or NDI software. It should also explain what aspects of the software are
substantially enhanced by the proposed architecture, for example:

• Software testability
• Software maintainability (e.g., isolating and correcting software malfunctions, and
• Software extensibility.

Attachment II contains a candidate rewording of Data Item Description (DID) DI-CMAN-80534 to direct
the contractor’s preparation of the S/SDD. Caution: when preparing the description of the architecture, the
distinction between design and architecture needs to be considered. Since the architecture will be placed
under configuration control relatively early in the contract life cycle, implementation detail information is
best left out. The mechanisms, rules, standards, and generic structural properties should be included.
Specific, low level, component-unique information that is not part of the main structure of the system
should not be captured. The distinction between what is design detail and what is structural attribute needs
careful consideration by both the government and the contractor. Consequently, the words used to tailor a
DID for a specific contract should be carefully considered.

Software Development Plan. The software architecture implementation is carried out by the creation of
many software components, modules, and routines. The creation steps must be guided by a process, defined
in the SDP, that is fully cognizant of the importance of the software architecture. Therefore, not only is an
SDP required from the contractor at the beginning of the contract, it must be resubmitted whenever changes
are made to the development process. The SDP must describe the development environment and any tools
used to ensure and/or verify the preservation of architectural features during development. The degree to
which tools can be used to enforce architectural decisions should be highlighted. Whether or not automated
tools are used, the SDP must explain the procedures by which architectural constraints are enforced throughout
the design, coding, deployment, and maintenance phases of the system. Information to be included in the
SDP includes:

• The extent to which software components are NDIs or reused, and guidelines for determining the
suitability of reused or NDI products.

• The process (sequence of activities) and tools that will be used to manage the software architecture,
including:
− Generating software in accordance with the rules of the architecture;
− Documenting and controlling the architecture and changes to it;
− Verifying that the architecture will meet its functional requirements and its requirements for

adaptability, extensibility, etc.;
− Predicting that the system will meet its performance (timing) requirements;
− Controlling conformance of the software design and software implementation with the architecture;
− Determining how and when the architectural model or prototype will be executed; and
− Creating an organizational structure to support architectural development, preservation, and

verification.

Attachment III contains a candidate rewording of DID DI-MCCR-80030A to direct the contractor’s
preparation of the SDP.

Other documents. There may be other documents (e.g., model/prototype description, timing and sizing
reports) that are influenced by architecture. For each one, the DID should be amended to express the need
for preserving software architecture.

F-33

Appendix F: Software Architecture GSAM Version 3.0

F2.3.4.1 Instructions for Proposal Preparation

The Instructions for Proposal Preparation (IFPP) must remind bidders about the presence of the software
architecture policy and the government’s emphasis on software architecture definition, evaluation, and
preservation. The IFPP should reiterate the relationship between the specification and the vision statement,
the parameters and attributes to be included in the software architecture definition, and the differences
intended between architecture and design. It must provide some form of completeness criteria that will
enable contractors to know how much of the vision statement characteristics need to be discussed in a
proposal. It must also provide for enumerated vision attributes so proposals that offer solutions covering
more of the vision can be distinguished from those covering less.

Bidders must be informed of the need to provide a description of the software architecture. This will be a
tailored subset of the information contained in the S/SDD. The S/SDD material should be of sufficient
depth for the relationship between proposed architectures and the specification and vision attributes to be
understood by the buyers. This architecture-relevant information should have a page limitation (e.g., 50
pages, including cover, index, and supporting text). The bidder must adequately describe the architectural
approach to be used and must show how a proposed architecture will support the system requirements by
including a rationale for the major architectural properties the offeror proposes. Further elaboration on the
proposed architecture and its rationale may include descriptive examples of previous systems that used a
proposed architecture, results of demonstrations from previous contracts, or results of simulations and
models available for a proposed architecture.

The IFPP must also inform bidders of the need to submit a description of the software development processes
and the contractor’s plan for developing software. This material should define the processes and tools used
to support creating and preserving the software architecture. The technical proposal should provide the
rationale behind why and how those software development processes and tools ensure preservation of the
architecture. Where appropriate, examples from past experience should be cited.

A presentation of the techniques used in a previous project should be encouraged to lend credibility to a
bidder’s representations about the approach to emphasizing architecture that is proposed. An ideal way of
combining past experience and the current effort would be to have the bidder demonstrate the planned
system architecture and tools through execution of a high-level model of a proposed architecture during
source selection. On a case-by-case basis, the acquisition organization should determine whether or not it
is appropriate to expect or require proposers to be prepared to include a demonstration as part of source
selection. The bidders should be encouraged to show how their model reveals whether an architecture
supports the specification and vision. For example, the model could show the ability to port software
components to multiple hardware platforms, to modify components via the use of computer-aided software
engineering (CASE) tools, or to replace one commercial-off-the-shelf (COTS) product with another.

Because the ultimate success of the architectural approach to the system acquisition will be determined by
the designers and implementers, the role of the technical leaders of the design team is of much interest to
the government. The bidders are encouraged to describe whether a single architect or architect team will be
appointed, the scope of this person’s or team’s authority, and how the architect or team is expected to
interact with the rest of the project management team. Examples of previous projects that used the proposed
management structure would validate the likely success of the approach. Attachment IV contains sample
wording that can be used in the IFPP.

F-34

Appendix F: Software Architecture GSAM Version 3.0

F2.3.4.2 Evaluation Criteria

So that bidders will understand the importance attached to the architectural structure of a proposed system,
Section M of the solicitation package must indicate that the proposed architecture, its development process,
and its maintenance provisions will be evaluated. Further, it should state that failure to provide an adequate
response to the architectural aspects of the proposed system will be deemed to indicate noncompliance with
the basic solicitation. The actual factors and standards that the government will use in evaluating the
proposals will be based on the statements in Section M, but will not be provided to the bidders. The
evaluation criteria included in Section M should be based on a need to assess:

• How the proposed approach and architecture meet system requirements;
• To what extent the architecture can meet the potential long-term needs of the system described in the

visio statement; and
• To what extent the proposer’s software development approach assures the preservation of the software

architecture.

Although these criteria are generic here, they must be made more explicit for the particular system being
acquired. The evaluation criteria should be derived from the types of tasks or capabilities the new system
may need to accommodate, and they should allow buyers to evaluate whether or not proposed architectures
have a flexible underlying structure that will accommodate tasks different from those identified by the
initial specification.

F2.3.5 Activities After Contract Award

After the system implementation is under way, the government and the contractor must jointly monitor the
effort to ensure that the architectural base for the system is maintained. The SOW defines the appropriate
tasks and, for the most part, the contract defines the activities after contract award. However, cooperation
is considered essential both in selecting the architecture to be used and in preserving it. Therefore, all
parties to the contract should be encouraged to establish open communications and candid evaluation of the
degree of success being achieved with respect to defining a sensible architecture and preserving it. TIMs
can facilitate communication prior to formal reviews.

F2.3.5.1 Demonstration/Validation Effort

Engineering analyses should allow the contractor and government to identify and quantify the parameters
that relate to imposing the chosen architecture on the system. They should be conducted from the outset of
the contract to refine the architecture requirements and prepare the contractor and the government for
architecture discussions at SRR and prior to SDR. They should also be conducted any time architectural
modifications are proposed.

F2.3.5.2 Modeling Efforts

A realistic (but economical) modeling effort should be part of any complex project so that probable
performance can be predicted. Without appropriate modeling, the true consequences of preserving the
architecture in the face of possible design deviations may not be understood. These modeling efforts
should include the architecture aspects of the system.

F-35

Appendix F: Software Architecture GSAM Version 3.0

F2.3.5.3 Design Reviews

As a part of each design review during development, the integrity of the architecture must be explicitly
reviewed. Any proposed deviations from the agreed architecture must be explained. Execution threads
must be presented as a means of showing that the architecture supports the intended functions of the system.

F2.3.5.4 Documentation and Configuration Control

Between contract award and SRR, the contractor and the government will study the proposed architecture.
Based on the results of engineering analyses done during this time, the architecture requirements will
become stable. Between SRR and SDR, the contractor will prepare the formal S/SDD for review and
comment by SDR. Upon submittal of the S/SDD, reflecting government comments, the architecture will be
placed under configuration control. Thereafter, modifications may be made to the architecture but only
after tradeoff studies have shown the necessity for change, and the government and the contractor agree to
the change. The S/SDD should be updated to reflect the approved changes.

*Horowitz, B. M., The Importance of Architecture in DoD Software, The MITRE Corporation (M91-35), Bedford, Massachusetts,
July 1991

F2.3.6 Attachment I — Statement of Work

The following material is provided for placement in the SOW to define tasks associated with preserving the
software architecture. These paragraphs are general in nature and must be tailored to include specific
references to the CDRL. The specific tasks chosen and the degree of tailoring must also match the needs of
each program. In particular, the scope and scheduled completion of the tasks must be integrated into the
overall plan for the program. The software architecture tasks are intended to supplement those tasks that
would be part of an acquisition effort and thus already specified in the SOW; it may be convenient to merge
this material into the descriptions of other tasks.

F2.3.6.1 x.x.x System Engineering — General

When performing all system engineering tasks, the contractor shall ensure that the software architectural
attributes are considered. All trade studies, design decisions, and implementation actions that impact the
software architecture will evaluate whether or not the system’s tolerance for change is affected. In the
event that it is affected, the contractor shall include the analysis that justifies modifications to the software
architecture in terms of life cycle cost of the system.

F2.3.6.2 x.x.x System Engineering — Analysis

Before the SRR, the contractor shall analyze the SSS and vision statement and identify requirements that
are judged to be architectural drivers. The contractor shall host a TIM, with government and support
contractor participation, to review the software architecture. The purpose of the TIM will be to review the
requirements from the SSS being satisfied by the architecture proposed, to assess the ability of the proposed
architecture to satisfy the vision statement, and to coordinate revisions of the architecture requirements
such that a clear understanding of the software architecture and the criteria or constraints involved in its
definition is established. The architecture shall be described in an update of the architecture portion of the

F-36

Appendix F: Software Architecture GSAM Version 3.0

S/SDD and shall be provided to the government at the SRR. A formal submission of the architecture
description in the S/SDD shall be submitted and placed under configuration control at SDR. [DI-CMAN-
80534]

An explanation of the architecture of the system shall be included as primary presentations at the SRR, the
SDR, all software and hardware design reviews (SRR, PDR, and CDR), and the TRR. Associated with
software architecture descriptions, the design process standards and tradeoff heuristics that were used as
criteria or constraints by the contractor, or by the contractor and the government, for selecting the architecture
shall be expressed in an Architecture Analysis Report. This report shall contain the essential information
for later reviewers to understand why the architecture choices were made that led to the defined architecture.
The intent is for later reviewers to be able to identify architectural features that are tied to design assumptions
or constraints. In the event those assumptions are refined or the constraints are lifted, preservation of those
architecture features may be reexamined. Also included in the report shall be a description of the procedures,
tools, and training by which the government can maintain the architecture for the remainder of the planned
system life after completion of the contractor efforts. This report shall be delivered at SRR, at SDR, and
updated at any subsequent review whenever modifications to the software architecture are requested. [DI-
MISC-xxxxx]

F2.3.6.3 x.x.x Software Engineering

F2.3.6.3.1 x.x.x Software Engineering — General

The contractor shall manage, design, develop, document, control, and qualify performance of the computer
software to satisfy the performance, functional, and quality requirements of the SSS. In addition, to the
extent technology allows, the contractor shall provide an architectural framework for the software that
accommodates the flexibility and extensibility implied by the vision statement. “The extent technology
allows” will be determined via TIMs where provisions for open system design, software reuse, incorporation
of layered architecture reference models, and interface standards are compared against the goals of the
program and the state of available commercial products, or the state of contractor-developed architectural
products. The software architecture definition shall be governed by the long term cost-effectiveness goals
to have the system under development be tolerant to change. Decisions vis a vis architecture selection or
modification shall be made on the basis of requirements defined in the SSS, the vision statement, and this
goal within the scope of the contract.

F2.3.6.3.2 x.x.x Software Engineering — Architecture Change Analysis

At each milestone after the SRR (i.e. SDR, PDR, CDR, and TRR), the contractor shall identify any new
enhancements or changes to the architecture that affect the long term tolerance for change in requirements,
and provide reasons for the differences. Before these changes are presented at the next review, the contractor
shall identify the changes at a TIM convened 20 days prior to the review. The contractor shall update the S/
SDD to reflect the changes as agreed within 30 days after the review. If any changes affect portions of the
architecture already under government configuration control, the contractor shall be required to generate
an administrative engineering change proposal (ECP) describing the changes and their rationales. [DI-
MISC-xxxx]

F-37

Appendix F: Software Architecture GSAM Version 3.0

F2.3.6.3.3 x.x.x Software Engineering — Architectural Model or Executable Prototype

The contractor shall prepare an executable prototype, model, or initial version of the software architecture
framework. This model shall demonstrate the flexibility, extensibility, and growth provisions anticipated
for the selected architecture. It shall allow testing of the timing and throughput relationships, the interfaces
to products using standard protocols, and the fundamental data flow and control flow sequencing, and it
shall demonstrate the anomalous condition or error handling mechanisms to be used in the system. The
contractor shall present the results of architecture modeling or prototype developments and demonstrations
at the SDR, and the results and the model shall be updated at the PDR and CDR. The contractor shall
submit an agenda for each demonstration and shall deliver a report after each demonstration to record any
action items and decisions. [DI-MISC-xxxx]

F2.3.6.3.4 x.x.x Software Engineering — Database Design

In the process of designing the logical and physical structure of the database, the contractor shall consider
the effects upon the database of the selected architecture (and vice versa) and shall ensure that the database
design is consistent with the architecture. The design of the database shall be presented as part of each
design review at a level of detail determined by the maturity of the design effort at that time. The contractor
shall deliver to the government a Database Design Document (DID-MISC-xxxx). A preliminary version of
this document shall be delivered at the (first) PDR and a final version of this document shall be delivered at
the (first) CDR.

At the SDR, the contractor shall describe the approach for implementing the database. The contractor shall
identify and justify the need for any file management or database management software. The contractor
shall discuss the partitioning of the database and shall identify benefits and drawbacks due to the planned
database structure. Included shall be a description of the procedures, tools, and training by which the
government can maintain the database consistent with the architecture for the remainder of the planned
system life after completion of the contractor efforts.

F2.3.6.3.5 x.x.x Software Engineering — User Interface Design

The contractor shall develop the user system interface (USI) to be consistent with the planned architecture.
The impact of the architecture on the USI (and vice versa) shall be considered. At the SDR, the contractor
shall produce a description of the sequence and timing of user actions and software responses to illustrate
the compliance of the USI with the overall architecture. In particular, the handling of anomalous and error
situations and the resultant movement of information to and from the USI shall be discussed. The use of
previously developed software in the design or operation of the USI shall be described. The contractor
shall provide information sufficiently detailed so that the government can determine that the USI design
and the planned hardware and software implementations are consistent with the planned architecture. This
information shall be delivered in the form of briefings and portions of the S/SDD. [DI-CMAN-80534]

F2.3.6.4 x.x.x Security Engineering

The design of needed security features shall be accomplished by the contractor in such a manner as to
preserve the architecture planned for the system. The impact of security features upon the overall architecture
and design shall be presented as part of each design review at a level of detail determined by the maturity of
the design effort at that time. No alterations to the security design shall be considered without a thorough
determination of the impact upon the future of the system; alternatives that are in concert with the planned

F-38

Appendix F: Software Architecture GSAM Version 3.0

architecture shall be given greater weight than permitting changes to the architecture. The contractor shall
deliver to the government a System Security Architecture Document [DI-MISC-xxxx] which identifies all
components of the system that contain security-relevant functions; this document shall thoroughly describe
the integration of security features into the design of the hardware and software.

F2.3.7 Attachment II — Proposed Amendment of Data Item
Description for the System/Segment Design Document

1. Amendment to DI-CMAN-80534 (S/SDD DID):
a. 10.1.1-10.1.5.3.4 No change.
b. 10.1.5.4. System Architecture.

Replace the current wording with the following: This paragraph shall be numbered 3.4 and shall be divided
into subparagraphs to describe the internal structure of the system and the software architecture. The
system segments, HWCIs and CSCIs, shall be identified and their purpose summarized. The system-level
relationships among the segments, HWCIs, and CSCIs shall be described. Paragraph 3.4 shall also identify
and state the purpose of each external interface of the system. A system architecture diagram may be used
to illustrate the system top-level architecture. There shall be subparagraphs that describe the top-level
software architecture structure, timing, and allocation attributes. One or more software architecture diagrams
may be used to illustrate the different software attributes that comprise software architecture.

10.1.5.4.1 Software Structure. This paragraph shall be numbered 3.4.1 and shall describe the major
software entities that will be developed or integrated into the system by the software designers, the
mechanisms for flow of data among the major software entities, and the mechanisms for flow of control
among the major software entities. Software entities should be the major software entities that will be
recognized and manipulated by the system developers as the natural partitions within the software. In this
context, component does not specifically refer to Computer Software Components (CSCs). Components
may be partitioned by algorithmic functions, objects, and reusable components such as operating systems
and database systems, or by any other scheme appropriate to the proposer’s development methodology.
The entities defining the software structure should reveal the underlying structure of the software rather
than hardware allocation or administrative and management controls that are often used as the criteria for
defining CSCIs.

This paragraph shall also describe the mechanisms for managing the flow of data through the components.
It should show the major data paths between and among transformation processes as well as to/from data
storage. Where the flow of data is controlled by table-driven design, the data structures and their rules for
modifying data flows should be described. It should define data structure and how file management and
database management structures will be used.

This paragraph shall also describe the mechanisms for managing the flow of control among the components.
It should show the major execution sequences, where execution sequences may be asynchronous or parallel,
and how synchronization is managed. Where execution control uses data-driven design, the mechanisms
for accessing the table and managing execution shall be described. It should also show how anomalous
conditions such as error handling and exception conditions that dynamically alter the flow of execution are
managed.

F-39

Appendix F: Software Architecture GSAM Version 3.0

Timing . This paragraph shall be numbered 3.4.2 and shall describe the presence of critical timing and
throughput processes. The software architectural devices used to manage critical timing events, interrupts,
throughput load balancing, and data buffering shall be described.

Interconnection layers, standards and protocols. This paragraph shall be numbered 3.4.3 and shall
describe the software architecture rules for interconnecting layered software entities. It shall describe
allowable interconnections among layers, and identify the use of standardized interface protocols or bindings
such as SQL, GOSIP, Motif, etc.

10.1.5.5 Operational Scenarios. Replace the current wording with the following: This paragraph shall be
numbered 3.5 and shall describe each operational scenario of the system. For each system state and mode,
this paragraph shall identify the hardware and software entities that execute and the manual operations to
be performed. A table may be provided to illustrate the states and modes in which each hardware and
software entity executes and each manual operation is performed. In addition, this paragraph shall describe
the general flow of both execution control and data between hardware and software entities while operating
in the different states and modes. Flow diagrams may be used to illustrate execution control and data flow
in each state and mode.

10.1.5.6 Software Architecture Rationale. This paragraph shall be numbered 3.6 and shall describe the
selection criteria and constraints that drove the choice of software architecture. It shall include cross-
references to requirements in the SSS, the vision statement, or derived requirements that govern the choice
of software architecture.

F2.3.8 Attachment III — Proposed Amendment of Data Item
Description for the Software Development Plan

1. Amendment of DI-MCCR-80030A (SDP DID)

a. 10.1 — 10.2.5.11 No change.
b. 10.2.5.12 Software Architecture.

This paragraph shall be numbered 3.12 and shall describe the development management provisions for
ensuring the software architecture is preserved throughout the development life cycle. It shall describe the
contractor’s procedures and methods for establishing an architecture definition, ensuring software developers
understand the architecture, and ensuring software developers follow design guidelines that enforce the
preservation of the architecture.

c. 10.2.6 — 10.2.6.2 No change.
d. 10.2.6.2.1 Software Development Techniques and Methodologies.

Replace the current wording with the following: This subparagraph shall be numbered 4.2.1 and shall
identify and describe the techniques and methodologies the contractor plans to use to perform:

· Software Requirements Analysis
· Software Architecture Analysis and Definition
· Preliminary Design
· Detailed Design

F-40

Appendix F: Software Architecture GSAM Version 3.0

· Coding and Computer Software Unit Testing
· CSC Integration and Testing
· CSCI Testing

e. 10.2.6.2.2 — 10.2.12 No change.

F2.3.9 Attachment IV — Instructions for Proposal Preparation

The following material is provided for insertion into the IFPP to elicit information needed by the government
in the area of software architecture. These words are general in nature and must be modified to match the
explicit needs of each program and to be consistent with the remainder of the IFPP and the selection basis
(see Section M). The information given below is intended to supplement the information that would
conventionally be in the IFPP. It may be convenient to merge the following material into the other information
contained in the IFPP. In particular, offerors should not be required to submit additional copies or mere
reformulations of information requested by other portions of the IFPP. Offerors should also be required to
provide an index that would indicate the location of architecture-related information throughout the proposal.

F2.3.9.1 x.x.x System Engineering

Describe the overall architecture of the system by indicating the partitioning of the system into major
hardware and software components. Describe systems with which the contractor is familiar that have
similar characteristics and/or are based on similar components. Explain the manner by which information
is to be passed among components and the control of execution. Describe how the architecture selected
satisfies the requirements in the SSS and accommodates the vision statement. Describe the system services
that provide for communication (both control and data) among software processes and tasks, hardware
processors, external systems and devices, and the USI. Any other information requested in the DID for the
S/SDD, or from other sources, should be presented.

F2.3.9.2 x.x.x Software Engineering

Describe the standards to be followed in the software design and identify any conflicts with the proposed
architecture caused by use of these standards. Identify the tools to be used in generating the software.
Describe how inadvertent and deliberate departures from the proposed architecture are recognized, reported,
and/or prevented. Identify any software components previously developed (COTS or other NDI) and how
they may have to be adapted to conform to the proposed software architecture. Describe how and when the
execution sequence is determined; include the handling of interrupts, errors, out-of-normal situations, and
response to timing constraints. Discuss how the execution sequence can be redefined.

F2.3.9.3 x.x.x Database Engineering

Describe the proposed database architecture with particular emphasis on those attributes that contribute to
or detract from the proposed software architecture. Identify any tools to be employed in developing the
database design. Identify any available data management packages (COTS or other NDI) and whether the
use of these packages affects the proposed software architecture.

F-41

Appendix F: Software Architecture GSAM Version 3.0

F2.3.9.4 x.x.x User Interface Engineering

Describe the proposed USI and associated methods for data display, data entry, sequence control, and user
assistance within the architectural framework proposed for the system. Identify any rapid prototyping tools
that will be used to support the User Interface Demonstration and how these tools will be used in a manner
attuned to the proposed architecture. Describe how any COTS/or other NDI software will provide the USI
while preserving the proposed architecture. Describe how the results of USI demonstration activities will
be incorporated into the design, development, and test of the system.

F2.3.9.5 x.x.x Security Engineering

Describe the proposed security design and the allocation of functions to hardware and software components.

F2.3.9.6 x.x.x Modeling and Prototyping

Describe how the architectural assumptions and conditions are to be imposed on the system models used.
Indicate to what extent the performance models will be calibrated against other systems using the same (or
similar) architectures. Describe how (and when during the design activities) the architectural model will be
subjected to execution and to validation.

F-42

Appendix F: Software Architecture GSAM Version 3.0

F2.4 Glossary

CDR Critical Design Review
CDRL Contract Data Requirements List
CSC Computer Software Components
CSCI Computer Software Configuration Item
COTS Commercial-off-the-Shelf
DI Data Item
DID Data Item Description
ECP Engineering Change Proposal
GOSIP Government Open Systems Interconnection Profile
HWCI Hardware Configuration Item
IFPP Instructions for Proposal Preparation
NDI Non-Developmental Item
PDR Preliminary Design Review
POSIX Portable Operating System Interface for Computer Environments
RFP Request for Proposal
SDD Software Design Document
SDP Software Development Plan
SDR System Design Review
SRR System Requirements Review
S/SDD System/Segment Design Document
SSS System Segment Specification
TIM Technical Interchange Meeting
TRR Test Readiness Review
USI User-System Interface

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix G

A Comparison of
ISO 9001 and the
Capability Maturity
Model

G-2

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

Content
G.1 Introduction ..G-3

G.1.1 Mapping Specifics ..G-3
G.1.1.1 Clause 4.1: Management ResponsibilityG-4
G.1.1.2 Clause 4.2: Quality System ..G-4
G.1.1.3 Clause 4.3: Contract Review ..G-5
G.1.1.4 Clause 4.4: Design Control ..G-7
G.1.1.5 Clause 4.5: Document and Data ControlG-9
G.1.1.6 Clause 4.6: Purchasing ...G-9
G.1.1.7 Clause 4.7: Control of Customer-Supplied ProductG-9
G.1.1.8 Clause 4.8: Product Identification and TraceabilityG-10
G.1.1.9 Clause 4.9: Process Control..G-10
G.1.1.10 Clause 4.10: Inspection and Testing ...G-10
G.1.1.11 Clause 4.11: Control of Inspection, Measuring, and Test
 Equipment...G-10
G.1.1.12 Clause 4.12: Inspection and Test StatusG-10
G.1.1.13 Clause 4.13: Control of Nonconforming Product G-11
G.1.1.14 Clause 4.14: Corrective and Preventive Action G-11
G.1.1.15 Clause 4.15: Handling, Storage, Packaging, Preservation, and
 Delivery .. G-11
G.1.1.16 Clause 4.16: Control of Quality RecordsG-12
G.1.1.17 Clause 4.17: Internal Quality Audits ..G-12
G.1.1.18 Clause 4.18: Training ...G-12
G.1.1.19 Clause 4.19: Servicing..G-12
G.1.1.20 Clause 4.20: Statistical Techniques ..G-12

G.1.2 Summary ...G-13
G.1.3 Compliance Issues ..G-14

G.2 Acknowledgements...G-16
G.3 References..G-16
G.4 Biography..G-16

G-3

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

Note: This appendix was extracted from the CMU/SEI-94-TR-12. You may view the entire
document at http://www.sei.cmu.edu

G.1 Introduction

The Capability Maturity Model Model for Software, developed by the Software Engineering Institute, and
the ISO 9000 series of standards, developed by the International Organization for Standardization, have the
common concern of quality and process management. The two are driven by similar issues and are intuitively
correlated, but they differ in their underlying philosophies: ISO 9001, the standard in the 9000 series that
pertains to software development and maintenance, identifies the minimal requirements for a quality system,
while the CMM underlines the need for continuous process improvement. This statement is somewhat
subjective, of course; some members of the international standards community maintain that if you read
ISO 9001 with insight, it does address continuous process improvement. Corrective action, for example,
can be construed as continuous improvement. Nonetheless, the CMM tends to address the issue of continuous
process improvement more explicitly than ISO 9001.

This article examines how the two documents relate. I have essentially mapped clauses of ISO 9001 to
CMM key practices. The mapping is based on an analysis of ISO 9001, ISO 9000-3, TickIt (a British guide
to using ISO 9000-3 and 9001), and the TickIt training manuals.1 ISO 9000-3 elaborates the TickIt training
materials help in interpreting both ISO 9000-3 and ISO 9001.

As part of the analysis, I attempt to answer some frequently asked questions, including

• At what level in the CMM would an ISO 9001-compliant organization be?
• Can a level 2 (or 3) organization be considered compliant with ISO 9001?
• Should my software-quality-management and process-improvement efforts be based on ISO 9001 or

on the CMM?

I assume the reader is familiar with or has ready access to both ISO 9001 and the CMM. For those who need
are fresher, the box on page G-6 gives an overview.

G.1.1 Mapping Specifics

My analysis involved mapping ISO 9001’s 20 clauses to CMM key practices at the sentence to subpractice
level.2,3 The analysis is admittedly subjective — others may interpret both ISO 9001 and the CMM differently
(indeed, reliable and consistent interpretation and assessment are common challenges for CMM-based
appraisals and ISO 9001 certification) — but hopefully there is enough objectivity to make the analysis
worthwhile to those who wonder where ISO 9001 certification fits into a continuous quality-improvement
strategy.

Table 1 (on page G-8)is an overview of the mapping from ISO 9001 clause to CMM key process
areas and key practices. The column labeled “Strong relation-ship” contains key process areas and
common features for which the relationship is relatively straightforward. The column labeled
“Judgmental relationship” contains key process areas and common features that may require a
significant degree of subjectivity in determining a reasonable relationship. Table A in the box on

www.sei.cmu.edu

G-4

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

page G-7 describes the focus of the key process areas and common features. In the Activities
Performed common feature, key practices focus on systematically implementing a process, while
the key practices in other common features focus on institutionalizing it.

G.1.1.1 Clause 4.1: Management Responsibility

ISO 9001 requires an organization to

• define, document, understand, implement, and maintain a quality policy;
• define responsibility and authority for personnel who manage, per-form, and verify work affecting

quality; and
• identify and provide verification resources.

A designated manager ensures that the quality program is implemented and maintained. The CMM addresses
responsibility for quality policy and verification at level 2. This includes identifying responsibility for
performing all project roles, establishing a trained software quality assurance group, and assigning senior
management over-sight of SQA activities.

As practices within common features, the CMM identifies management’s responsibility at both the senior-
and project-management levels to oversee the software project, support SQA audits, provide leadership,
establish organizational structures to support software engineering, and allocate resources.

You could argue that this clause also addresses the quality policy described at level 4, but the level 4 quality
policy is quantitative. ISO 9001 is somewhat ambiguous about the role of measurement in the quality-
management system (see discussion under “Clause 4.20: Statistical techniques”); an organization is required
to define and document quality objectives, but it does not have to quantify them.

G.1.1.2 Clause 4.2: Quality System

ISO 9001 requires an organization to establish a documented quality system, including a quality manual
and plans, procedures, and instructions. ISO 9000-3 characterizes this quality system as an integrated process
throughout the life cycle.

The CMM addresses quality-system activities for verifying compliance and for management processes at
level 2. The specific procedures and standards a software project would use are specified in the software-
development plan. At level 3, the organization must have defined software-engineering tasks that are
integrated with management processes, and it must be per-forming them consistently. These requirements
correspond directly with the ISO 9000-3 guidance for interpreting this clause.

As a practice in the Verifying Implementation common feature, the CMM identifies auditing to assure
compliance with the specified standards and procedures.

One arguable correspondence is to the software process assets, including standards, procedures, and process
descriptions, defined across the organization at level 3. Establishing such organizational assets would certainly
contribute to implementing the quality system, but the standards and procedures in this clause could be
addressed at the project level. ISO 9001 discusses the supplier’s quality sys-tem, but it does not specifically
address the relation-ship between organizational support and project implementation, as the CMM does.

G-5

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

ISO 9000-3, on the other hand, has two sections on quality planning: clause 4.2.3 discusses quality planning
across projects; clause 5.5 discusses quality planning within a particular development.

G.1.1.3 Clause 4.3: Contract Review

ISO 9001 requires organizations to review contracts to determine if requirements are adequately defined,
agree with the bid, and can be implemented. The CMM addresses establishing a contract at level 2. The
organization must document and review customer requirements, as allocated to software, and clarify any
missing or ambiguous requirements. However, because the CMM is con-strained to the software perspective,
customer requirements in general are beyond the scope of the Requirements Management key process area.

Also at level 2, the CMM describes the proposal, statement of work, and software-development plan that
establish external (contractual) commitments, which the software-engineering group and senior management
review.

Finally, the CMM explicitly addresses how the organization can acquire software through subcontracting
with an external customer or other type of subcontractor (the supplier may also be a customer). ISO 9001’s
contract-review clause does not explicitly describe the supplier’s role when it is acting as a customer to a
subcontractor.

G-6

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

G-7

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

Table A. Key Process Areas in the CMM

G.1.1.4 Clause 4.4: Design Control

ISO 9001 requires an organization to establish procedures to control and verify design. These include:

• planning, design, and development activities;
• defining organizational and technical interfaces;
• identifying inputs and outputs;
• reviewing, verifying, and validating the design; and
• controlling design changes.

G-8

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

ISO 9000-3 elaborates this clause with clauses on the purchaser’s requirements specification (5.3),
development planning (5.4), quality planning (5.5), design and implementation (5.6), testing and validation
(5.7), and configuration management (6.1).

The CMM describes the life-cycle activities of requirements analysis, design, code, and test at level 3.
Level 2 addresses planning and tracking of all project activities, including these, as well as configuration
management of software work products.

Table 1. Summary Mapping Between ISO 9001 and the CMM

G-9

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

ISO 9001, as revised in 1994, requires design reviews. ISO 9000-3 states that the supplier should carry out
reviews to ensure that requirements are met and design methods are correctly carried out. However, although
design reviews are required, organizations have a range of options for satisfying this clause, from technical
reviews to inspections. In contrast, the CMM specifically calls out peer reviews at level 3 and identifies a
number of work products that should undergo such a review.

TickIt training clarifies the ISO 9001 perspective by listing three examples of design reviews: Fagan
inspections, structured walkthroughs, and peer reviews (in the sense of a desk check). The training also
states (on page 17.10) that “an auditor will need to be satisfied from the procedures and records available
that the reviews with-in an organization are satisfactory considering the type and criticality of the
project under review.”1

The CMM describes more formal, quantitative aspects of the design process at level 4, but ISO 9001 does
not require this degree of formality.

G.1.1.5 Clause 4.5: Document and Data Control

ISO 9001 requires an organization to control the distribution and modification of documents and data. The
CMM describes the configuration-management practices characterizing document and data control at level
2. The documentation required to operate and maintain the system is specifically called out at level 3. The
specific procedures, standards, and other documents that may be placed under configuration management
are identified in the different key process areas in the Activities Performed common feature.

G.1.1.6 Clause 4.6: Purchasing

ISO 9001 requires organizations to ensure that purchased products conform with specified requirements.
This includes evaluating potential subcontractors and verifying purchased products.

The CMM addresses custom soft-ware development at level 2, including the evaluation of subcontractors
and acceptance testing of subcontracted software.

G.1.1.7 Clause 4.7: Control of Customer-Supplied Product

ISO 9001 requires an organization to verify, control, and maintain any customer-supplied material. ISO
9000-3 discusses this clause in the con-text of included software product (6.8), also addressing commercial-
off-the-shelf software.

The only CMM practice describing the use of purchased software is a sub-practice at level 3, and the
context is identifying off-the-shelf or reusable software as part of planning. The integration of off-the-shelf
and reusable software is one of the CMM’s weaker areas. In fact, this clause, especially as expanded in ISO
9000-3, cannot be considered adequately covered by the CMM. It would be reasonable, though not sufficient,
to apply the acceptance testing practice for subcontracted soft-ware at level 2 to any included soft-ware
product.

I have written a change request to CMM version 1.1 to incorporate practices that address product evaluation
and the inclusion of off-the-shelf soft-ware and other types of software that have not been developed internally.

G-10

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

G.1.1.8 Clause 4.8: Product Identification and Traceability

ISO 9001 requires an organization to be able to identify and trace a product through all stages of production,
delivery, and installation. The CMM covers this clause primarily at level 2 in the context of configuration
management, but states the need for consistency and traceability between software work products at level
3.

G.1.1.9 Clause 4.9: Process Control

ISO 9001 requires an organization to define and plan its production processes. This includes carrying out
production under controlled conditions, according to documented instructions. When an organization cannot
fully verify the results of a process after the fact, it must continuously monitor and control the process. ISO
9000-3 clauses include design and implementation (5.6); rules, practices, and conventions (6.5); and tools
and techniques (6.6).

In the CMM, the specific procedures and standards that would be used in the software-production process
are specified in the software-development plan at level 2. The definition and integration of software-
production processes, and the tools to support these processes, are described at level 3. Level 4 addresses
the quantitative aspect of control, exemplified by statistical process control, but an organization typically
would not have to demonstrate this level of control to satisfy this clause. Also, clause 6.6 in ISO 9000-3
states that “the supplier should improve these tools and techniques as required.” This corresponds to
transitioning new technology into the organization, a level 5 focus.

G.1.1.10 Clause 4.10: Inspection and Testing

ISO 9001 requires an organization to inspect or verify incoming materials before use and to perform in-
process inspection and testing. The organization must also perform final inspection and testing before the
finished product is released and keep inspection and test records. I have already described how the CMM
deals with issues surrounding the inspection of incoming material (“Clause 4.7: Control of customer-supplied
product”).The CMM describes testing and in-process inspections (strictly for soft-ware) at level 3.

G.1.1.11 Clause 4.11: Control of Inspection, Measuring, and Test Equipment

ISO 9001 requires an organization to control, calibrate, and maintain any equipment used to demonstrate
conformance. When test hardware or software is used, it must be checked before use and rechecked at
prescribed intervals. ISO 9000-3 clarifies this clause with clauses on testing and validation (5.7); rules,
practices, and conventions (6.5);and tools and techniques (6.6).

The CMM generically addresses this clause under the testing practices in Software Product Engineering.
Test software is specifically called out in the Ability to Perform common feature in the practice that describes
tools that support testing (Ability 1.2).

G.1.1.12 Clause 4.12: Inspection and Test Status

ISO 9001 requires an organization to maintain the status of inspections and tests for items as they move
through various processing steps. The CMM addresses this clause with practices on problem reporting and
configuration status at level 2 and by testing practices at level 3.

G-11

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

G.1.1.13 Clause 4.13: Control of Nonconforming Product

ISO 9001 requires an organization to control a nonconforming product — one that does not satisfy specified
requirements — to prevent inadvertent use or installation. ISO 9000-3 maps this concept to clauses on
design and implementation (5.6); testing and validation (5.7); replication, delivery, and installation (5.9);
and configuration management (6.1).

The CMM does not specifically address nonconforming products. In ISO 9000-3, the control issue essentially
disappears among a number of related processes spanning the soft-ware life-cycle. In the CMM, the status
of configuration items, which would include the status of items that contain known defects not yet fixed, is
maintained at level 2. Design, implementation, testing, and validation are addressed at level 3.

G.1.1.14 Clause 4.14: Corrective and Preventive Action

ISO 9001 requires an organization to identify the causes of a nonconforming product. Corrective action is
directed toward eliminating the causes of actual nonconformities. Preventive action is directed toward
eliminating the causes of potential nonconformities. ISO 9000-3 quotes this clause verbatim, with no
elaboration, from the 1987 release of ISO 9001.

A literal reading of this clause would imply many of the CMM’s practices in the level 5 key process area,
Defect Prevention. According to the TickIt auditors’ guide 4 (pages 139- 140) and discussions with ISO
9000 auditors, corrective action is driven primarily by customer complaints. The software-engineering
group should look at field defects, analyze why they occurred, and take corrective action. This would
typically occur through software updates and patches distributed to the fielded software.

Under this interpretation of the clause, an appropriate mapping would be to level 2’s problem reporting,
followed by controlled maintenance of baselined work products.

Another interpretation described in section 23 of the TickIt training litera-ture1 is that corrective action is to
address noncompliance identified in an audit, whether external or internal. This interpretation maps to the
CMM’s level 2 key process area, Software Quality Assurance. How you interpret “preventive action” is a
controversial issue in applying ISO 9001 to software. Some auditors seem to expect a defect-prevention
process similar to that found in a manufacturing environment. Others require only that an organization
address user-problem reports. It is debatable how much of the CMM’s level 5 in-process causal analysis
and defect prevention is necessary to satisfy this clause.

G.1.1.15 Clause 4.15: Handling, Storage, Packaging, Preservation, and
Delivery

ISO 9001 requires organizations to establish and maintain procedures for handling, storage, packaging, and
delivery. ISO 9000-3 maps this to clauses on acceptance (5.8) and replication, delivery, and installation
(5.9).

The CMM does not cover replication, delivery, and installation. It addresses the creation and release of
software products at level 2, and acceptance testing at level 3. The CMM does not, however, describe
practices for delivering and installing the product. I have written a change request to CMM version 1.1 to
incorporate a practice for these areas.

G-12

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

G.1.1.16 Clause 4.16: Control of Quality Records

ISO 9001 requires an organization to collect and maintain quality records. In the CMM, the practices
defining the maintenance of quality records are distributed throughout the key process areas as part of the
Activities Per-formed common feature. Specific to this clause are the problem reporting described at level
2 and the testing and peer review practices, especially the collection and analysis of defect data, at level 3.

G.1.1.17 Clause 4.17: Internal Quality Audits

ISO 9001 requires an organization to plan and perform audits. The results of audits are communicated to
management, and any deficiencies found are corrected.

The CMM describes the auditing process at level 2. Auditing practices to ensure compliance with the
specified standards and procedures are identified in the Verifying Implementation common feature.

G.1.1.18 Clause 4.18: Training

ISO 9001 requires an organization to identify training needs, provide training (since selected tasks may
require qualified personnel), and maintain training records.

The CMM identifies specific training needs in the training and orientation practices in the Ability to Perform
common feature. It describes the general training infrastructure, including maintaining training records, at
level 3.

G.1.1.19 Clause 4.19: Servicing

ISO 9001 requires an organization to perform servicing activities when such activities are part of a specified
requirement. ISO 9000-3 addresses this clause as maintenance (5.10). Although the CMM is intended to be
applied in both the software development and maintenance environments, the practices in the CMM do not
directly address the unique aspects that characterize the maintenance environment. Maintenance is embedded
throughout the CMM, but organizations must correctly interpret these practices in the development or
maintenance context. Maintenance is not, therefore, a separate process in the CMM. Change requests for
CMM version 1.0 expressed a concern about using the CMM for maintenance projects, and the SEI changed
some wording for CMM version 1.1 to better address the maintenance environment. The SEI anticipates
that this will remain a topic of discussion as it pro-vides guidance for tailoring the CMM to different
environments, such as maintenance, and begins the next revision cycle for the CMM.

G.1.1.20 Clause 4.20: Statistical Techniques

ISO 9001 states that organizations must identify adequate statistical techniques and use them to verify the
acceptability of process capability and product characteristics. ISO 9000-3 simply characterizes this clause
as measurement (6.4).

In the CMM, product measurement is typically incorporated into the various practices within the Activities
Performed common feature. Process measurement is described as part of the Measurement and Analysis
common feature.

G-13

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

Level 3 describes the establishment of an organization-wide process data-base for collecting process and
product data. It seems likely that most auditors would accept project-level data (as described at level 2) to
satisfy this clause. However, at least a few auditors require an organization-level historical database and the
use of simple statistical control charts.

If you infer statistical process control from this clause, an organization would satisfy it at level 4. To quote
ISO 9000-3, however, “there are currently no universally accepted measures of software quality.” Some
auditors look for the use of statistical tools, such as Pareto analysis. Others are satisfied by any consistently
collected and used measurement data. In general, the only absolute is that auditors vary significantly in how
they interpret this clause.

G.1.2 Summary

Clearly there is a strong correlation between ISO 9001 and the CMM, although some issues in ISO 9001 are
not covered in the CMM, and vice versa. The level of detail differs significantly: section 4 in ISO 9001 is
about five pages long; sections 5, 6, and 7 in ISO 9000-3 comprise about 11 pages; and the CMM is more
than 500 pages. Judgment is needed to deter-mine the exact correspondence, given the different levels of
abstraction.

As Table 1 shows, the clauses in ISO 9001 with no strong relationships to the CMM key process areas, and
that are not well addressed in the CMM, are control of customer-sup-plied product (4.7) and handling,
storage, packaging, preservation, and delivery (4.15). The clause in ISO 9001 that is addressed in the
CMM in a completely distributed fashion is servicing (4.19). The clauses in ISO 9001 for which the exact
relationship to the CMM is subject to significant debate are corrective and preventive action (4.14) and
statistical techniques (4.20).

As I stated earlier, the biggest difference between the two documents is the explicit emphasis of the CMM
on continuous process improvement. ISO 9001 addresses only the minimum criteria for an acceptable
quality system. Another difference is that the CMM focuses strictly on software, while ISO 9001 has a
much broader scope that encompasses hardware, software, processed materials, and services.

The biggest similarity between the two documents is their bottom line: “Say what you do; do what you say.”
The fundamental premise of ISO 9001 is that organizations should document every important process and
check the quality of every deliverable through a quality-control activity. ISO 9001 requires documentation
that contains instructions or guidance on what should be done or how it should be done. The CMM shares
this emphasis on processes that are documented and practiced as documented. Phrases such as conducted
“according to a documented procedure” and following “a written organizational policy” characterize the
key process areas in the CMM.

G-14

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

Figure 1. Key Process Area Profile for an ISO 9001-Compliant Organization.

Figure 1: Dark shading represents practices that ISO 9001 or ISO 9000-3 directly address; light shading
indicates practices that may be addressed, depending on how you interpret ISO 9001; and unshaded areas
indicate practices not specifically addressed.

On a more detailed level, some clauses in ISO 9001 are easily mapped to their equivalent CMM practices.
Other relationships map in a many-to-many fashion, since the two documents are structured differently. For
example, the training clause (4.18) in ISO 9001 maps to both the Training Program key process area and the
training and orientation practices in all the key process areas.

G.1.3 Compliance Issues

At first glance, an organization with an ISO 9001 certificate would have to be at level 3 or 4 in the CMM.
In reality, some level 1 organizations have been certified. One reason for this discrepancy is ISO 9001’s
high level of abstraction, which causes auditors to interpret it in different ways. If the auditor certifying the
organization has had TickIt training, for example, the design reviews in ISO 9001 will correspond directly
to the CMM’s peer reviews, which are at level 3. But not all auditors are well-versed in software development.
The virtue of a program like TickIt is that it produces auditors who understand how to apply ISO 9001 to
software.

Optimizing
(5)

Managed
(4)

Defined
(3)

Repeatable
(2)

Initial
(1)

Disciplined
process

Standard,
consistent
process

Predictable
process

Continuously
improving
process

Optimizing
(5)

Managed
(4)

Defined
(3)

Repeatable
(2)

Initial
(1)

Disciplined
process

Standard,
consistent
process

Predictable
process

Continuously
improving
process

G-15

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

Another reason for the discrepancy is that an auditor may not require mastery to satisfy the corresponding
ISO 9001 clause.

Figure 1 shows how an ISO-9001 compliant organization that has implemented no other management or
engineering practices except those called out by ISO 9001 rates on the CMM. The size of the bar indicates
the percentage of practices within the key process area that are addressed in either ISO 9001 or ISO 9000-
3. The figure shows areas that have a direct relationship to clauses in these documents (dark shading), areas
for which the relationship is subject to interpretation (light shading), and areas that the clauses do not
directly address (white). Note the following about Figure 1:

• Every key process area at level 2 is strongly related to ISO 9001.
• Every key process area is at least weakly related to ISO 9001 under some interpretation.

On the basis of this profile, an organization assessed at level 1 could be certified as compliant with ISO
9001. That organization would, however, have to have significant process strengths at level 2 and noticeable
strengths at level 3. Private discussions indicate that many level 1 organizations have received ISO 9001
certificates. If an organization is following the spirit of ISO 9001, it is likely to be near or above level 2.
However, organizations have identified significant problems during a CMM-based assessment that had not
surfaced during a previous ISO 9001 audit.5 This seems to be related to the greater depth of a CMM-based
investigation.

Although the CMM does not adequately address some specific issues, in general it encompasses the concerns
of ISO 9001. The converse is less true. ISO 9001 describes only the minimum criteria for an adequate
quality-management system, rather than addressing the entire continuum of process improvement, although
future revisions of ISO 9001 may address this concern. The differences are sufficient to make a rigid
mapping impractical, but the similarities pro-vide a high degree of overlap.

To answer the three questions I listed in the beginning of this article:

• An ISO 9001-compliant organization would not necessarily satisfy all the key process areas in level 2
of the CMM, but it would satisfy most of the level 2 and many of the level 3 goals. Further, because ISO
9001 doesn’t address all the CMM practices, a level 1 organization could receive ISO 9001 registration.

• A level 2 (or 3) organization would probably be considered compliant with ISO 9001 but even a level
3 organization would need to ensure that it adequately addressed the delivery and installation process
described in clause 4.15 of ISO 9001, and it should consider the use of included software products, as
described in clause 6.8 of ISO 9000-3. With this caveat, obtaining certification should be relatively
straightforward for a level 2 or higher organization.

• As to whether software process improvement should be based on the CMM or ISO 9001, the short
answer is that an organization may want to consider both, given the significant degree of overlap. A
market may require ISO 9001 certification; addressing the concerns of the CMM would help organizations
prepare for an ISO 9001 audit. Conversely, level 1 organizations would certainly profit from addressing
the concerns of ISO 9001. Although either document can be used alone to structure a process-
improvement program, the more detailed guidance and software specificity provided by the CMM
suggests that it is the better choice, although admittedly this answer may be biased.

In any case, organizations should focus on improvement to build a competitive advantage, not on
achieving a score — whether that is a maturity level or a certificate. The SEI advocates addressing
continuous process improvement as encompassed by the CMM, but even then there is a need to
address the larger business context in the spirit of Total Quality Management.

G-16

Appendix G: A Comparison of the ISO 9001 and the CMM GSAM Version 3.0

G.2 Acknowledgements

I thank the many people who commented on the early drafts of this article and who discussed the relationships
between ISO 9001 and the CMM. In some cases, we have agreed to disagree, but the discussions were
always interesting. Specifically, I thank Peter Anderson, Robert Bamford, Kelley Butler, Gary Coleman,
Taz Daughtrey, Darryl Davis, Bill Deibler, Alec Dorling, George Kambic, Dwight Lewis, Stan Magee,
Helen Mooty, Don O’Neill, Neil Potter, Jim Roberts, John Slater, and Charlie Weber. This work is sponsored
by the US Department of Defense under contract F19628-90-C-003.

G.3 References

1. Lloyd’s Register TickIT Auditors’ Course, Issue 1.4, Lloyd’s Register, Mar. 1994.
2. Mark C. Paulk, “A Comparison of ISO 9001 and the Capability Maturity Model for Software,” Tech.

Report CMU/SEI-94-TR-2, Software Eng. Inst., Pittsburgh, July 1994.
3. M. Paulk, “Comparing ISO 9001 and the Capability Maturity Model for Software,” Software Quality J.,

Dec. 1993, pp. 245-256.
4. TickIT: A Guide to Software Quality Management System Construction and Certification Using EN29001,

Issue 2.0, UK Dept. of Trade and Industry and the British Computer Society, London, 1992.
5. F. Coallier, “How ISO 9001 Fits Into the Software World,” IEEE Software, Jan. 1994, pp. 98-100.

G.4 Biography

Mark C. Paulk is a senior member of the technical staff at the Software Engineering Institute, where he is
product manager for version 2 of the Capability Maturity Model. At the SEI, he was also project leader for
the CMM version 1.1 development. Before joining the SEI, Paulk worked on distributed real-time systems
for System Development Corp. (later Unisys Defense Systems) at the Ballistic Missile Defense Advanced
Research Center. Paulk received a BS in mathematics from the University of Alabama, Huntsville, and an
MS in computer science from Vanderbilt University. He is a senior member of the IEEE and a member of
the American Society for Quality Control.

Address questions about this article to Paulk at Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA 15213-3890; mcp@sei.cmu.edu.

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix H

Counting Rules for
Function Points and
Feature Points

H-2

Appendix H: Function Points and Feature Points GSAM Version 3.0

Content

H.1 Function Points.. H-3
H.2 Feature Points.. H-4
H.3 Conclusion.. H-4

H-3

Appendix H: Function Points and Feature Points GSAM Version 3.0

H.1 Function Points

One of the challenges facing a software developer is determining the quantity of software to be developed.
Traditionally, the measurement used is lines of code. The number of lines of code required to implement an
algorithm or function can vary greatly from programmer to programmer. Allan Albrecht of IBM developed
an alternative to lines of code in 1979 and called the new measure Function Points. Albrecht revised this
measure over the years and there is now an international group that controls the standard for function points,
the International Function Point Users Group (IFPUG).

A function point is a synthetic metric comprised of the weighted totals of:

• Inputs
• Outputs
• Logical Files
• Interfaces
• Inquiries

Weighting is determined by using a multiplier for each of the parameters above based upon low, medium, or
high complexity.

Further refinement by IBM in 1984 included 14 influential complexity factors, each with a range of 1 to 5
(with 0 being used if the factor is not present). The factors are:

• Data communications
• Distributed functions
• Performance objectives
• Heavily used configuration
• Transaction rate
• On-line data entry
• End-user efficiency
• On-line update
• Complex processing
• Reusability
• Installation ease
• Operational ease
• Multiple sites
• Facilitate change

The sum of these influential complexity factors is multiplied by 0.01 and added to a constant of 0.65 to
determine a complexity multiplier. The raw function point number is multiplied by the complexity multiplier
to achieve a final function point total that is a measure of the size and complexity of the software product.

In summary, the function point technique provides an objective, comparative measure which assists
in the evaluation, planning, management and control of software production.

H-4

Appendix H: Function Points and Feature Points GSAM Version 3.0

More information on function points can be found on the IFPUG web page or in chapter 2 of Capers Jones
book, Applied Software Measurement.

H.2 Feature Points

Function points work well in measuring management information system software, but do not do well in
characterizing real-time systems, operating systems, process control systems, communications systems,
embedded systems, or engineering systems. This is because these systems have few inputs and outputs while
they have high algorithmic complexity.

To overcome this, Software Productivity Research (SPR) created a measure known as the Feature Point
metric to distinguish it from the function point metric. It introduces a parameter, algorithms, in addition to the
five standard function point parameters. The algorithms parameter is assigned a default weight of 3. The
Feature Point method also reduces weight for logical files from the average value of 10 down to an average
value of 7.

More information on Function and Feature Points can be found on the Software Productivity Research
(SPR) web page or in Chapter 2 of Capers Jones book, Applied Software Measurement.

H.3 Conclusion

Software developers are no longer left to the metric of lines of code to estimate software size. Function points
or feature points can successfully be used as alternatives, and may often be a better measurement. However,
be aware that several of the popular software effort estimation models require lines of code rather than
function or feature points as an input. Another consideration is the use of function points or feature points as
normalizers in organizational metrics. For across-the-organization comparisons and for comparison with the
rest of the world. Lines of code are usually used as the measurement normalizer. Capers Jones book does
include a table in Chapter 2 that provides conversion factors from function points to source code statements
for 50 selected languages. No such table is available for feature points.

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix I

Software Support

I-2

Appendix I: Software Support GSAM Version 3.0

Content
I1.0 Tab 1: The DoD Generic Fighter: F-22’s Historical Foundation........... I-4
I1.1 Introduction ... I-4
I1.2 Generic Fighter Architecture ... I-4

I1.2.1 Variants.. I-5
I1.3 Software Changes.. I-7
I1.4 Software Support Process... I-9

I5.4.1 Support Costs .. I-11
I1.4.2 Support Strategy .. I-12
I1.4.3 Support Environment .. I-13

I1.5 Training System Impacts.. I-14
I1.6 Program Management.. I-14
I1.7 Lessons Learned.. I-14
I1.8 Acknowledgments... I-15

I2.0 Tab 2: COTS Integration and Support Model...................................... I-16
I2.1 Abstract .. I-16

I2.1.1 Observations.. I-16
I2.2 Program Model.. I-17

I2.2.1 Program Model Phases and Characteristics .. I-19
I2.3 Lessons Learned.. I-20

I2.3.1 Lesson 1 .. I-20
I2.3.2 Lesson 2 .. I-21
I2.3.3 Lesson 3: ... I-21
I2.3.4 Lesson 4 .. I-22
I2.3.5 Lesson 5 .. I-23
I2.3.6 Lesson 6 .. I-24
I2.3.7 Lesson 7 .. I-24
I2.3.8 Lesson 8 .. I-25

I2.4 Challenges.. I-25
I2.5 Conclusion.. I-25
I2.6 About the Author .. I-26

I3.0 Tab 3: Electronic Combat Model Re-engineering................................. I-27
I3.1 Executive Summary.. I-27
I3.2 Re-engineering Legacy Systems... I-27

I-3

Appendix I: Software Support GSAM Version 3.0

I3.2.1 Maintainability Index and Metrics .. I-28
I3.2.2 The Role of Software Architecture ... I-28
I3.2.3 COTS (Commercial-Off-the-Shelf) Software and Ada....................... I-28
I3.2.4 Dual-Use Opportunities .. I-29

I3.3 Summary.. I-29
I3.3.1 Project Background ... I-29

I3.4 Project Evolution — Translating from Fortran to C I-30
I3.5 Research Study — The Future of IMOM... I-31

I3.5.1 Re-engineering IMOM.. I-32
I3.6 Measures of Success — Speed of Development...................................... I-33

I3.6.1 Measures of Success — The Maintainability Index I-34
I3.6.2 Measures of Success — Software Complexity I-35
I3.6.3 Measures of Success — Module Maintainability I-37

I3.7 Software Reuse.. I-37
I3.7.1 The Benefits of Ada .. I-39
I3.7.2 Ada and COTS .. I-40
I3.7.3 Dual-Use Potential .. I-42

I3.8 Summary.. I-42
I3.9 Bibliography .. I-43

I-4

Appendix I: Software Support GSAM Version 3.0

I1.0 Tab 1: The DoD Generic Fighter: F-22’s
Historical Foundation

Jon Floyd
Lockheed Fort Worth Company
F-22, LCSS IPT

Phil Gould
Lockheed Fort Worth Company
F-22 LCSS IPT Manager

Phil Mastrolia
SM-ALC, F-22 LCSS IPT

John White
F-22 SPO, F-22 LCSS IPT Manager

Presented at the Seventh Annual Software Technology Conference Salt Lake City, Utah, April 14, 1995

I1.1 Introduction

The “generic fighter” referred to throughout this paper is an invention of the F-22 Life Cycle Software
Support (LCSS) Integrated Product Team (IPT). This generic fighter is an amalgamation or normalization
of four modern front line fighter programs currently in service in the US Navy and the US Air Force — the
F-14, F-15, F-16 and the F/A-18. The generic fighter was invented to allow reasonable comparison with
the forecast software changes in the F-22 weapon system. The result of this comparison will allow an
optimized support structure for F-22 software resulting in reduced life cycle costs. The data analyzed to
create the generic fighter was gathered in response to 54 questions generated by the LCSS IPT during the
first quarter of 1994.

I1.2 Generic Fighter Architecture

The generic fighter of the 70s and 80s utilized a federated avionics architecture (see Figure I-1). The Air
Force fighters typically used MIL-STD-1750 processors while the Navy pursued the UYK series of standard
processors. Bus systems evolved from one HOO-9 to one to five MIL-STD-1553 A or B bus systems. As
time passed, more functions were automated and more analog functions were digitized resulting in a growing
number of processors. By the late 80s, more functions were being merged in a single processing element as
miniaturization occurred.

I-5

Appendix I: Software Support GSAM Version 3.0

Figure I-1. Federated Systems

The generic fighter had four hardware unique baselines, with ever increasing computing resources. Each
hardware baseline had multiple software variations. Even more variants existed if the aircraft was sold
overseas. A single software baselines, compatible with all hardware configurations, was always the common
goal but rarely achieved. The major impediment was shortage of retrofit funds caused by diminishing
value of older aircraft retrofit.

I1.2.1 Variants

From the original hardware baseline there were new hardware baselines approximately every five years.
New navigation, radar, electronic combat, and weapons were added at each new hardware baseline. Software
baselines and releases followed a schedule that often was hardware driven (see Figure I-2). There was an
average of three software releases the first year of service after PCA. The second year of service typically
had two software releases. Eventually software releases settled to one every 18 to 24 months. As hardware
sensitive software baselines matured, the release frequency decreased. Eventually software changes saturated
the hardware capability and hardware upgrades were required. For each new hardware baseline, there were
two to three corrective software updates released within the first 12 to 18 months.

MIL-STD-1750
Processors

1553 Serial Bus

Discrete Subsystems

Individual Controls
& Displays

I-6

Appendix I: Software Support GSAM Version 3.0

Figure I-2. Frequency of Software Releases

As the generic fighter matured, many variants of the hardware remained in the field. Each of these variants
required a supporting software release. In addition, foreign military sales (FMS) typically required a software
release of varying limited capabilities with each country requiring separate configuration management.
This resulted in multiple versions of the software being maintained concurrently as the example shows in
Figure I-3.

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

25 25B 30 30B/E 40 50 P1

40 P2

40 P3 40 P4 40 P5

NAVY

50 P4
FLT TEST

COM FMS
BASELINE

0
KFP
PT 1

KFP
PT 2

PEACE
 ONYX 50

50 P2

50 P3 50 P4 50 P5

BLK 40
COM FMS
INITIAL

VISTA

RECCE

40 CAS

PEACE
ONYX 40 P2

PEACE ONYX
30B P2

PEACE ONYX
30B P1

PEACE
XENIA,
BRIDGE
30B FSD C/D

AIM-7

PEACE VECTOR
30 B

PEACE VECTOR 30 B
NIGHT STRIKE

NAVY 30B/E
UPDATE

PEACE VECTOR
II UPDATE SCU 1

PEACE
ONYX 40
P3

PEACE
ONYX 40
P4

PEACE
XENIA 50

PEACE
ONYX
30B P3

PEACE MARBLE II

PT1 PT2 PT3 PT4 PT5

PEACE MARBLE III

PT1 PT2

PEACE
XENIA
30B

PEACE
BRIDGE

PEACE
 VECTOR

II

PEACE
BRIDGE

F-16 C/D J-73 OFP CAPABILITY FEED DOWN

LEGEND

USAF/NAVY

FOREIGN MIL SALES
FLIGHT TEST RELEASE

1 4 4 4 7 12 13 13 10 12 10 8 7 3

USAF BASELINE

PCA
0 12 24 36 48 60 72 84 96

(months)

Hardware
Baseline

Software Release

Figure I-3. Software Baseline Proliferation

I-7

Appendix I: Software Support GSAM Version 3.0

The basic generic fighter started as an Air to Air fighter with less than 100K words of on-board memory.
As more roles were assigned to the generic fighter, more systems were added and on-board memory was
forced to expand. By the late 70s, the generic fighter had grown to approximately 300K words of on-board
storage but with only 40 to 60% memory utilization. (These numbers are for avionics systems software
only.) The mission related functions grew from 3 to 5% per year until the memory was forced to expand.
By the end of the 80s, the on-board memory had grown to 2 million words with 70% used. (See Figure I-
4.) Also in the 80s, non-avionics software began to appear. Digitized engine controllers, digital flight
controls and diagnostic software were installed on the generic fighter.

Memory Words
(X 1000)

0

1000

2000

3000

4000

5000

6000

1975 1980 1985 1990

Used

Capacity

Figure I-4. Memory Growth Over Time

I1.3 Software Changes

After the first software baseline was established, typical avionics software maintenance changes can be
categorized using the three basic types of software changes as defined by Swanson. Swanson’s categories
of software changes include corrective (fixing bugs, no new requirements), adaptive (adapting working
software to hardware changes, no new requirements), and enhanceable (modifications/improvements of
working software, new requirements). The percentage of change, by type, is illustrated in Figure I-5.

I-8

Appendix I: Software Support GSAM Version 3.0

Figure I-5. Types of Changes

For a typical software block change, where no hardware was being changed, approximately 10% of the
software was changed. This 10% was broken down as follows: 3-5% new code, 5-7% modified code.
Approximately 88-93% of the software remained unchanged. The 10% rate of change’s impact on the
operational flight program (OFP) software configuration is reflected in Figure I-6. Software changes which
were driven by hardware changes, either the addition of new hardware or the upgrade of existing hardware
systems, had a much lower percentage of reusable software. Obviously, the amount of reusable code
depended on the extent of the hardware modifications; expanding a memory board has a minor software
impact compared to changing the processor type.

Enhancive
50 - 65%

Corrective
5 - 15%

Adaptive
30 - 40%

%
•O

F
P

•C
h

an
g

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

1975 1980 1985 1990

New

Modified

Unmodified

Figure I-6. Impact of Software Change on Operational Flight Program

I-9

Appendix I: Software Support GSAM Version 3.0

Often the amount of software that was changed in a block cycle was limited by available funding or by
available schedule. The larger and more complex software configuration items were typically most impacted
by funding and/or schedule constraints. This is due to the increased integration and test requirements
associated with large and complex software configuration items. Not all software changed at each block
change. The generic fighter’s primary areas of change were mission and human interface related (see
Figure I-7). These primary areas of change included controls and displays (pilot/vehicle interface
improvements accounted for up to 60% of the changes), stores addition, launch envelope improvements,
radar improvements, electronic defense systems addition and improvements, and identification capabilities
and improvements.

Figure I-7. Subsystems/Functions Affected by Software Releases

Some systems were very stable and exhibited little or no change to date. Examples of this were the inertial
navigation system, air data computers, and digital data storage units. Software which was closely bound to
hardware typically changed only when the hardware was upgraded. Examples of this were landing gear
control, anti-skid systems-communications, and digital flight controls systems.

I1.4 Software Support Process

Software changes are categorized by the user as either routine (block change cycle), urgent (six to eight
weeks), or emergency (within 72 hours). The goal of the generic fighter was to field a routine software
release every 18 months; however, a single block change cycle required 36 to 44 months (see Figure I-8)
from requirements definition to fielding. To accomplish this, as many as three or four software baselines
were in work concurrently (see Figure I-9).

Controls & Displays
Threats/Identification
Mission Computers
Stores Management Set
 Radar

Intercom System

Comm 1 & 2

Data
Link

Maint.
Monitor
Panel

Left
 Digital
 Display
 Indicator

Digital Map System

Flight
Controls

Landing
 Gear
 Control
 Unit

Right Digital
Display
Indicator

Inertial Navigation System
 Air Data Computer
Flight Control Electronic Set

Digital
Storage
Unit

EW Sys.
Suite

Nav
FLIR

Flight Incident Recording and Monitoring Sys.

Comm. Sys.
Controller

Laser Signal Tracker/Strike Camera

Core Systems
“Integrators”
Change Every
Block

Secondary Systems
“Data/Sensors”
Change Only
When
Necessary

Hardware
Intensive
Very Seldom
Change

I-10

Appendix I: Software Support GSAM Version 3.0

 Figure I-8. Block Change Cycle

Months

0 10 20 30 40 50

44 Month

36 Month

 Sys Def Contracting Anal Des Code Test OT&E DistDT&E

 Sys Def Anal

Design

Code Test OT&E DistDT&E

Figure I-9. Block Change Releases

The block cycle is divided into two phases. The first phase is the requirements analysis phase where the
depot team, with the support of the user, develop an understanding of the types of system changes required
for the next block change. This phase was typically undocumented and undisciplined. It required from 6 to
10 months for system definition/analysis and 9 months for establishing a contract with a software developer.
The contracting timeline in the requirements definition phase was the primary driver in deciding whether
the block change process was 36 or 44 months long. The second phase included allocating the changes to
software configuration items, design, coding, integration, testing, and fielding the new release. This phase
was in the process of maturing during the F-22 round robin with most programs actively pursuing a Software
Engineering Institute CMM Level of 2.

44 Month BCC With 18 Month Releases

0 20 40 60 80 100 120

Block 1

Block 2

Block 3

Block 4

Block 5

Overlapping Block Cycles

Block 1
Release

Block 2
Release

Block 3
Release

Months

I-11

Appendix I: Software Support GSAM Version 3.0

I5.4.1 Support Costs

The generic fighter block change cycle required 400 to 500 man years and ranged from $22M to $200M
with the normalized average of $112M. This difference was caused by the length and size of the effort for
the block change. All costs are included except for requirements elicitation and business development.
The costs start with requirements identification through distribution of the software to the field. It also
includes technical order (TO) and technical manual (TM) updates. The block change costs include systems
engineering, software development, lab costs, flight test, TOs, and miscellaneous and are reflected in Figures
I-10 and I-11.

Sys Eng
4%

Lab Maint
13%

SW Dev
34%

Flight Test
20%

T.O.s
7%

Misc
22%

Figure I-10. Block Change Cost Allocation

Figure I-11. Block Change Cost Ranges

M
i
l
l
i
o
n
s

o
f

D
o
l
l
a
r
s

0

5

10

15

20

25

30

35

40

Sys
Eng

Lab S/W
Dev.

Flight
Test

T.O.s Labor Misc

High
Low

I-12

Appendix I: Software Support GSAM Version 3.0

The software development phase includes software requirements analysis, design, code, and unit test. For
new hardware configurations, integration and system level tests took up to 40 percent of the total cost of
development effort. For software only updates (without changing hardware) integration costs were less
than 15 percent. Flight test costs were dependent upon location and duration. Typical flight test costs ran
from $30K to over $50K per hour depending on chase plane and drone requirements. Other costs, included
overhead, mechanical replacement, security, stores for test, and communications.

I1.4.2 Support Strategy

The developing contractor has continued to provide critical skills at the government and contractor software
support facilities. The production baseline of software was “owned” by the government at first production
aircraft flyaway (FCA/PCA). Organic support for the first production baseline was not complete phased in
until 5 to 8 years later. The initial program management directive (PMD) typically dictated a total organic
effort for software support very early in the program. Over time it became apparent that this was technically
impractical and undesirable from a program view. The contractor was continually adding capability,
correcting errors, and optimizing the pilot vehicle interface. As a new avionics hardware baseline appeared,
software support for the older baseline was transitioned to the government location.

Ratios of manpower mixes of 40%/60% to 60%/40% (organic/contractor) were common over the life of the
program. The typical work split between organic and contractor resources by skill area is reflected in
Figure I-12. This figure reflects the approximate mix at the ten year point of the generic fighter. Requirements
analysis was done at the contractor’s facilities on simulators, reproduction and distribution is organic but
was outsourced to subcontractors. Technical Orders/Technical Manuals were done at the Contractors facility.

Mgmt Sys.
Eng.

Code
& Test

Integ. Lab
Test

F lt
Test

TO/TM Repro/
Dist

0

10

20

30

40

50

60

70

80

90

100

Mgmt Sys.
Eng.

Code
& Test

Integ. Lab
Test

F lt
Test

TO/TM Repro/
Dist

Organic
Contractor

Figure I-12. Organic/Contractor Personnel Split (%)

I-13

Appendix I: Software Support GSAM Version 3.0

Labor rate costs were as typically follows: $110/hr for contractor personnel costs in a contractor-owned
contractor-operated (COCO) facility; $65/hr for contractor personnel costs in government-owned contractor-
operated (GOCO) facility; and $55 - 65/hr for organic personnel costs in a government-owned government-
operated (GOGO) facility. The lower rates for labor performed in a government facility did not include
total burdening.

I1.4.3 Support Environment

The generic fighter had few software development tools at the beginning of the 70s. In the OEM aerospace
companies, an in-house software development tool making capability was developed. These “homegrown”
tools were developed to fill in the blank spots between the available tools of the time. This was because
few off the shelf software development tools existed during the early to mid 70s. In the labs little or no
allowance was made for either growth or multiple configuration support. Non-reconfigurable lab equipment
was a problem in the early period. Systems level testing was done without the aid of extensive simulation/
stimulation and much of systems testing was done during extensive and costly flight tests.

By the end of the 80s (see Figure I-13), non-integrated computer-aided software engineering environments
and multisystem labs with some simulation/stimulation capability were in use. “Homegrown” software
development tools began to fall from favor because of the availability of COTS tools of higher quality,
more functionality, and at lower costs. The short life span of these COTS development tools caused continual
upgrade for development hardware and software. Simulations improved and began to replace trial and
error, test and fix methods. This led to integration environments which were impacted less by each new
hardware baseline, with very little impact to the support environment caused by software only changes.
Occasional bottlenecks were encountered in the labs due to support of multiple support. Labs often cut
holes in walls to test radar systems and hung weapons on the outside of the labs to simulate actual flight
conditions. However, extensive flight testing was still required to ensure systems were meeting user
requirements.

Figure I-13. Support System

Software Development Facilities

Extensive Use of Test Ranges

System Integration Lab

Contractors SIL - Organic Other - Organic

80-110K Sq Ft

I-14

Appendix I: Software Support GSAM Version 3.0

I1.5 Training System Impacts

Training was separately contracted and, furthermore, was typically not integrated with the rest of Weapon
System. Trainer and training systems typically lagged behind the fielded configuration. This was known
by the user as “version skew.” The problem was that the acquisition strategy for trainers and training was
different from, and at a lower priority than, the rest of the weapon system. Even if the trainers were at the
same priority and received the OFP at the same time as the user, the training system required re-engineering
before it could be used. Air vehicle software was not designed for trainer reuse. A lag of 2 years between
new software installed in the fleet and trainer reconfiguration to match was not uncommon.

I1.6 Program Management

The generic fighter allowed patches but discouraged use of them. No patches were allowed for flight
controls due to safety critical considerations. Flight Controls had the highest reliability but often took
longer to develop. (Flight Controls typically had less than 1% error rate). Very few weapon system
productivity figures were developed. However, the productivity numbers that were developed, varied
from weapon system to weapon system and did not match IEEE productivity ranges for embedded
applications. Mission related software changes had the highest productivity, safety critical software had
the lowest.

Very little use of parametric models for project estimation. Developers tended to rely on past experience
and rough orders of magnitude. Those projects using models such as COCOMO or LOCOMO tended to
apply their own “corrective factors” to come up with numbers that matched their own experience. In many
cases, very little data other than C/SCSC data was available which forced managers to make rough orders
of magnitude estimations. Portions of the Block Change that tended to be fixed (e.g., lab overhead) were
generally close to the budget. Portions of the Block Change that were product related (e.g., integration and
test) tended to be several months late and over budget. If the project was schedule driven and a release was
“ forced” because of that schedule, two to three corrective updates were required and the total project cost
increased by over 15%.

I1.7 Lessons Learned

These lessons learned were provided by the visited weapon systems during the round robin. Many of the
weapon systems were experiencing the same types of problems and made the same suggestions. Below is
a summary of the most repeated and critical suggestions provided to the round robin team.

1. Distributed support concepts (where maintenance is done on the same OFP in different locations)
experienced major communications problems which led to misunderstandings of requirements and
interfaces and thus to schedule delays and cost overruns.

2. “Pure” organic support of OFPs was technically impractical except for mature configurations no longer
experiencing instability.

3. The maintenance planners must plan and provide resources for multiple concurrent software development
efforts.

4. Technology insertion must be factored into the weapon system as early as possible.

I-15

Appendix I: Software Support GSAM Version 3.0

5. Block changes will typically request maximum changes at the sacrifice of throughput and memory.
Spare throughput and memory will typically be expended by the fifth block change (if not earlier).
Plan for growth early or be caught in the trap of developing new capabilities at the cost of existing
functionality.

6. Plan for changes in the support and training environments that are sympathetic to the OFP change.
OFP changes can result in major changes to simulations and stimulations.

7. Training and technical orders must remain current with the OFP release.
8. Ease of system/software change depends on the quality of the documentation and when it was received.

Development and design rationale is often more important than formal documentation.
9. There is a definite difference between the user and the supporter for the time requirements associated

with a block change. The user expects to see an approved change fielded within 18 months. The
supporter seems to feel that he meets the user’s requirements by releasing a new version of software
every 18 months. This often results in user priority requirements taking as long as 44 months to reach
the field.

10. The amount of up-front time required to place a contractor on contract for a block change seemed
excessive and often was the major cause for an eight to nine month slip in release. Contracting should
be done in parallel with the requirements definition for the block update.

11. Every effort should be made to decrease the number of flight tests required for validation of a block
change. Investments in comprehensive simulations and stimulations have a rapid return on investment
by decreasing the number of flight tests required. However, these simulations and stimulations must
also be updated as part of the block change process.

12. Labs that are given the same prioritization as operational aircraft have the capability to obtain necessary
spares and replacement parts. Labs that are not given this prioritization suffered schedule slips and
cost overruns due to a lack of operational equipment.

13. Those programs that co-located their integration and test facilities with their flight test capabilities
significantly reduced flight test costs while improving schedule adherence and communication of
requirements.

I1.8 Acknowledgments

The F-22 Life Cycle Software Support Integrated Product Team thanks those who sacrificed their valuable
time and participated in the F-22 Software Supportability Trade Survey: Col Ron Bischoff, SM-ALC/YFL;
Capt Jeff McElroy, ASC/YFP; Capt Shawn Shanley, HQ USAF/AWC/28TS/TXBF; Capt Dennis Fleming,
HQ ACC/SCTA; and Mr. Art Rindell, SM-ALC/TIS. The IPT would also like to thank project directors
and those individuals residing with them at the SPO offices and system support facilities from each of the
four aircraft weapon systems for accommodating our entire team and arranging their schedules to discuss
the support details of their respective fighter aircraft: F-15 — Mr. Bob Anderson, WR-ALC/LFE; F-16 —
Mr. Bruce Kress, ASC/YPVC; F-14 — Mr. Brad Gilmer, Code: P2205; and F/A-18 — Mr. Rich Bruckman,
Code: C2107. Finally, a special thanks to the System Program Directors (SPDs) and Program Management
Authorities (PMAs) for their support in this entire effort: Col. Rutley, WR-ALC/LF; Col. Kenne, ASC/YP;
Capt Richard Evert, Program Executive Officer (PMA 241); and Capt. Joe Dyer, Commander (PMA 265).

I-16

Appendix I: Software Support GSAM Version 3.0

I2.0 Tab 2: COTS Integration and Support Model

©Copyright Loral Federal Systems Manassas December 1994 [reprinted with permission]

Carolyn K. Waund
Loral Federal Systems-Manassas

I2.1 Abstract

Programs requiring high use of commercial-off-the-shelf (COTS) hardware and software are becoming
more prevalent in the federal marketplace. Much of the emphasis on COTS solutions is due to increasing
focus on information systems technology as we seek to re-engineer the government. Information systems
technology is rich in COTS products and highly competitive, thus making powerful solutions feasible.

Loral Federal Systems (LFS) has in recent years moved to address this important systems integration market.
Individual programs have achieved varying degrees of success in adapting traditional system development
processes and management practices in the high-COTS environment. This program experience is a key
resource. This paper highlights the results of an LFS initiative to use lessons-learned on recent COTS-
based programs and defines a COTS integration and support model for guiding future programs. The initial
model will be refined and matured by the LFS organization in the future. This paper provides: (1) observations
about the current state of COTS integration, (2) a description of a model for a COTS integration and
support process, and (3) a discussion of COTS program lessons-learned and their incorporation into the
COTS process.

I2.1.1 Observations

Our observations about the current state of large-scale COTS integration and support are illustrated in the
following graph. Note that the graph compares a “traditional ” development program using few COTS
products with three variations of high COTS content programs. We observe an important reduction in effort
for high COTS, yet believe that more can be achieved. The “dream” program requires little effort to integrate
and support a system. This may be possible today for a small, single computer system, but will not likely be
achieved for the large distributed systems which serve an enterprise.

LFS has identified a number of COTS product characteristics which must be dealt with effectively to drive
program effort to the “ achievable” COTS level. The COTS product “facts of life” are that:

• They are not interoperable with other COTS,
• Their literature overstates their capability,
• They never exactly match users needs,
• Unique versions are costly,
• Upgrades are frequent and asynchronous,
• There is limited support for previous versions, and
• They are not Ada friendly.

I-17

Appendix I: Software Support GSAM Version 3.0

Figure I-14. COTS Integration and Support

The COTS product releases shown under the graph represent a primary characteristic of COTS products:
they change frequently in response to the demands of the commercial marketplace. These changes begin to
effect a COTS-based program when the products are first selected for system inclusion, and the effects
continue throughout the system lifetime. The uniqueness of COTS-based programs is the inability to control
the evolution of the commercial products which make up the system. Hardware product technology becomes
outdated and the old products and parts reach end of life and are no longer available. Equivalent replacement
products and parts may also not be available. Software products are regularly enhanced, correcting problems,
and adding and repackaging functions. Support for back level versions is often not available; COTS customers
are encouraged to incorporate the upgrades. This dynamic environment indicates the need for a continuing
engineering analysis to refresh the COTS-based system.

I2.2 Program Model

The LFS approach has adapted a traditional, proven program model to one that supports a high content of
COTS hardware and software. The model includes both technical processes and management practices.
Actual program adaptations of the traditional model were analyzed. In some cases, the adaptations were
successful and are retained in the current LFS model. In other cases the adaptations failed, necessitating a
return to traditional wisdom.

Time

Effort
Traditional

COTS product releases

Observed COTS

Achievable COTS

Dream COTS

I-18

Appendix I: Software Support GSAM Version 3.0

Engineering
Team

Direction

Evaluation

Management
Activities

Requirements Analysis

System Design

SW/HW Development

Sys Integration & Test

Instruction & Transition

Maintenance & Operations

Contract

Project
Planning &
Control

Organization &
Teams

Supplier
Management

Reviews &
Audits

Configuration
Managment

Process
Management

Quality
Assurance

SW/HW Design

Knowledge Base

Pre-Proposal

Operations

Transition

Development

Demonstration

Proposal

Technical Activities

SYSTEMS

SOFTWARE/
HARDWARE

INTEGRATION
AND TEST

LOGISTICS

Phases and Iterations

Figure I-15. Project Model

The model for COTS integration programs is illustrated in the following figure. It includes seven traditional
technical processes performed in each iteration of activity. A concurrent engineering team, addressing all
disciplines, is active throughout, coordinating all technical activities. Seven traditional management processes
provide program direction, evaluation, and control. Iterations are grouped into program acquisition phases,
beginning with pre-proposal and ending with operations. Contract start is at the beginning of the development
phase. In each iteration, the emphasis of technical activities varies with the phase and objectives. A knowledge
base captures information from all LFS division programs for use across the organization.

Each iteration begins by establishing objectives, based on the results and evaluations of prior iterations.
Technical activities are scheduled with sub-objectives which, when completed, achieve the iteration objective.
Each iteration ends with an evaluation of progress against iteration objectives and program goals. The
evaluation includes actual and estimated costs and a revised risk assessment, along with recommended
actions and objectives for subsequent iterations. These direction and evaluation activities are the key program
control mechanisms. This program model is suitable for COTS-based system integration and support because
it:

• Takes advantage of COTS product availability,
• Includes prototyping iterations to reduce risk,
• Recognizes that much engineering work is performed prior to contract award, and
• Accommodates COTS product upgrades asynchronous to the program schedule.

The table indicates characteristics of each phase and the integration objectives of iterations within each
phase. The following paragraphs provide additional description.

For COTS programs, the pre-proposal iteration(s) determines the feasibility of satisfying program objectives
and high level system and support requirements with products which can be commercially available in the
needed time frame. This iteration emphasizes requirements analysis and system architecture tasks. Customers,
systems integrators, and COTS vendors interact informally or via Requests for Comments (RFCs) or Requests

I-19

Appendix I: Software Support GSAM Version 3.0

for Information (RFIs) during this time frame. The hardware and software product selection tasks are
characterized by identifying that suitable options exist. Initial product selection is accomplished. Product
experience or hands-on product evaluations are essential. Relying on product documentation or demonstration
is an invitation to failure. The pre-proposal iteration produces the system integrator’s initial system design.
Results can be shared with the customer, for potential inclusion in the Request for Proposal (RFP).

The proposal phase iteration(s) adjusts the system design to RFP requirements and completes the hardware
and software product selection. This iteration continues hands-on product evaluation and, if time permits,
begins to integrate a prototype of the system. It is important to select the most challenging aspects of the
implementation for prototyping priority. Early integration must focus on areas where the return in terms of
risk reduction is the greatest. If integration problems arise, it is easier to accomplish a product change-out
or architecture change in this time frame than in a later one.

I2.2.1 Program Model Phases and Characteristics

The demonstration phase can significantly reduce the risk in the requirements baseline. This iteration(s)
firms up the hardware and software product selection. In demonstrations, customers can evaluate the human/
computer interface, explore the process and data model, and assess consistency with the operations process.
If time permits, prototyping can integrate the selected products in vertical and horizontal dimensions, creating
a fairly complete system implementation.

Contract work begins in the development phase. Early formal reviews serve to baseline the system
requirements and design, including the COTS product selection. This is an opportunity for the systems
integrator to suggest requirements changes which will increase COTS content and reduce development
content on the program, thereby reducing cost and risk. Prior to this review, the precontract customer
evaluation prototype will be reviewed for requirements and/or design change. In this way, the results of
prototyping activities are fed back into the requirements, which should remain flexible until the design
validation is complete. System capability and functionality are developed during the remaining development
phase iterations, which may, if necessary, incorporate COTS product updates. Formal testing culminates
each iteration. On the final iteration, the system is ready for customer acceptance.

In the transition phase, the initial iteration produces a fully integrated and tested system configuration
installed at a customer test or evaluation site. After the evaluation period, additional iterations produce
system configurations at operational customer sites or platforms.

In the operations phase, iterations are driven by requirements changes, problem fixes, technology insertion,
and COTS product upgrades. Depending on the significance of the changes, an iteration may be scheduled
for prototyping prior to full implementation of the change. Note that COTS-product-induced perturbations
are not exclusive to operations phase. They may occur in any of the preceding phases, and need to be
handled when they occur.

The COTS model features early iterations through requirements, design, and prototyping tasks, encouraging
requirements modification to achieve program goals and minimize risk. This iterative process assures that
the final requirements are consistent with COTS content goals. If, for example, the goal is to build the
system with currently available COTS products, it is important that the requirements reflect existing product
capabilities. Appropriate adjustments to requirements can be made after COTS products have been identified,
evaluated, integrated, and used in a prototype application.

I-20

Appendix I: Software Support GSAM Version 3.0

Table I-1. Program Model Phases and Characteristics

I2.3 Lessons Learned

To formulate the COTS program model, the following key lessons-learned on previous programs were
addressed. For each lesson, we indicate how it is incorporated in the COTS program model and approach.
In conclusion, we note barriers or challenges to incorporating these lessons, acknowledging that managing
COTS programs is an exercise in tradeoffs; there is not always a single “best” answer!

I2.3.1 Lesson 1

Most shortcuts through the traditional systems development process have proven faulty, indicating a need
to return to a disciplined, but tailored process.

The COTS program model is adapted from traditional, proven LFS technical processes and management
practices. Activities for COTS have been adjusted, scaled down or up, but not eliminated. For example, the
traditional software development activity was redefined as COTS software product installation and
customization. This requires significantly less effort than developing the product functionality from scratch,
so it is a “scaled down” activity. On the other hand, our approach features extensive integration prototyping,
so integration is a “scaled up” activity.

PROJECT PHASE CHARACTERISTICS ITERATION OBJECTIVES

Pre-Proposal • Customer/industry interaction
• Request for Comments (RFC)/

Request for Information
• Draft Request for Proposal (RFP)
• Initial System Design

• COTS feasibility
• Hands-on product evaluation
• Initial product selection
• First integration
• Initial operational analysis
• Architecture definition

Proposal • Formalized customer/industry
interaction

• Request for Proposal (RFP)
• System design adjustment
• Program planning

• Hands-on product evaluation
• Integration prototype
• Big product finalization
• Cost model developed

Demonstration • Formalized customer/industry
interaction

• Live Test Demonstration (LTD)
• Design validation
• Best and Final Offer (BAFO)

• Architecture validation
• Integration prototype
• Capability demonstration
• Final bid product selection
• Cost model refined

Development • Contract starts
• Extensive customer interaction
• Complete implementation
• Formal test

• Extensive operational analysis
• Business process reengineering
• User interfaced prototype
• Full integration
• Phasing of capability
• Acceptance

Transition • Test and Evaluation
• Installation
• Replication

• Evaluation site integration
• Test site integration
• Operational site integration
• End user training

Operation • Engineering Change Proposal
(ECP)

• COTS end-of-life and update
(may occur in earlier phases)

• Prototype of changes
• Integration of changes

I-21

Appendix I: Software Support GSAM Version 3.0

The COTS program model features close coordination of technical activity among a multi-disciplined
engineering team. Key team skills include systems engineering, software engineering, integration and test,
and careful consideration of logistics concerns and the views of the end user, acquisition officials and
vendors. This team effort facilitates communications and permits less formality in documentation and
reviews. Team agreement, based on informal preliminary documentation of requirements and design, is
generally sufficient to establish technical baselines. With rapid turnaround in system development (relative
to traditional non-COTS development programs), rapid decision-making is critical. This multi-disciplined
team is essential.

I2.3.2 Lesson 2

Some requirements should remain negotiable until COTS system design is validated via prototyping.

To reduce program cost and risk, requirements which drive unique non-COTS development and are not
essential for the system’s success should be candidates for change. The COTS program model uses iterations
to formalize the feedback from system design, COTS product selection, and prototype integration activities
to aid requirements analysis. This feedback can specifically identify the requirements which are not capable
of being satisfied using currently available COTS products. These are the requirements which drive program-
unique development of product enhancements, including “glue” code to fix interoperability problems or
selection of a high risk product. Some of the COTS product noncompliance issues and interoperability
problems are discernible without prototyping. However, some issues are uncovered only during hands-on
product evaluation and integration prototyping.

The COTS program model features a number of iterations prior to the baselining of requirements in the
development phase. In the pre-proposal phase, the integrator should provide feedback to the government
customer, indicating those requirements which drive non-COTS content. In the proposal and demonstration
phases, the ability to communicate with the customer is limited. During these phases, the integrator builds
up a set of recommended requirements changes which would increase COTS content and reduce program
cost and risk. These are shared with the customer at contract award, for consideration prior to formal
requirements baselining.

I2.3.3 Lesson 3:

COTS product selection and system design validation should include, or carefully waive:

• Hands-on evaluation of each product,
• Testing of each product-to-product interface,
• Prototyping of developed application-to-product interfaces,
• Testing COTS product portability to new platforms, and
• Vendor and product considerations beyond functionality.

The COTS program model features many early iterations, giving opportunity for hands-on evaluation,
product interface testing, and integration prototyping. The emphasis of these activities is directed where the
most benefit in terms of risk reduction can be gained. Bypassing these activities is acceptable for well-
known products or previously-demonstrated interfaces, where the risk is assumed to be low. However,
there can be a tendency to assume compatibility and underestimate the integration effort required.

I-22

Appendix I: Software Support GSAM Version 3.0

Experience has shown that it is difficult to understand a product by talking to vendor marketing personnel
or reading literature. Hands-on evaluation by the integrator permits a vendor-independent assessment of
how the product meets the program requirements, and helps to avoid conflicting interpretations of
requirements and what it takes to satisfy them.

Although some products are designed to interoperate, there is no guarantee that product-to-product interfaces
will operate properly for the types of data to be supported or the environment of the program. Testing can
determine if interface problems exist. Resolution may involve changes by one or both vendors or integrating
mechanisms created by the integrator. Early problem detection can influence design and product selection
and result in lower program effort and cost.

The boundary between developed applications and COTS products in the operational system can be a
source of integration problems. This has been the case on a number of LFS programs using Ada. Ada
interfaces or bindings to products are not as prevalent, highly-functional, or mature as those for C. If the
degree of compatibility with application development tools and COTS products is overestimated by the
integrator, the development effort can be larger than expected. Prototyping is indicated for unproven
interfaces.

Sometimes the best COTS software product for the functional requirements has never operated on the
hardware and operating system platform of choice for the program. In these cases, the integrator and the
vendor agree that a product port is the best option. There is always some risk in porting a software package,
especially if the product has never been ported before.

Considering product characteristics other than functionality can also be important in the decision-making
process. Such aspects include current quantities in use, reliability, product support, and past performance of
the vendor.

I2.3.4 Lesson 4

A well-defined architecture can lessen the impact of COTS product upgrades. Integration facilitators can
reduce risk, but also have disadvantages.

In the past, the tendency was to integrate COTS applications in an ad-hoc fashion, creating glue code as
needed to permit applications to interface with each other and external interfaces. Each glob of glue is
unique to the set of interfaces between a pair of applications, and may require frequent modification as
business needs and technologies change. Because this type of system is expensive to build and support,
other mechanisms are preferred.

The architecture for high COTS content systems needs to consider a number of approaches which can
facilitate the integration of both the COTS products and developed components that comprise the system.
These approaches include architecture definition, standards, and frameworks, which are discussed in the
following paragraphs.

The major step in creating a top level architecture determines the degree of integration needed among
system components and establishes an integration strategy, which may feature using a number of integration
mechanisms.

I-23

Appendix I: Software Support GSAM Version 3.0

When integrating COTS and developed system components, there are five dimensions of integration to
consider:

• Data Integration. Data created by one component are transformed and transported to another component
for its use, in the format and context it requires.

• Control Integration . An activity or product of one component will cause the activation of one or more
other components.

• Process Integration. The enterprise goals are translated into processing and storage decisions for all
the components that participate in that goal. These decisions can influence control integration and data
handling. “Workflow” is an implementation of process integration.

• Presentation Integration. The user interfaces have the same look and feel.
• Platform Integration . The COTS products and developed software components are independent of

the platforms and operating systems inherent to those platforms. A heterogeneous system can result.

The required degree of integration in each of these dimensions is determined to influence the evaluation
criteria for selecting the integration mechanisms, COTS products, and defining an architecture to isolate
and minimize change as COTS products change.

Standards-based COTS product interfaces facilitate integration, but do not guarantee compatibility. Mature
standards are unambiguous but tend to be complex, while immature standards still allow implementation
flexibility. This permits different interpretations by vendors which can cause interface problems.

Integration framework products, such as those being used in software engineering environments, provide
tool integration services which show promise of facilitating COTS application product integration. Usage
of these framework products in this domain is not yet proven, but the integration framework concept and
services constructs can be effective tools in system design.

Selecting a product suite from a single vendor, vendor partnership, or coalition is a low-risk integration
approach which minimizes problems within the suite. Unfortunately, there may be no flexibility to add a
best-of-breed product from outside the suite due to the closed nature of the design.

Product characteristics such as published Application Programming Interfaces (APIs), which reveal most
product functions, many documented user exits, and source code availability, can facilitate product adaptation
by the integrator to the system environment. The use of these characteristics, however, implies software
development.

In the COTS program model, iterations through system design, product selection, and prototyping activities
permit the evaluation of a variety of strategies for COTS-based system architecture and design. Various
integration facilitators and mechanisms can be explored.

I2.3.5 Lesson 5

Significant advantage can be gained by reusing previously integrated solutions.

There is value in reusing previously integrated COTS solutions to reduce program cost and risk. As a
group, the LFS divisions have in place a number of experience-sharing mechanisms which facilitate this
type of reuse. Although LFS programs address a variety of information systems application domains, most

I-24

Appendix I: Software Support GSAM Version 3.0

share a need for integrated platform services (including networking, distributed computing support, and
other middleware functions). Standards-based integrated solutions in this area are particularly good candidates
for reuse.

In some cases, an integrator can string together contracts with similar needs and reuse integrated solutions
or solution parts. To extend the set of ready-to-use solutions, the integrator can invest in COTS product
integration initiatives.

The COTS program model includes a knowledge base of product and integration experience that is contributed
to by each contract or investment program and is available for use by all programs.

I2.3.6 Lesson 6

Vendor contracts are unique, complex business/ technical/ legal agreements which must clarify all
requirements and expectations.

LFS has found that COTS vendor contracts must go beyond standard commercial license and services
agreements, and become similar to major development subcontractor relationships. This applies when
standard COTS offerings do not meet program requirements and must be enhanced. As a result, COTS
vendor relationships become more complex than that of simple commercial product or service offering
procurements.

These unique relationships are also more difficult to negotiate and manage because COTS vendors do not
typically deal in this manner. Their business and technical processes are tuned to produce and support a
standard offering, not to provide specialized solutions for a particular customer’s system. Another contributing
factor to negotiation complexity is the fact that many commercial vendors are not experienced in dealing
with the Government. Unfamiliar military contracting concepts and terminology, in particular, can contribute
to major vendor misunderstandings.

For each COTS program, LFS uses an experienced supplier manager who reports to the program manager.
The supplier manager leads a multi-disciplined team which defines and negotiates vendor contracts and
manages vendor contract performance.

I2.3.7 Lesson 7

Plan and budget for frequent and uncontrollable COTS product end-of-life and update events during all
phases of the program.

The uncontrolled nature of COTS products is often not recognized and planned for. When not properly
planned, significant cost impacts can occur. It is likely that after system delivery, COTS software product
upgrades will be released by vendors and hardware products and parts will become unavailable. We
recommend planning for the engineering effort required to ensure system integrity.

The COTS program model features continuing iterations in which COTS product updates can be scheduled
for integration. The model handles each COTS product end-of-life or upgrade event as an engineering

I-25

Appendix I: Software Support GSAM Version 3.0

change proposal (ECP). Notification of a product end-of-life event by the vendor is followed by impact
assessment, selection of a replacement product, and planning for its integration into the system.

Notification of product upgrade initiates impact assessment and integration planning.

I2.3.8 Lesson 8

Cost estimation methods for COTS integration programs must be improved.

Industry-proven cost estimation models exist for traditional development programs with a high content of
software development. These models have been calibrated with the results of many programs throughout
the years. This is not the case for programs with high COTS content, where estimation models do not exist.

To increase the predictability of COTS programs, LFS has standardized the process on COTS programs
and developed a program cost estimation model tailored for COTS integration. LFS will use this cost model
to estimate new programs. Metrics collected from previous programs are being used to calibrate the model.

I2.4 Challenges

Many of the actions which must be taken to remedy the problems experienced on COTS programs involve
a shift of effort into the pre-contract timeframe. This is challenging to systems integrators because it stresses
the Bid and Proposal (B&P) budget in a constrained timeframe when customer communications are limited.

For example, prior to submitting the offer to the customer, it is often necessary to validate a significant part
of the COTS system design via prototyping to reduce risk. This effort is costly, yet without this validation,
the schedule and cost risk of the program under contract is increased, and may be intolerable.

It is highly desirable to adjust requirements based on discoveries during system design, product selection,
and prototyping, yet this is not accommodated by the procurement process. RFP requirements are mandatory
and inflexible during the proposal and demonstration phases when system design, product selection, and
prototyping are accomplished. Requirements changes which could increase COTS content and simplify
integration are not allowable in the precontract timeframe, and may be difficult to incorporate after award
on a fixed-price contract. This may add unnecessary cost and risk to the program.

A large part of the challenge on COTS programs comes from a lack of widespread understanding and
experience with the unique aspects of COTS programs in government and industry. General agreement has
not yet been achieved on the complexity of designing and supporting a system made up of uncontrollable,
commercially-driven elements.

I2.5 Conclusion

Improved COTS program predictability will benefit both government and industry. This COTS program
model is representative of many challenging COTS programs and establishes a framework for assembling
processes tailored for COTS. LFS is seeking process maturity by continuing to refine the model and
standardize effective processes for COTS integration and support.

I-26

Appendix I: Software Support GSAM Version 3.0

I2.6 About the Author

Carolyn K. Waund is a Senior Programmer in the Federal Systems Integration Laboratory at Loral Federal
Systems in Manassas, Virginia. She is currently responsible for defining methods and architectures which
facilitate COTS product integration and software engineering. Prior to its acquisition by Loral, she worked
for IBM Federal Systems Company in Houston, Texas for 29 years. She has been involved in a number of
systems integration programs, both for federal and commercial customers. Most of her career has been
focused on real-time support of manned spaceflight, performing both systems and software engineering
tasks for NASA Johnson Space Center. She received her B.A. in Mathematics from the University of Texas
at Austin.

I-27

Appendix I: Software Support GSAM Version 3.0

I3.0 Tab 3: Electronic Combat Model Re-
engineering

Idaho National Engineering Laboratory
March 1995

I3.1 Executive Summary

As modern software systems become increasingly complex and critical, executives, managers, and technical
team leaders are faced with ever more difficult choices. Regardless of your position in a government
organization or a commercial business operation, the insights contained in this monograph can be of benefit,
and can help you achieve and keep a competitive advantage. Decisions regarding the disposition of existing
legacy software systems can have an enormous effect on the operations — even survival — of government
and commercial organizations. Many organizations are grappling with trade-offs of retiring older software
systems and moving into more modern and efficient architectures, while trying to find ways to leverage
some remaining capabilities of legacy systems to reduce cost and risk of software modernization.

The United States Air Force (USAF) is facing these difficult decisions. In a cooperative effort with the
United States Department of Energy’s (DOE) Idaho National Engineering Laboratory (INEL), the Air Force
successfully addressed many of the hard issues facing commercial executives and managers today. The
lessons learned by USAF/INEL provide valuable insights and models for action for both government and
commercial decision makers. Although the project involved the re-engineering of a military software
system, the applicability of the experience is appropriate across many commercial domains. The critical
necessity for migrating from older legacy software systems to modern software architectures crosses
boundaries of virtually every application domain in the internationally competitive software marketplace.

I3.2 Re-engineering Legacy Systems

The Air Force was faced with maintaining a legacy system which provided important capabilities to its
users. While the users were satisfied with the system, the Air Force was finding it increasingly expensive
and difficult to maintain software written for a proprietary, “non-open” hardware platform. As maintainability
of the code decreased, support costs increased, and reliability of the system deteriorated.

The Air Force initially directed the INEL to re-host the application, and move it to an open systems
architecture. Basically, this effort involved translating the existing code from Fortran into C. Although the
resulting code functioned properly, and the application was moved to an open systems architecture, the
code itself was even less maintainable than the original Fortran software. As more functionality was added
to the original application, maintainability of the software continued to decrease. INEL was then asked to
conduct a study of the application, to include an analysis, evaluation, and recommendations to the Air
Force as to future directions for the program. The recommendations for the future were to ensure the
continuing satisfaction of the Air Force user community. The study showed the system needed to be re-
engineered to provide for future user needs, and INEL recommended a blend of technologies and methods,
including a layered, object-oriented software architecture, implemented in the Ada programming language.
The resulting re-engineered system produced a threefold improvement in maintainability of software.

I-28

Appendix I: Software Support GSAM Version 3.0

Additionally, the re-engineered system has enabled new functionality to be added in a fraction of the time
required with the original and re-hosted versions.

I3.2.1 Maintainability Index and Metrics

The decision to re-engineer a legacy software system is difficult to justify without appropriate metrics. As
part of the USAF/ INEL justification, specific metrics were collected and analyzed to provide indicators of
system maintainability and complexity. These metrics, in combination with independently developed
polynomial equations, have been used by some organizations to calculate a “maintainability index” which
provides an indication of the maintainability of a software system. Based on independent studies and
separate work performed by the University of Idaho and verified in the field by Hewlett-Packard, the
maintainability index confirmed INEL’s recommendation to re-engineer the application. This experience
with the maintainability index, and the subsequent verification of its applicability, offer powerful insights
for decision makers who are contemplating re-engineering of legacy systems. As the USAF/INEL project
has shown, a maintainability index can help in providing sound economic justifications for the re-engineering
of legacy software.

I3.2.2 The Role of Software Architecture

Many legacy software systems have been developed using a functional decomposition methodology (if any
formal methodology was used at all). Early generations of software systems typically make extensive use
of proprietary platform features, operating system calls, and language-specific constructs which severely
hamper maintenance, reuse, and portability. These fundamental differences in the underlying software
architecture contribute significantly to the lack of benefits to be derived from rehosting or translating
efforts, as the Air Force learned on this project. INEL used an object-oriented layered software architecture
to achieve many of the benefits of their re-engineering activity. By using layers for the application, interface,
graphics, operating system, and hardware, the development team was able to deliver superb benefits to the
Air Force. The layered architecture also enabled the use of a hybrid of technologies, language, and methods,
in a well-engineered development effort.

I3.2.3 COTS (Commercial-Off-the-Shelf) Software and Ada

For government software developers and decision makers, particularly those in the US Department of
Defense (DoD), current policy requires the use of COTS software products wherever those commercial
products can satisfy DoD needs. In those cases where there are no adequate COTS products, new software
must be developed in Ada, unless a waiver is obtained to use another programming language. On the
surface, the DoD policy on COTS and Ada seems to be fairly straightforward, but as the Air Force and
INEL discovered, a superficial implementation of the policy can be extremely costly — in terms of support
and funding. INEL’s experience in evaluating the “real” costs and facets of using COTS software can
provide government decision makers with substantial savings in choosing between COTS and new Ada
code. Decision makers and software managers are deluged with new software product offerings which
claim to offer powerful capabilities and benefits. Filtering through the claims and discerning the real
benefits, then comparing those benefits with the cost/ benefit of a “from scratch” application is a daunting
task — regardless of your application domain.

I-29

Appendix I: Software Support GSAM Version 3.0

I3.2.4 Dual-Use Opportunities

As DoD and other government budgets continue to shrink, it is becoming more important for all government
agencies to work together to exploit technologies and programs of common interest. It is also critical for
government agencies to exploit technologies which have applicability in major commercial markets —
what is known as “dual-use” technologies. The USAF/INEL effort is a superb example of interagency
cooperation, with benefits accruing to the users, the agencies, the government, and the taxpayer. Much of
the code is available as “public domain,” government-funded software, with excellent applicability in major
commercial domains. The combination of object-oriented methods, COTS software, and Ada makes this
project an ideal candidate for technology transfer to the private sector.

I3.3 Summary

This monograph is designed to be a valuable information resource for decision-makers, software
developers, and users. Most of the issues addressed are generic in nature, and span a broad cross-
section of software domains. This document is part of an ongoing series of monographs which will
investigate the major software challenges and solutions required for viable modern complex software
systems.

I3.3.1 Project Background

The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE) National Laboratory,
located in Idaho Falls, Idaho. INEL is engaged in a wide variety of projects, ranging from computer and
software systems development, to environmental programs, to energy generation .technologies, and national
and international technology transfer projects. The organization has a track record for delivering complex
software solutions for a broad range of applications, in both government and commercial environments.
This project, the Electronic Combat System Integration (ECSI), was initiated by the INEL in support of die
US Air Force Information Warfare Center (AFIWC) at Kelly Air Force Base, in San Antonio Texas. AFIWC’s
mission includes detailed electronic combat modeling support for a variety of Air Force organizations.
One of the models developed by AFIWC is the IMOM (Improved Many-On-Many) electronic combat
model. IMOM is an electronic combat modeling system, which supports air operations combat mission
planning. Basically, the system helps combat pilots plan their missions in an environment of hostile electronic
combat systems. For example, pilots planning combat missions would be very interested in knowing the
range at which a hostile radar system would detect their aircraft, so that they could avoid detection during
the mission. Furthermore, using IMOM, pilots can run different scenarios showing the difference in detection
ranges that would occur if they changed the altitude of the mission profile (i.e., flying in at 500 feet instead
of 1,000 feet of altitude can make a huge difference in detection ranges).

IMOM has also been incorporated into the Air Force CTAPS (Contingency Theater Automated Planning
System). CTAPS is a command and control system developed by a joint Air Force/INEL team for managing
complex air/land battle operations anywhere in the world. Various models of different detection devices
and technologies can be depicted in the IMOM system, showing the range and capabilities of a variety of
radars. Also, the effect of height above the ground of the sensor, and the effect of electronic countermeasures
(ECM) can be determined. In this modern era of increasingly sophisticated detection systems and antiaircraft
technologies, the success and survival of US military pilots are heavily dependent on an accurate depiction
of the expected coverage of electronic combat systems.

I-30

Appendix I: Software Support GSAM Version 3.0

The benefits that IMOM provides to pilots of modern military aircraft were proven during the Persian Gulf
War, where the system was used extensively by US pilots, under the auspices of the Air Force Sentinel Byte
program. Sentinel Byte disseminates and displays intelligence and key early warning data for use by Air
Force combat mission planners and pilots. At the time of the Persian Gulf War, IMOM was a Sentinel Byte
application, having been moved from the AFIWC and CTAPS programs into the Sentinel Byte environment.
The fact that IMOM could be moved from one major functional environment (CTAPS) to another (Sentinel
Byte) is significant. Basically, IMOM delivered critically important capabilities to Sentinel Byte, virtually
immediately, without additional development time and resources being required. Substantial additional
functionality was then added to the core IMOM application, enhancing the value of the system to Allied
pilots in the Persian Gulf War. This ability to move critical capabilities from one major functional environment
to another has tremendous applicability in non-Air Force organizations. Similar benefits can be achieved
by large government and commercial operations that are able to share and leverage common operational
requirements and solutions.

The IMOM system was originally an AFIWC in-house program used in response to tasking and requests
from other Air Force components. Due to its excellent performance and capabilities, IMOM became very
popular with Air Force users from other commands. As a result of this superb performance and popularity,
IMOM was distributed to a broad range of Air Force users, including pilots and mission planning personnel.
The graphical representation of the various IMOM family of models allows users to take advantage of the
capabilities of the system in a familiar context and manner — just as they would if they were working with
a manual system of maps, charts, and markers. The color graphical interface enhances the fundamental
capabilities of IMOM, with corresponding benefits to its users.

I3.4 Project Evolution — Translating from Fortran
to C

The original IMOM capability was developed in 1984. Written in Fortran, the original version was hosted
on a proprietary VAX/VMS platform, and used Tektronix PLOT-10/STI graphics. The software was designed
using a top-down functional decomposition approach, with a high degree of machine dependency in the
code. The IMOM system was a success from the perspective of the users, and the system established a
track record of successful usage. Due to the long-term successful track record, IMOM users requested
numerous enhancements to the IMOM model(s). As electronic combat threats and technologies evolved,
IMOM users required additional functionality in the software. As a result of user needs and advances in
electronic combat technologies, the original IMOM expanded quite rapidly, with substantial additions to
the initial software system.

In terms of current open systems architectures, the original IMOM was most definitely a “closed” system.
As the Air Force and the Department of Defense migrated toward open systems technologies in the late
1980s, it became clear that the proprietary IMOM architecture needed to be modified. In 1989, the Air
Force tasked the INEL with modifying the IMOM system to enable it to operate in a UNIX/Windows
environment, using standard GKS graphics. To accomplish the required modifications, INEL translated
the original IMOM Fortran code to C, and moved the software to a Digital Equipment Corporation (DEC)
workstation. In keeping with the Air Force’s tasking, the original software architecture was retained, and
the majority of the translation from Fortran to C was accomplished using an automated translation tool.
The end result of this re-hosting task was an open systems implementation of IMOM which ran on UNIX,
incorporated GKS (Graphical Kernel System) graphics, and used a “point and click” user interface. As was

I-31

Appendix I: Software Support GSAM Version 3.0

the case with the Fortran version of IMOM, the new C implementation was well-received by users of the
system. Some additional functional enhancements were made to the C version of IMOM through 1991.

The original Fortran IMOM evolved as a baseline for the additional capabilities. In 1990, INEL added the
functional capabilities required by the Air Force’s Sentinel Byte program, eventually evolving the Fortran
IMOM baseline through version 5.0. In addition to the Fortran enhancements, the C version of the IMOM
baseline was upgraded to include the Sentinel Byte requirements. The additional models are different from
IMOM, and have their own community of users, as well as a separate Air Force office. Those models, the
COMJAM (communications jamming), PASSIVE DETECTION, and RECCE (reconnaissance) models,
were all originally implemented in Fortran. Unlike the original Fortran versions of IMOM, the other
models were not translated into C. The Ada versions were a result of the re-engineering effort conducted
by INEL.

Although the various IMOM implementations were quite successful from the users perspective, the different
language and platform implementations suffered from configuration management (CM) problems. In addition
to the CM challenges, the software was becoming more difficult to maintain and modify. In 1991, the Air
Force realized that the existing implementations of IMOM would not be adequate to support user needs
into the future. The cost of maintaining and modifying the software was becoming unacceptable, and
enhancements were exacerbating the complexity of the system. As a result of these concerns, and in
anticipation of expected user requirements in the future, the Air Force tasked INEL with conducting a
research study to ascertain the future directions of IMOM.

I3.5 Research Study — The Future of IMOM

INEL’s research study included four primary objectives:

1. Determine the objectives and future goals for IMOM.
2. Identify current industry and DoD standards which could apply to IMOM.
3. Analyze the current IMOM implementations from a software engineering perspective.
4. Offer recommendations to the Air Force as to how to achieve the IMOM objectives.

Among the objectives and future goals identified for IMOM was the need to provide software which would
be more maintainable and modifiable than the existing Fortran and C code. More easily maintainable code
would allow the Air Force to minimize support costs without sacrificing functionality and reliability. More
easily modifiable software would enable the AFIWC to keep pace with changing user needs as well as new
and emerging technologies. The ability to migrate the software to more powerful computer platforms was
also a sound objective for IMOM. The current industry trends and standards which could apply to IMOM
included a wide variety of technologies and tools. Clearly, the need for an open systems architecture was
an ongoing requirement for the future. In addition, the use of modern software development methods, such
as object-oriented techniques, offered substantial promise for long-term IMOM usage and support. Other
DoD and industry standards, such as the Ada programming language, were included in the INEL research
study.

As the study progressed, it became clear that there were two major factors which had a direct impact on the
design and structure of the IMOM software: the software architecture; and the programming language used
for the implementation. The deficiencies of the original software architecture, with its reliance on hardware-
specific features and operating system calls, were perpetuated in the translated C version of the code. INEL
concluded that a continuation of the original software architecture would effectively preclude any major

I-32

Appendix I: Software Support GSAM Version 3.0

improvements in the quality and maintainability of the IMOM software. Since INEL’s study was conducted
from a software engineering perspective, the role of programming language selection in support of a well-
engineered software implementation was included in their evaluation of IMOM. In this context, INEL
compared Fortran and C with Ada. As INEL applied and evaluated various software engineering principles
(i.e., abstraction, information hiding, encapsulation, modularity, etc.), it became clear that the Ada
programming language offered superior support for a re-engineered version of IMOM.

Ada also offered benefits in the application of an object-oriented design for IMOM. As part of their
evaluation of object-oriented technologies and techniques, INEL noted the importance of applying object-
oriented methods in a disciplined software engineering context, as opposed to focusing on overrated and
highly abused object-oriented programming features, such as inheritance and polymorphism. The evolution
of the various versions of IMOM proved the importance of a sound, flexible design as a key factor in
obtaining the benefits sought by the Air Force in the areas of maintainability and modifiability. From a
design perspective, as well as a software engineering perspective, Ada was a superior choice for the future
of the IMOM application. INEL’s bottom-line recommendations to the Air Force were as follows:

• Re-engineer and redesign the system,
• Use object-oriented technologies, and
• Use the Ada programming language.

I3.5.1 Re-engineering IMOM

INEL produced a Software Development Plan which set forth and documented the process by which IMOM
would be re-engineered. The Plan emphasized the use of sound software standards, such as Ada, as well as
the disciplined application of software engineering principles. The development team followed an iterative
life cycle approach, to ensure flexibility and fast response to changing user requirements. The redesign of
the software used object-oriented (OO) analysis and design techniques with an implementation in Ada. A
hybrid OO methodology was used for the analysis and design, drawing from a variety of well-known OO
methodologies offered by Rumbaugh, Booch, and Coad/Yourdon. Basically, the INEL development team
used the best features of these various methodologies and combined and adapted them to fit the requirements
of the IMOM software redesign. The result of the object-oriented redesign of IMOM was a reusable
layered software architecture. The layered nature of the new software architecture enabled INEL to clearly
define the interfaces between the layers, and implement the various pieces and subsystems of the application
in a highly modular manner. The clear delineation between layers and between modules within layers was
an explicit design goal to enable ease of maintenance and modifiability of the IMOM code.

One of the major benefits of the layered reusable software architecture was the mitigation of the risk of
using a mix of software technologies and methods. While INEL had recommended the use of solid
technologies, such as Ada, object-oriented design, UNIX, GKS, and Motif, those technologies and methods
had typically not been combined together all in the same system. The underlying software architecture
allowed the use of a hybrid solution consisting of a mix of language, architecture, methodology, and
technology.

Because of INEL’s focus on a well-engineered layered software architecture, they were able to apply a wide
variety of powerful technologies and methods in a disciplined and cost-effective manner. The variety of
techniques, methods, and technologies were applied in a controlled and well-engineered process to produce
the layered software architecture. Due to the solid success of the IMOM re-engineering effort, the Air

I-33

Appendix I: Software Support GSAM Version 3.0

Force directed the INEL to proceed with the re-engineering of the other electronic combat models. These
other programs included Ada versions of the COMJAM, PASSIVE DETECTION, and RECCE electronic
combat models. All of these models were successfully re-engineered during the 1991 - 1993 time period,
using the same layered, object-oriented architecture and Ada.

I3.6 Measures of Success — Speed of Development

Once the re-engineering effort was completed, and all of the IMOM “family” of models had been implemented
in well-engineered Ada code, an analysis was conducted to measure the success of the program. Although
IMOM users were quite satisfied, die Air Force needed to ascertain whether the fundamental IMOM goals
of improved maintainability and modifiability of the software had been achieved. Over time, software
systems which have been developed using top-down, functional decomposition approaches have experienced
significant deterioration in terms of maintainability. This is due, in part, to the effects of adding additional
capabilities and functionality, which result in substantial increases in the complexity of legacy systems. In
software systems which have not been well-engineered, new levels of complexity are introduced as defects
are corrected, leading to further deterioration of code maintainability.

The introduction of new complexity, combined with the demand for new functionality far beyond the scope
of the original design, has an extremely detrimental impact on the ease with which the code can be modified.
The Air Force recognized that the limitations of the original IMOM software architecture precluded the
implementation of well-engineered, modular upgrades to the software. Although IMOM was meeting the
current needs of its user community, the Air Force was anticipating problems which would limit
responsiveness to future user requirements.

The translation of the baseline IMOM system from Fortran to C required 54 manmonths of effort. While
most of the translation was accomplished using an automated translation tool, the final C implementation
required a significant amount of “clean up” by the development team. By comparison, the re-engineering
effort of the baseline IMOM capability from Fortran and C to Ada required 72 manmonths of effort. Both
phases of the project (translation and re-engineering) used a 4-person staff of developers. The re-engineering
of the additional derivative models in Ada required a total of 20 manmonths for all three models. These
models included the COMJAM, PASSIVE DETECTION, and RECCE models cited earlier.

At first glance, the Ada IMOM re-engineering effort appears to have required an additional 18 manmonths
of effort to deliver the same basic capability as the Fortran and C IMOM implementations. This is definitely
not the case. The re-engineering project involved the design of an entirely new software architecture, as
well as the development of highly modular, reusable Ada code. Basically, the re-engineering effort was an
investment in the future, with an expectation of leveraging off that investment to accommodate user needs
in a more cost-effective and reliable manner.

As evidence of the value and validity of that investment, the real payoff for the Air Force and INEL began
to accrue with the implementation of the Ada versions of the additional models. The actual time required
to implement each of the models in Ada was on the order of 5-6 manmonths per model. By comparison, if
each model was re-engineered from scratch, they each would have required a level of effort comparable to
the baseline IMOM system — the order of 70+ manmonths per model. This is a clear validation of the
payoffs to be achieved with a well-engineered software development effort, with a deliberate commitment
to design or maximum reuse. Although no specific metrics were collected for re-engineering, the additional
models in any language other than Ada, INEL believes that it would have required significantly more time
to implement them using Fortran or C. The end result is that, without the application of sound software

I-34

Appendix I: Software Support GSAM Version 3.0

engineering methods, including a layered, object-oriented software architecture, and Ada, each of the
additional models would likely have required the same number of manmonths as the original re-engineered
IMOM implementation.

From a user perspective, the reduction in manmonths for each new model has important ramifications: the
“ time to market” or fielding of these critical capabilities can make an enormous difference in terms of lives
and equipment or combat pilots and military mission planners. This factor is critical for most organizations,
in both military/government and commercial markets. Actual tracking of IMOM project files showed that
an interim release of the re-engineered Ada implementation contained 20% fewer defects than the C baselines.
Members of the development team attributed the use of an object-oriented design and Ada as major factors
in the reduced number of defects. The reduced defect rate was achieved even with the shorter development
time for the Ada implementations.

I3.6.1 Measures of Success — The Maintainability Index

INEL’s research study indicated that the use of well-engineered software architectures, combined with
object-oriented analysis and design, and an implementation written in Ada, would result in software that
was more maintainable than code which was developed using top-down methods written in other languages.
INEL set out to verify that the expected results and benefits had been obtained. One of the most impressive
and critical effects of the Ada re-engineering effort was the impact on the measured maintainability of the
code. The maintainability index of the IMOM Ada code was more than three times greater than the index
for the equivalent functions written in Fortran or C. This is based on several software metrics which were
collected and analyzed by the INEL development team, leading to the calculation of a “maintainability
index” for the fielded software.

INEL conducted a static analysis of the source code of the various Fortran, C, and Ada implementations.
Using PC-Metric, a source code analysis program, the development team calculated the value of two widely
known software metrics: Halstead’s effort/module; and McCabe’s cyclomatic complexity/module. These
metrics were just two factors which INEL used to assess the maintainability of the IMOM family of software.
Using the values from the Halstead and McCabe metrics, INEL then applied a set of field-proven polynomial
metrics to calculate maintainability indices for each of the IMOM baselines. The polynomial metrics were
developed at the University of Idaho and have been validated in the field by Hewlett-Packard (HP). Hewlett-
Packard has set a “maintainability cutoff” of 65 on the maintainability index. Based on HP’s experience
with software in the field, a software package with a maintainability index of less than 65 is considered to
be “difficult to maintain.” HP’s separate evaluation and independent use of the maintainability index
verified that it was applicable for HP’s software systems. INEL applied the maintainability index to the
IMOM family of software systems to provide a comparison and perspective as to the maintainability of the
Ada, Fortran, and C versions of the IMOM baseline. The Fortran and C versions showed an accelerated
decline on the maintainability index, while the Ada implementations stayed constant. The Fortran and C
versions of the IMOM software were becoming “more maintainable” as additional functionality was added.
In contrast, Ada versions of IMOM exceeded the HP cutoff value, and stayed virtually constant, even with
additional functionality being added.

I-35

Appendix I: Software Support GSAM Version 3.0

I3.6.2 Measures of Success — Software Complexity

Tracking the trends indicated by the metrics, INEL documented a dramatic increase in the complexity of
the Fortran-based models of IMOM. The trends in the Fortran models showed a nonlinear increase in
software complexity as IMOM evolved from version 4.0 to 5.0, with a corresponding projection for
continually worsening maintainability over the life of the application. For the C versions of the IMOM
baseline, the complexity was roughly the same as the Fortran implementations. This rough equivalency is
due in part to the fact that the C code was derived from the Fortran software, using the same basic software
architecture, indicating a functional equivalency between the various language implementations of IMOM.
For example, the Fortran version 4.0 is functionally equivalent to the C version 1.0, and the Ada version
1.0.

The average cyclomatic complexity (a measure of the number of paths through source code) for the Ada
IMOM baseline was slightly larger than 3, while it was more than 9 for the Fortran implementation. For the
C version, the complexity metric was greater than 13. The several-fold increase in complexity for the
Fortran and C versions in comparison to the functionally equivalent Ada code has a direct effect on the
maintainability of the respective language implementations. The maintainability of the Fortran and C code
markedly decreased over time, while the maintainability of the Ada code stayed virtually constant. The
consistency of the maintainability of the Ada code indicated a significant reduction in the complexity of
each individual module. Each IMOM baseline module written in Ada was smaller, simpler, and easier to
read and understand than the equivalent programs written in Fortran and C. The bottom-line benefit for
personnel engaged in software maintenance and modifications was that less effort was required to understand
the function and execution of each subprogram.

The Ada IMOM version 2.0 has many more functional capabilities than version 1.0. Contrary to the trends
of the Fortran and C implementations, the increased functionality in the enhanced Ada code has not increased
the complexity of the code. The cyclomatic complexity of the Ada IMOM version 2.0 had the same relative
magnitude as the Ada version 1.0, indicating that the modifications and maintenance of the code had little
impact on the complexity of the Ada software. The number of unique operators and operands in the Ada
versions of IMOM greatly increased in comparison to the Fortran implementations. The number of unique
operators were 1.8 times higher in the Ada IMOM version 1.0 than in the Fortran version 4.0, and there
were 2.5 times as many unique operands in the same Ada version. The total number of operators and
operands also nearly doubled.

One of the primary reasons for the increase in unique operators and operands in the Ada code is that the
Ada software has many more local variables, less globally accessible data, and passes many more formal
parameters between modules. These facets, in turn, are “by-products” of the object-oriented design, and
the layered reusable software architecture, where well-defined interfaces between objects, layers, and
components are required. Basically, these characteristics of the Ada code reflect the application of the
proven software engineering principles of modularity and information hiding.

Even with the additional volume of code in the Ada version of the IMOM baseline, the Halstead-estimated
effort, as a complexity indicator, was 53% less for the Ada code than it was for the equivalent Fortran
implementation. This is in spite of the fact that the Ada version has 63% more executable statements that
the Fortran version, and more than four times as many subroutines. The fact that Ada source code, unlike
many languages, is not terse, cryptic, or obscure, contributed significantly to the expanded number of
statements and subroutines. The size of the Ada modules was much smaller than the modules written in

I-36

Appendix I: Software Support GSAM Version 3.0

Fortran and C. The Fortran IMOM baseline was comprised of about 334,000 lines-of-code, with the typical
use of global data access and Fortran subroutines that is common with functionally decomposed software
designs. By comparison, the Ada implementation was comprised of 213,000 lines-of-code, which means
that the Ada modules, although more numerous, were also much smaller than the equivalent Fortran
components. The reasons for the reduced lines-of-code in the overall systems include the following:

• A significant amount of code was shared between modules,
• More streamlined implementation of required functions, and
• Changes in the functionality of the models.

The smaller code modules in Ada offer additional benefits to the Air Force in terms of maintainability and
modifiability. Smaller, easier-to-understand modules enable the use and exploitation of the reusable layered
software architecture, with explicit support for the object-oriented design employed by the INEL development
team. The Ada modules are easier to work with, test, and modify, thus facilitating the iterative software life
cycle approach chosen by the INEL team. The discrete and well-defined interfaces between modules
prevents major surprises when the software is integrated and tested — an area that is historically a major
source of delays and problems and cost increases.

Code modules of low complexity and size also have an impact on the effectiveness of all support personnel.
Additionally, the number of people required to provide support, as well as the skill and experience of the
support staff, are directly affected by the low complexity and size of the IMOM baselines. With small and
easy-to-understand modules, new maintenance personnel can be brought up to speed very quickly, with
minimal impact on the quality and responsiveness of support. Furthermore, with easy-to-understand code
packages, highly-skilled senior software engineers who are expensive and in short supply, can be much
more productive and efficient. Less senior personnel can be used to conduct routine support, error fixes,
and modifications to the code, freeing the senior staff to address more complex support requirements.
Finally, fewer people are required to provide on-going maintenance and support, with a corresponding
reduction in resource allocation and funding.

By comparison, the Fortran and C versions of IMOM, due to a significant degree to their much greater
levels of complexity, are very challenging and difficult to maintain and modify. Safe and reliable maintenance
and modification of the Fortran and C code requires the allocation of very experienced, very costly, and
very scarce software engineering talent. Even senior and experienced personnel will require much more
time to assimilate and understand the intricacies and complexity of the non-Ada implementations of IMOM.
For both government/military and commercial organizations, the ability to allocate top software talent to
areas with a higher return on investment (i.e., the design of new systems) can have a profound effect on the
efficiency of operations. In military commands, where deployment of systems like IMOM to remote areas
of the globe is common, the capability to maintain and modify critical software systems is often measured
in terms of lives and equipment. Making software easier to maintain and modify with fewer people and
with people who are less experienced provides an enormous return on investment.

From an operational perspective, the combination of the layered software architecture, object-oriented
design, and Ada has shown conclusively the effect of software as a “force multiplier” for the US military.
Without that working combination of technologies and methods, the benefits of the USAF/INEL re-
engineering effort would have been substantially reduced. INEL also studied the three additional electronic
combat models which were implemented (RECCF,, PASSRVE DETECTION, and COMJAM), to compare
results on those derivative models. The trends discovered in the IMOM baseline also showed up in all three
of the other models, including the following:

I-37

Appendix I: Software Support GSAM Version 3.0

• The Ada version contained many more modules than the Fortran implementation. This is, to a significant
degree, the result of a completely different software architecture being used for the well-engineered
Ada versions of the models.

• The Ada code modules were smaller in size than the Fortran versions. The smaller modules greatly
facilitate the understanding and maintainability of the software. The modules are easier to comprehend,
modify, and reuse.

• Each of the Ada modules is much simpler than the Fortran modules, as measured by the cyclomatic
complexity values.

I3.6.3 Measures of Success — Module Maintainability

To provide a more detailed examination of the complexity and relative maintainability of the various systems,
INEL conducted another analysis using the same polynomial model cited earlier. For this analysis, however,
instead of evaluating an entire model (i.e., all of the IMOM baseline), INEL calculated the maintainability
index for each subroutine of each software baseline. In other words, each subroutine in the Fortran, C, and
Ada IMOM baselines was evaluated, and a maintainability index calculated. Once each subroutine in each
of the various IMOM baselines was evaluated and a maintainability index calculated, the modules were
then categorized according to their respective maintainability values. Modules with a maintainability index
of less than 65 (deemed unmaintainable by Hewlett-Packard) were categorized as “low.” Modules with a
maintainability index between 65 and 85 were ranked as “medium.” Modules with a maintainability index
higher than 85 were rated as “high.” The Ada modules in the implementations of the various IMOM
models were substantially more maintainable than the modules written in either Fortran or C. Generally,
nearly two-thirds of all of the Ada modules rank in the “high maintainability” category. Conversely, around
half of all of the modules written in Fortran and C are rated as “low maintainability.”

There was also a downward trend in maintainability as the Fortran and C versions were modified and
additional functionality was added. In both the Fortran and C implementations, the number of modules
which fell into the “low maintainability” category increased over time. Conversely, the number of Ada
modules which were rated for high maintainability remained relatively constant over time and with additional
functionality. The INEL development team attributed the benefits of the Ada versions of IMOM to the
emphasis on sound software engineering, the use of the layered software architecture, the application of
object-oriented design, and the stability, clarity, and software engineering support of Ada.

I3.7 Software Reuse

Software reuse does not enjoy a commonly accepted definition. Basically, “reuse” means many different
things to different people, depending on their area of expertise, technical background, etc. The premise and
promise of software reuse has been analogous to a technical “holy grail” for many years. The DoD and
other government agencies, as well as major commercial enterprises, have pursued high degrees of software
reuse as a means of lowering software costs, increasing productivity, improving reliability, and leveraging
investments in software. Unfortunately, the promise of software reuse has not been widely attained, due to
a variety of factors and impediments.

The INEL development team was able to amply demonstrate that software reuse is not a myth, and that
significant levels of reuse can be obtained, with corresponding benefits to both developers and users. As a
foundation for obtaining substantive reuse, the underlying software architecture and software design are

I-38

Appendix I: Software Support GSAM Version 3.0

critical. The INEL team designed the Ada IMOM baseline with reuse in mind, with the expectation of
reusing significant amounts of code as new models were added to the IMOM family. The layered software
architecture was a key element in the attainment of high degrees of reuse in the re-engineered Ada
implementations of the IMOM family of models. The INEL development team, knowing that additional
models and functionality would be required beyond the initial IMOM baseline, planned their software
architecture accordingly. They structured the layers to enable high levels of reuse within the domain-
specific portions of the applications, an used layered “application frameworks” to leverage their investment
in common interfaces.

For example, by planning for and designing the system for reuse, INEL was able to develop common user
interfaces (man-machine interfaces, or MMI) which could be reused for all of the IMOM models. Because
of the structured, object-oriented layers of their design, the development team was able to simply concentrate
on the engineering algorithms of each new model or function (RECCE, PASSIVE DETECTION, and
COMJAM), without concern for the underlying software architecture and MMI.

The layers also provide insight into the “type” of reuse attained. Basically, reuse can be separated into two
general categories: domain-specific, and general purpose. Using the “Application Layer” as an example,
there was significant reuse across that layer which was domain-specific to the IMOM models. INEL achieved
high levels of reuse in both the domain-specific and general purpose layers of the ECSI effort. The middle
layers were analogous to “application generators” and were reused throughout every layer. For example,
the “Interface Layer” provided reusable code which could be applied throughout the vertical range of
layers. These generic reuse capabilities can provide powerful advantages for users and development teams,
for requirements such as mapping tools. By reusing the common constructs for maps (i.e., bearing, heading,
coordinates, etc.) the INEL team has established a generic mapping tool with a general applicability for a
wide variety of domains. By using this tool, a developer would be able to quickly produce a capability
equivalent to a software program of 50,000 to 100,000 lines-of-code. The tool has the additional advantage
of being comprised of code which has already been tested and fielded.

Generally, INEL realized a “reuse rate” 65% which means that 65% of the Ada code modules were reused
in one or more applications. The savings which resulted were impressive: without that level of reuse, each
of the three IMOM models (other than the baseline) would have required at least another 100,000 lines of
new code. Stated another way, a less structured and disciplined approach would have necessitated a minimum
of 300,000 lines of additional new code development. The impact on productivity and “time to market” is
the most obvious benefit of the reuse rates achieved by the development team. There was also a substantial
benefit which accrued due to the reduction in testing and integration, since the reused modules had already
been through that process. The reduction in risk, due to the virtual elimination of the new errors that would
have occurred with the development of new code, was also noteworthy. The bottom line for the reuse of
Ada code in the various IMOM models can be summed up with this observation by a representative of the
INEL development team:

Due to the insight and foresight of the Air Force, we were encouraged to apply sound software engineering
rigor and discipline. We were allowed to apply the appropriate methods in the up-front engineering of the
system, to ensure a payoff to users in the future. If we had not been able to design for reuse, and actually
take advantage of reused Ada code on this project, each of the derivative models would have taken
significantly more time to develop. The results achieved on ECSI are a validation of the benefits and return
on investment h can be realized by applying a soundly engineered mix of technologies and methods.

If a poor process had been employed for ECSI, and sound software engineering had not been used, each of
the three additional models (COMJAM, RECCE, and PASSIVE DETECTION) would have required 72

I-39

Appendix I: Software Support GSAM Version 3.0

manmonths of development time, for a total of 216 manmonths. By taking advantage of Ada code reuse (in
support of the engineering process used by INEL), all three of those models were implemented in a total of
20 manmonths — less than one-tenth of the time without reuse.

As most software engineers and managers know, reuse can be achieved with software designs, as well as
actual code. One of the highest payoffs can be achieved by reusing are designs, including object-oriented
designs. INEL recognized during the analysis phase of their effort that each of the four IMOM models had
a wide variety of components which could be shared among the models. Each of the applications contained
common or similar user interfaces, modeling algorithms, graphics, and electronic components. During the
design phase, the development team focused on determining the appropriate abstraction for each object
class and its respective role within each IMOM model. The level of reuse for each object was directly
linked to its role within the various models. Some object classes had the potential for reuse outside the
electronic combat application domain, others could be shared by two or more of the IMOM models, and
others were highly specialized and specific to a particular role within a single model. By evaluating the
specificity of the various object classes, the INEL development team was able to make decisions as to when
to design for broad reuse (i.e., outside the electronic combat domain) and when to limit the design to a
specific IMOM model. The development team discovered that most object classes in the IMOM domain
were conceptually the same although their characteristics and roles within each of the models were different.
When those differences were relatively minor, an object class was designed which would meet the multiple
requirements. Even with the broader requirements, this approach added little additional complexity to the
object classes.

The results of this approach were impressive. Interim releases of the four IMOM models indicate the
benefits to be derived — the four models in those releases had approximately 112 object classes, of which
73 were shared between two or more software systems. Each class had an average of 1,200 lines of
commented source code. There were 11 algorithmic or interface libraries which are shared between the
models. INEL discovered that reuse is not the general panacea which is often touted as a goal for software
development. For certain types of problems, and within specific application domains, reuse can improve
the quality of software and enhance the development process. The greatest reuse is possible when sharing
objects within the same specific application domain by a single software development team. Beyond those
parameters, object reuse is still quite difficult to achieve.

I3.7.1 The Benefits of Ada

Throughout this monograph, the benefits of Ada in terms of its explicit support for software engineering
discipline and object-oriented design have been cited as major factors in the success of the USAF/INEL
project. The Ada language features provided excellent support for the implementation of the layered software
architecture, as well as the attainment of significant levels of code reuse. Furthermore, Ada’s strong typing,
parameter checking in subroutine calls, and array constraints contributed to the benefits achieved in the
ECSI program. In addition to these powerful attributes and benefits, the clarity of Ada source code and the
benefits of that characteristic must be specifically cited. The names of variables used in the Ada IMOM
baseline are more descriptive of the actual items or phenomena being represented than comparable
representations in the Fortran version. The Fortran baseline used primarily six character identifiers for
variables and subroutine names, a limitation which was carried over to the C-based translation. The
descriptors in the Ada version allowed the “real world” to be more accurately represented in the actual
source code. The C version of the IMOM baseline was just as terse as the Fortran version, due to the fact
that the C code was translated from the Fortran and retained the same brevity for variable names. C has

I-40

Appendix I: Software Support GSAM Version 3.0

earned a reputation for being more terse than other programming languages, so it can reasonably be expected
that a new version of IMOM written in C would still include terse names for variables.

The additional clarity of the Ada source code pays substantial dividends in the areas of maintenance and
modification of the software. Maintenance personnel are able to relate or “tie” Ada source code to design
documents and change requests more effectively and efficiently than with comparable Fortran and C
implementations. The clear and descriptive nature of variable names in Ada help significantly in reducing
error rates and the introduction of new defects during code maintenance and modification operations. Ada’s
package construct also supports the use of layered, object-oriented, flexible software architectures. The
Ada package basically consists of two parts: the package specification and the package body. The
specification part of the package enables a sound engineering implementation of the software requirement,
through its support of encapsulation, information hiding, abstraction, etc. Interfaces between packages are
specified and verified before the package body is written. The inputs, outputs, and assumptions for each
package are clearly delineated and established. The package specification provides a great deal of information
to maintenance personnel, akin to a high-level summary of the characteristics of the package. In addition to
defining module interfaces, package specifications also offer essential insights to the humans who must be
able to understand the inner workings of the software modules to be able to maintain and modify the code
in a reliable, cost-effective manner. Neither Fortran nor C provide any comparable capabilities to the Ada
package specification. The clarity of Ada source code (Ada code is written in English, as opposed to
obscure symbols and other representations, and resembles a structured English outline), combined with the
structured nature of its package specifications, has a profound effect on documentation and software reuse.
By minimizing the complexity and size of Ada code modules, Ada software implementations become virtually
“self documenting” due to the explicit representation of the function and interfaces of the respective modules.
The extensive information included as part of the package specification enables developers to ascertain the
potential for the reuse of existing modules in other applications, without having to delve into the source
code of the package body itself. The improvements in efficiency, accuracy, and productivity are substantial.

The INEL development team discovered that the learning curve for Ada is far less than perceived. The
team was able to assimilate fundamental Ada constructs within a minimal period of time. Furthermore, the
team was able to use and apply engineering discipline and methods using specific features of the Ada
language. As the INEL team noted, “You do not have to use all of the features of Ada to make effective use
of the language.”

I3.7.2 Ada and COTS

As mentioned in the Executive Summery policy requires the use of commercial-off-the-shelf (COTS) software
whenever they will satisfy requirements. For those applications where COTS is inadequate to meet DoD
needs, new software must be developed in Ada. The USAF/INEL re-engineering project had some valuable
experiences in effectively applying that policy. Many of the “COTS or Ada” decisions for the IMOM
models were obvious. For example, INEL did nor want to write its own operating system, or its own
version of UNIX or Motif/X, Similarly, existing software interfaces or drivers to peripheral devices did not
warrant the development of new Ada code. The flexibility of the layered object-oriented software architecture
enabled the development team to mix and match the appropriate technologies and tools without sacrificing
maintainability and the ability to add new functionality. To meet the requirements of IMOM users, the
INEL team had to develop two “spin-off” products: the Data Stream Analyzer and FormBuilder. The Data
Stream Analyzer was basically a generic parser which translated data from one format to another. This is a

I-41

Appendix I: Software Support GSAM Version 3.0

valuable and essential capability for IMOM users, since different sources provide data in different formats.
The Data Stream Analyzer takes care of converting differing formats into one which can be accepted by the
various IMOM models.

In the case of the FormBuilder, the Air Force and INEL both knew that there were several COTS products
on the market which provided the capability which was needed. The basic requirement was for an application
programmers interface for developing Motif-based graphical user interfaces (GUls). At first glance, it
appeared that simply buying a COTS form-building tool would be the best choice for the Air Force, and in
keeping with DoD policy. Fortunately for the Air Force (and the taxpayer), INEL went beyond a “first
glance” evaluation. The INEL team used GKS (Graphical Kernel System) for a significant length of time
on the ECSI project. Although GKS is a standard, the implementations of the standard by commercial
vendors are not consistent. By using commercial product implementations of GKS, INEL and the Air
Force were dependent on product changes and support from vendors, who were subject to commercial
market influences and different business goals. This risk was realized by the development team when the
vendor of the GKS product being used for the ECSI project suddenly decided to discontinue marketing and
supporting their implementation. INEL also did not want the Air Force to be subjected to the additional
cost of GKS runtime licenses, so the development team built their own graphics package, called FBGraphics.
For the Motif-specific requirement, INEL discovered that many COTS form-building tools worked effectively,
and provided the capability to develop GUIs for applications. However, the tools all generated substantial
amounts of code which was Motif-specific. This Motif-specific code, while performing the GUI tasks
required for an application, was not itself readable or maintainable. INEL was thus able to justify the
development of a FormBuilder written in Ada, which did not have the overhead of licensing fees and the
generation of unmaintainable code. The development team required only two months to develop the Ada-
based capability.

While the policy of “COTS first, Ada second” makes sense or many applications, there are significant
hidden costs and other factors which need to be considered. For example, configuration management (CM)
of an application can become a nightmare for program managers and maintenance personnel, if multiple
COTS products are incorporated into a system like IMOM. As COTS vendors make changes and offer new
releases, the impact of those changes can have serious and unforeseen effects on the rest of the system. If
a fielded system uses several COTS products, the CM problems can be rapidly compounded over time.
When evaluating a choice between COTS capabilities and new Ada software, decision makers must take
into account much more than just the perceived “up-front” costs. In the case of the IMOM effort, INEL
only required two months to produce a capability which could have been superficially satisfied by a COTS
product, but the COTS solution would have been a serious detriment to the maintainability and modifiability
of the IMOM models over time.

The IMOM family of models also required a database management system (DBMS) capability to meet user
needs. In keeping with DoD’s “COTS first” policy, it has become popular and common for program managers
to pursue the use of commercial database management products, especially relational DBMS capabilities.
For the ECSI effort, the INEL team evaluated the efficacy of using a COTS DBMS versus writing the
appropriate capability from scratch. Their solution for DBMS for ECSI was straightforward and easy to
maintain, and consisted of ASCII flat files. This solution met user needs, and saved the Air Force substantial
time and development resources.

I-42

Appendix I: Software Support GSAM Version 3.0

I3.7.3 Dual-Use Potential

Since the software developed for the IMOM models has been paid for by the US Government, some of it is
“ in the public domain” and available for use by other government agencies and private enterprises. Some
of the code has obvious commercial applicability and reuse potential, while other pieces of the IMOM
applications are limited to specific domains. Clearly, the Data Stream Analyzer and FormBuilder tools are
ideally suited for commercialization and exploitation by private companies. Similarly, other government
organizations can derive substantial benefits from the use of these “free” tools. The user interfaces and
graphical capabilities of the IMOM implementations have widespread generic applicability. The point and
click nature of the user interface, along with the color capabilities of the various representations, are common
features in most modern commercial systems. As an example of possible dual-use applicability, the generic
mapping “application generator” cited earlier could be used by some commercial developers. Commercial
developers who require basic mapping functions, as well as state and local governments engaged in economic
development programs, are examples of organizations who could benefit from mapping software which is
well-engineered and implemented in an international standard programming language. Other industries,
such as aviation, marine, oil exploration, and land management/industrial planning operations could also
make use of this generic capability.

By virtue of the partnership between the Air Force and the Department of Energy’s INEL, the process of
dual use has already begun. The INEL has, as part of its mission, the transfer of technology to the commercial
sector. Many significant software capabilities embodied in the IMOM models offer valuable features and
benefits for commercial exploitation and use.

I3.8 Summary

The IMOM re-engineering project provides valuable lessons for both government and commercial software
developers and decision makers. As modern systems continue to grow in size and complexity, the critical
nature of well-engineered software in the success and survival of virtually all organizations is becoming
more pronounced. The intelligent selection and application of solid methods and technologies are essential
facets for progress. Key decisions related to the migration from legacy systems to more powerful distributed
client/server architecture require sound justifications. The cost of maintaining and modifying legacy software
is a critical factor in justifying a re-engineering effort. The “hidden” costs of providing adequate capabilities
to the user base are often substantially higher than the explicitly measured costs of support.

The IMOM re-engineering project provided conclusive lessons as to the importance of software architecture
in achieving significant software-related benefits. The program also showed that the application of object-
oriented methods, in the context of a disciplined software engineering process, can deliver major gains in
reuse, productivity, and maintainability. Finally, the IMOM re-engineering effort showed the value of Ada
in obtaining maximum payoffs from an investment in software engineering practices. The benefits achieved
in applying sound software engineering principles were multiplied by the explicit support that Ada provides
for that disciplined approach. Simply stated, the magnitude of the benefits obtained would have been
substantially lower if another programming language had been used. The IMOM formula for success was:
Good people, with knowledgeable managers applying sound software engineering methods, implementing
in Ada, with the needs of the user as the objective. That formula works for all segments of the global
software community.

I-43

Appendix I: Software Support GSAM Version 3.0

I3.9 Bibliography

Coleman, D., “Assessing Maintainability,” 1992 Software Engineering Productivity Conference Proceedings,
Hewlett-Packard, 1992, pp. 525-532

Idaho National Engineering Laboratory, “Improved Many-On-Many (IMOM) Model Research Study,” EGG-
EE-9555, Rev. 0, May 1991

Oman, P. and J. Hagemeister, “Construction and Validation of Polynomials for Predicting Software
Maintainability,” Software Engineering Tet Lab, Report #92-06 TR, University of Idaho, July 1992

Welker, K., M. Snyder, and J. Goetsch, “Ada Electronic Combat Modeling Experience Report,” Presented
at OOPSLA ’93

Welker, K., “Application of Software Metrics to Object-Based, Re-engineered Code Implemented in Ada,”
Masters Thesis, University of Idaho, April 1994

Welker. K. and M. Snyder, “Electronic Combat Model Re-engineering,” ECSI Project briefing slides, 1994

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix J

SWSC Domain
Engineering
Lessons-Learned

Appendix J: SWSC Domain Engineering Lessons-Learned GSAM Version 3.0

J-2

Contents

J.1 SWSC Domain Engineering Lessons-Learned...J-3
J.2 References..J-6

Appendix J: SWSC Domain Engineering Lessons-Learned GSAM Version 3.0

J-3

J.1 SWSC Domain Engineering Lessons-Learned

The Space and Warning Systems Center (SWSC) domain engineering team presented their lessons-
learned from two years experience on the Space Command and Control Architectural Infrastructure
(SCAI) re-engineering program in April 1995 at the Software Technology Conference, Salt Lake City,
Utah. The SWSC at Cheyenne Mountain, Colorado, maintains and modifies C2 systems for US. Space
Command, North American Aerospace Defense Command (NORAD), and Air Force Space Command
(AFSPC). These systems are comprised of 26 stovepipe systems, 12 million lines-of-code, 24 different
languages, 34 separate operating systems, and numerous proprietary hardware and software components
— all having complicated software support environments, as illustrated in Figure J-1. This maintainer’s
nightmare was fertile ground for architecture-based domain engineering.

Figure J-1. SWSC Software Re-engineering Environment [BULAT95]

The SCAI Project is using the domain engineering approach developed by the Software Technology for
Adaptable and Reliable Systems (STARS) program called megaprogramming. They used domain
analysis to create a domain-specific architecture to which all individual systems in the domain are
mapped to ensure product-line software reuse, as illustrated in Figure J-2.

(Event Detection) Cheyenne Mountain

(Correlation)

(Response)

CINC Mobile Alternate HQ

CMAH

Missile Space

C&C

Air

Appendix J: SWSC Domain Engineering Lessons-Learned GSAM Version 3.0

J-4

Figure J-2. SWSC Domain Engineering Approach [BULAT95]

The architecture developed for the SCAI program is decomposed into a layered domain requirements
model (DRM) and a set of application architectural models (AAM)s. The current scope of the DRM is
the SWSC space domain; each AAM is specific to one system in the domain. The layered DRM is a
modified Booch-type model, while the AAM is a network topology model and a mapping of application
tasks to machines. [BOOCH94] These models comprise the SCAI domain architecture, as illustrated in
Figure J-3.

Figure J-3. Domain/Application Model Relationship [BULAT95]

Mission
Message Handling
Displays
Database Access
System Services
COTS

Missile
Warning Space Weather

Sensor
Gateway Air Intel

System
Services

Message
Handling
Services

Data
Management

Services

User
Interface
Services

Command & Control Architecture Infrastructure

DoD TAFIM-Compliant COTS Software

COTS Hardware

Manual Orbit Mission

Sys_B Launch
Mission

DAF
Common

Domain

Application
Requirements Model

Event Layer

Application Layer

SATObs Sensor

Domain Classes

Application Classes

Generic
Launch Mission

T

Domain OSDs
Application OSDs

Used by

Sys_C

Sys_B

Sys_ASys_B

Sys_A

Template Use

Inherit

Comm

Computer C

Task A

Computer A

Task B

Computer B

Task C

Map Launch Scenario OSD to Task A
Map Manual Orbit Detection to Task B
Map Display Processing to Task C

Application B

Comm

Single Computer

Task A

Map Generic Launch Scenario OSD to Task A

Application C

Application Architecture Models

Appendix J: SWSC Domain Engineering Lessons-Learned GSAM Version 3.0

J-5

The SCAI is using a product-line software development approach which implements two software life
cycles: one life cycle where generalized domain products are developed, and a parallel life cycle where
individual applications are constructed from domain life cycle products, as illustrated in Figure J-4.
Obviously, domain products must exist prior to their use in the application. The problems the team
encountered associated with the requirement for prior construction of all domain components were:

• There were substantial up-front domain engineering costs not associated with developing any product.
(As DoD shrinks, these costs are increasingly difficult to justify.)

• Generalized models and generalized components can only be validated through their use on real
systems. Even within a single system, a reusable class must be validated in each of the contexts in
which it is used. Monolithic waterfall systems development has largely been discredited vis-à-vis
more iterative approaches to modeling and systems development.

• A large domain, such as C2, may contain many complex systems. In spite of the fact that all these
systems have much in common, it is unlikely that domain engineering can be initially accomplished
within the scope of every one of these systems before the need to deliver the first re-architected
system occurs.

Figure J-4. Iterative Two Life Cycle Domain/Application Engineering Process [BULAT95]

For the above reasons, the domain engineering process must allow for the iterative acquisition of domain
knowledge. The SCAI architecture framework was constructed from processes which are inherently
iterative; therefore, the overall process is iterative. As new systems are analyzed and the scope of the
DRM is extended, more domain missions are identified, new classes are created, and existing classes are
generalized. Newly generalized classes are then reinserted into existing missions and retested.

SWSC’s goal is to demonstrate that domain engineering will increase software quality, while decreasing
the cost of developing and maintaining families of related SWSC C2 systems. As of January 1995, the
first intermediate delivery of the SCAI system (the service layer) indicated that over 50% of the code was
reused or had been generated. Table J-1 illustrates the program costs for each release (both actual and
adjusted) and the amount of program code delivered at the end of each release. It shows the incremental
cost per line-of-code, the cumulative program cost, and the cumulative cost per line for each release. The
last column shows how initial costs are amortized. As more and more code is developed using the
megaprogramming approach, it becomes increasingly cheaper.

Domain Engineering

Application Engineering

Domain Management

Domain
Analysis

Domain Requirements Domain Architectural Domain Reusable
Components & GeneratorsModelModel

New

System

Existing
System
Artifacts

New System

Requirements

Domain
Design

Domain
Implementation

Requirements
Analysis

System
Design

System
Implementation

Appendix J: SWSC Domain Engineering Lessons-Learned GSAM Version 3.0

J-6

SCAI

PROGRAM
EXPENDITURES

($Millions)

ADJUSTED
COST*

($Millions)
INCREMENTAL

LOC
INCREMENTAL

COST/LOC

CUMULATIVE
COST

($Millions)
CUMULATIVE

COST/LOC

Pilot $2.9 $14.0 125K $112.0 $14.0 $112.0

Release 1 $3.4 $8.5 267K $32.0 $22.5 $57.0

Release 2** $2.6 $6.5 230K $28.0 $29.0 $47.0

Release 3** $2.0 $.50 150K $33.0 $34.0 $44.0

TOTALS $10.0 $34.0 772K

* Values adjusted to full life cycle cost plus prior domain work.
** Estimated.

Table J-1. SCAI Cost with Megaprogramming

J.2 References

[BOOCH94] Booch, Grady and Doug Bryan, Software Engineering with Ada, Third Edition,
Benjamin/Cummings Publishing Company, Redwood City, California, 1994

[BULAT95] Bulat, Brian G., “Space & Warning Systems Center Domain Engineering Experiences,”
paper presented to the Seventh Annual Software Technology Conference, Salt Lake City, Utah, 1995

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix K

A Correlation Study
of the CMMSM and
the Software
Development
Performance

K-2

Appendix K: Study of the CMM and Software Development Performance GSAM Version 3.0

Content
K.1 Introduction ..K-3

K.1.1 Background...K-3
K.2 Setting the Goal...K-3
K.3 Training ...K-4
K.4 More Setting the Goal..K-5
K.5 PMIP ..K-5

K.5.1 Practitioner Involvement ..K-6
K.5.2 Supervisor Responsibilities ..K-6
K.5.3 Establishing Organizational Policy ..K-6
K.5.4 Management Reviews...K-7
K.5.6 SQA Process Auditing ..K-8

K.6 Summary ...K-9
K.7 About The Author ..K-10

K-3

Appendix K: Study of the CMM and Software Development Performance GSAM Version 3.0

K.1 Introduction

The following article is an attempt to answer the question, “How did you achieve a level 3 rating?” I was
the Software Engineering Process Group (SEPG) Team Leader from 1992 until the present time. This
article is written from my perspective. When you finish reading this article, I hope you realize that achieving
Level 3 status is dependent on people. It is not a matter of following a technical formula to achieve success.

K.1.1 Background

From the early 1970s through 1989, all software effort was performed in either the Maintenance Directorate
or the Material Management Directorate. In the late 80’s and early 90’s, we and all other Air Logistics
Centers experienced several reorganizations. The effect of these reorganizations was to destroy the
infrastructure that supported the software maintenance effort.

When we conducted our first software process assessment in September 1991, we were rated as a Level 1
organization. However, the data showed a surprising amount of strength in both Level 2 and Level 3 key
process areas in some parts of the organization. It was obvious from the results of the assessment that
software organization fragmentation was a significant weakness. However, the concern of the SM-ALC
Commander was that we not optimize software at the expense of our overall weapon system support. For
this reason, we were directed to not consider consolidation as one of our recommendations. The concept of
consolidation was not dead though, and within a couple of months, we were directed to participate in a
study to determine how software maintenance should be organized at SM-ALC. The group conducting that
study eventually recommended that the fragmented software groups needed to be consolidated. As a result
of that study, the SM-ALC Commander in November of 1992 approved the consolidation of all maintenance
software organizations into one Division, TIS. In January 1993, SM-ALC/TIS was created. In March
1993, people were transferred into the Division from their previous organizations.

K.2 Setting the Goal

Shortly before official creation of the new software division, the TI Director took the TIS Division Chief,
and the Deputy Division Chief with him on a visit to the TIS software division at Ogden Air Logistics
Center, Hill AFB, Utah. On the way back home, the TI Director shared the following with the TIS leaders:
“My vision for you is that your division will become the Software Engineering Process Center of Excellence
for the Department of Defense!” He told them to consider how the organization at Hill AFB was progressing
and do it better.

Shortly after TIS was officially formed and people were transferred into the organization, the Division
Chief directed that all TIS supervisors and SEPG members participate in a 3-day team building session. I
think that the Division Chief felt that his team building session had been successful. Many of us, including
the SEPG, walked away from that exercise feeling very abused.

Through the SEPG, the Division Chief met with a consultant from SEI. He was advised to have the
organization’s leaders develop a written Strategic Plan that would include a statement of their vision, mission,
principles, values, goals, objectives, strategies, and targets. The Division Chief then convened the division
leadership once each week to establish the Software Engineering Division’s Strategic Plan. While establishing

K-4

Appendix K: Study of the CMM and Software Development Performance GSAM Version 3.0

the written vision and mission statements was not too hard, establishing the principles, values, goals,
objectives, strategies, and targets was much more difficult. As more detail was added to the goals, it
became obvious that people were not going to continue doing business the same old way. As this realization
took place, discussions became more heated, and resistance increased. After a lot of discussion, the Division’s
goals were captured in print.

Objective 3 of goal Number 1 stated that the division would achieve a CMMSM Level 2 maturity by October
1993. Objective 4 of goal Number 1 indicated that the division would achieve a CMMSM Level 3 maturity
by October 1994. The entire TIS management team established reaching Level 2 maturity as the highest
priority objective for the division.

It became apparent to the Division Chief as the summer of 1993 wore on that nothing was really happening.
Level 2 was an objective, but there was no evidence that any of the supervisors were taking any steps to
incorporate Level 2 practices in their day-to-day activities. The common excuse was that they had too
many fires they were fighting and were unable to do any “CMMSM things.”

During the August to November 1993 time frame, the Division Chief informed all supervisors that their
personal performance plans had been rewritten by him. In those plans, they were given the opportunity to
establish CMMSM Level 2 practices in their areas of responsibility. To exceed the standards of performance,
they were given calendar dates to have certain practices in place. To be fully successful, they were given a
second set of dates. June 1994 was the cut off date to be fully successful on all of the performance standards.

As the Division Chief continued to work with the Division leadership, he found a common theme among all
of them. I characterize this common theme as follows:

“What does it mean to be level 2? What does it look like? What do supervisors do? What does it mean to
‘organize, train, and equip?’ Do I want to be a supervisor?” Supervisors literally did not know what to do.
They were all working hard, fighting a constant barrage of “fires.” On top of all of that, they were being
told they had to operate at something called Level 2. Many began to question if they really wanted to
continue being supervisors.

K.3 Training

In late August 1993, the Division Chief asked the SEPG to obtain training on all the CMMSM Level 2 key
process areas for the Division. At this point in time, the SEPG consisted of 2 people. I was not happy to be
given this task as I had what I thought were more important issues upon which to work. This tasking
absorbed most of my time for the next 4 months. We did a fly-off between several vendors and settled on
Fastrak Training, Inc. as the source of our training.

From September 1993 through July 1994, we trained approximately 100 people in the Division in the areas
of requirements management, project management, configuration management, and quality assurance. In
retrospect, one group that should have received this training was the first and second level supervisors —
but, they did not. As a result, when we involved the supervisors in management reviews later on, they were
not prepared to talk the same language as all of those who had been trained in the formal courses. They did
not understand what their project managers had been trained to do, or what their own role was.

K-5

Appendix K: Study of the CMM and Software Development Performance GSAM Version 3.0

We did try to train the management by providing one course in project management for supervisors. Every
supervisor was required to attend this week long course. Most supervisors did not want to be present. A
year later, most supervisors did not remember ever having been in this class. They were not prepared to
participate in such a class. Most felt that they had been to all the management courses they needed and they
knew everything they needed to know about being a supervisor. A year later, they would be claiming that
they needed to have the same training as their project managers had received.

K.4 More Setting the Goal

By January 1994, the Division Chief was not sleeping very well. He realized that as a Division we were not
progressing fast enough. He was well aware that McClellan AFB was being considered as a candidate for
closure once again. Our Commander had clearly stated that we all needed to take extraordinary measures
to change the way we did business if we were going to survive. So, the Division Chief established a project
and project leader to help the organization speed up its metamorphosis. The Division Chief also indicated
that we were to arrange to have a Software Process Assessment performed in October 1994. He again
stated, we are going to become a Level 2 organization and then we are going to become a Level 3 organization.
He said that by October 1994, he wanted the organization to be Level 2, a one year slip from the objective
stated in the TIS Strategic Plan.

K.5 PMIP

Thus was born a project that we would later name the Process Maturity Implementation Project (or PMIP).
The project leader rapidly put together a plan for how he was going to approach this project. The Division
Chief had indicated that the project leader was to work with the SEPG in accomplishing his project. As the
leader of the SEPG, I was very irritated that the Division Chief had established a separate project and
named a project leader that did not have any training in process improvement work. I really did not want to
work with the project leader. It seemed to me that the Division Chief was showing utter disregard for the
SEPG. I had tried many times to obtain additional members for the SEPG so we could more effectively
help the organization, but every time, the Division Chief had failed to provide the requested help. By
creating the PMIP project he had put additional resources on the task and then taken the process improvement
effort away from the SEPG. It was also distressing to observe the project leader and realize that both he and
the Division Chief were continuing to act in a Level 1 way while they were telling the organization that they
must become Level 2.

At this point I had to make some personal decisions about how I was going to act. I began to realize that
maybe I could turn this situation into an advantage in order to achieve what we had originally been
commissioned to do. I recognized that I was a flaming introvert. I watched the project leader and realized
that he was acting much more like an extrovert. So I decided to work with the project leader. I supported
him in going out and doing all of the interfacing with masses of people in the organization. On the other
hand, I knew some things we needed to do in order to get to Level 2. We eventually worked things out
between us that I would do much of the behind the scenes work and he would do much of the visible effort.
He also provided another benefit. He acted as a buffer between the Division Chief and the SEPG. I could
discuss ideas with the project leader and when he understood them, he could then introduce them to the
Division Chief. Through this process and over a period of time, the credibility of the SEPG increased.

K-6

Appendix K: Study of the CMM and Software Development Performance GSAM Version 3.0

As time went on, the project leader and I established a good working relationship. I put aside my irritation
and tried to use the situation to the best advantage for the organization. The project leader had an impossible
task given to him, but he, and the organization were successful in achieving even more than they had set out
to accomplish. After this, several things began to happen in parallel. I will discuss them one at a time.

K.5.1 Practitioner Involvement

The project leader established project leader councils. Each council consisted of representatives from
specific sub-organizations and they were tasked to produce a set of strawman or template work products
that could be used as starting points for each project. These strawman work products consisted of things
like the software development plan (SDP). Strawman work products were produced to satisfy every key
process in each of the Level 2 key process areas. All of the project leaders and practitioners in TIS are to be
commended for the efforts they made that contributed to the overall effort to achieve Level 2. Every one of
them took these tasks on themselves on top of heavy project work loads and pressures from their customers.
In addition to the effort required to develop the strawman work products, they also then turned around and
instantiated those work products for their own projects. This process of involving practitioners in these
councils resulted in the following benefits for the organization:

1. Cross pollination and sharing of ideas was fostered.
2. Communication between practitioners in different Flights was fostered.
3. Documented strawman work products were obtained.
4. The documented strawman work products became a starting point for project leaders to develop final

work products. This resulted in more commonality in similar work products and reduced total time
spent across the Division in developing the work products.

5. An archive of strawman work products was created.

K.5.2 Supervisor Responsibilities

In the April 1994 time frame, the Division Chief indicated to me that after a number of meetings throughout
the Division, he was convinced that the supervisors did not know what they should be doing under the
CMMSM practices we were telling everyone they had to follow. He asked if I could prepare something that
would describe what the supervisors needed to do to satisfy the CMM.SM In retrospect, this was a turning
point in our efforts to start a cultural change in our organization.

I extracted all of the supervisor responsibilities from the CMMSM and put them in a separate document. I
produced a matrix that indicated each of their responsibilities and how often they needed to perform that
responsibility. In this document, we began to lay the foundation for one of the key supervisor responsibilities:
having regular formalized reviews of all of their projects.

K.5.3 Establishing Organizational Policy

One of the responsibilities that appeared on the supervisor’s list required them to establish organizational
policy. After several weeks, it became apparent that they were never going to have the time to do this and
they also did not know what they needed to put into the policy. At this point I had to give up another
principle I thought I had learned from the SEI in our early SEPG training. My understanding was that the
SEPG was supposed to encourage others to do things. All we were supposed to do was stand by and

K-7

Appendix K: Study of the CMM and Software Development Performance GSAM Version 3.0

provide consulting services when asked. I got fed up with that mode of operation — it didn’t work in our
environment. I knew I could write the necessary policy, and I finally volunteered to write the first policy.

I wrote the policy for project tracking and oversight very cautiously, very much aware of the resistance in
the organization. When the policy was provided to the supervisors, we agreed that they would have one
week to review it. After one week, I was to take all comments received and make any necessary revisions.
The revised policy was to be given to the Division Chief to review and provide me his requested changes.
I would then incorporate his changes, give him a final copy to sign, and then provide copies to the Flight
Chiefs in their next staff meeting.

During the development of these policies, the supervisors were very concerned about how changes could be
proposed and made to the policies. It became apparent that we needed a formal way to control the
configuration of these documents. We therefore established a Division Software Configuration Control
Board, with part of its responsibility to control changes to Division policy.

It was during this period that stress levels began to increase tremendously. People were very obviously on
edge and, as a Division, I am sure we helped support a number of doctors with stress related illnesses and
symptoms. Others decided that they had enough for one lifetime and prepared to retire as soon as they
could.

K.5.4 Management Reviews

As supervisors were told their role was to organize, train, and equip, they became increasingly restless.
They wondered what their role really was. They felt that they were being told that they could no longer do
that which they had the most experience doing: working on technical projects.

One identified supervisor responsibility included in our policies required them to hold regular management
reviews of all projects in their organization. Many were unclear about why that was important and did not
know what to review. We produced a simple graphic that showed three boxes arranged in a triangle. One
of the boxes was labeled “Project Leader Activities.” Another was labeled “SQA Audits” and the last one
was labeled “Management Reviews.” We explained that there were three key elements that had to be
functioning for the organization to be able to achieve Level 2 status. Each of the three, as represented on
the diagram, had to function: they were checks and balances on each other. We explained that the supervisors
had a key role to play in helping the organization mature.

Once the supervisors began to accept the idea that they had an important role to play, they were open to
suggestions about what they should review during a management review. The Division Chief provided
them an outline of what he wanted to see when a project came to him with a project review briefing. With
that outline, the first and second level supervisors had a starting point to tailor their review requirements
with project leaders.

To make sure that reviews were taking place, the PMIP team collected metrics data on management reviews
and provided this data to the Division Chief at his weekly staff meetings. The constant review of this
metric made it obvious when supervisors were not holding reviews with their project leaders. This visibility
soon resulted in all managers holding reviews.

K-8

Appendix K: Study of the CMM and Software Development Performance GSAM Version 3.0

Another way to ensure that adequate reviews were taking place, required that each review be documented
with minutes and that those minutes be archived in the project folder. During SQA process audits, the
auditors looked for review minutes. If they were not present, the project received a deficiency write-up that
had to be resolved.

Two important things resulted from the requirement that supervisors hold project reviews. First, supervisors
felt a renewed sense of their importance and involvement in what was going on in their organization.
Instead of having to always fight fires, this process began to give supervisors the tools to prevent fires from
happening. Second, project leaders began to feel like someone really cared and was listening to what was
going on in their project. They no longer felt they were struggling with their problems alone.

K.5.6 SQA Process Auditing

We started advocating SQA process auditing as early as February 1994, but it took time for the concept to
mature. In March 1994 we began developing the criteria the SQA auditors would be using to actually
perform their audits.

Several problems plagued us. First, we had only one person designated for SQA. Second, we had very
little support from supervisors or project leaders to actually perform process audits. The Division Chief
generally supported the concept, but he wanted it to start immediately. No one was prepared to start doing
any audits immediately. One individual who was providing on-the-job training to our division had experience
in the SQA area and he helped develop a set of detailed process audit criteria for Level 2.

The responsibility “triangle” that we used to show supervisors the importance of their function also pointed
out the importance of SQA Process Auditing to our goal of achieving level 2. Once supervisors began to
understand that concept, we began to obtain their support for performing the audits. With emerging support
for the audit concept, the Division Chief asked each of the software Flight Chiefs to provide one individual
to augment existing SQA resources to perform the process audits. This solved the resource problem.

The audit team started by just reviewing the criteria for doing project tracking and oversight. It took 3-4
weeks to complete all of the audits. In the process, we found things did not work well and improved the
process as necessary. We also were confronted with lots of data, little of it consistent between audit teams,
so we held training sessions with the audit teams to improve consistency.

Following this first round of audits, the auditors started a second round in which they looked at the
requirements management and project planning key process areas. After that round was completed, a third
round was started in which they audited all 6 key process areas at Level 2. As the second round of audits
came to an end, the Division Chief requested that all deficiencies for each project be tracked daily to see
that these deficiencies were being corrected. This daily reporting soon encouraged all audited projects to
clean up their act. The Division Chief received daily status reports on the deficiencies. On the 17th of
October, the day the formal process assessment started, the Division Chief had in his possession a set of
charts that showed that on the average, the projects being examined by the assessment (23 projects total)
were about 96% fully compliant with the CMMSM practices for each key process area at level 2. This data
was not made available to the assessment team.

K-9

Appendix K: Study of the CMM and Software Development Performance GSAM Version 3.0

K.6 Summary

A key factor in achieving a Level 3 rating was the commitment at the top of the organization to do whatever
was necessary to accomplish it. While focusing our energies on establishing the infrastructure to support
Level 2 practices, the Level 3 efforts already ongoing were not neglected. Without the drive of the Division
Chief and the PMIP project leader, and the support of the TI Director along with the SM-ALC Vice
Commander and Commander, the efforts described above would have been futile. All of these individuals
took considerable personal risk in pushing the process improvement effort.

The SQA process audits played a crucial role in helping the organization to progress. Without the audits
and the deficiency tracking process, we would have had no insight into whether TIS policies were being
applied and followed throughout the Division.

The Supervisors role was also crucial. By holding regular project reviews, they indicated that they were
interested in what was going on in individual projects and that they would do their part to improve our
processes.

The SEPG played a crucial role in providing knowledgeable guidance where needed. This guidance was
often behind the scenes. The SEPG was instrumental in writing TIS policy and in stimulating process
auditing and project reviews.

The most important part of this complex process of maturing an organization is the individual people
within the organization. If all of the people that make up this Division had not done their best and worked
well beyond normal requirements, we could not have achieved a Level 2 or 3 status. So each and every
member of TIS deserves credit for what has been accomplished.

Finally, it should be understood that what we have been through is extremely stressful. That stress level
continued to rise right up to the assessment. Some people could not sleep well. Others got ulcers. Some
probably gained or lost weight. The improvement effort almost ground to a halt. At that point, the pressure
to change was relaxed and we began to tell the organization how much they had accomplished. That helped
everyone’s morale to improve.

K-10

Appendix K: Study of the CMM and Software Development Performance GSAM Version 3.0

K.7 About The Author

Tom Westaway is a member of the Engineering Test Branch of the Software Engineering Division at the
Sacramento Air Logistics Center (SM-ALC/TIST). Tom is currently the team leader for the Software
Engineering Process Group (SEPG) and has been part of the SEPG since its creation in March 1991. He
was on the assessment team during the first assessment at SM-ALC in September 1991. Tom was also part
of the team that created a documented software maintenance process known at SM-ALC as the Post-
Deployment Software Support (PDSS) Process. For the first few years after he came to SM-ALC, he
worked as a system engineer helping to prepare the Logistics Center to support MILSTAR and other satellite
systems.

Prior to joining the SM-ALC team in 1981, Tom spent about 17 years working at what was known as the
Naval Weapons Center (now Naval Air Warfare Center, Weapons Division), China Lake, California. While
at China Lake, Tom helped develop several radar systems and signal processing systems. During this
effort, he was awarded 3 patent holding awards for some of his work. It was during these years at China
Lake that he learned the value of planning, understanding processes, and project management. These are
principles that he has been advocating since coming to work for the Air Force.

Tom Westaway
SM-ALC/TIST
McClellan AFB, CA 95652-
Voice: 916-643-2920 DSN 633-2920
FAX: 916-643-6292 DSN 633-6292
E-mail: westaway.thomas@sma1.mcclellan.af.mil

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix L

Process Maturity
Profile of the
Community

Part 3: Engineering-Related Appendices GSAM Version 3.0

NOTE: This information is updated often, please check the website
www.sei.cmu.edu/sema/profile.html for the most current version. This version was
current at the time of publication.

www.sei.cmu.edu/sema/profile.html

1 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

 March 2000

 We could not have produced this report
 without the support of those organizations
 and lead assessors who have returned
 their appraisal information to the SEI.

 Our gratitude goes to them for their
 continued cooperation with our data
 collection and analysis effort.

 Software Engineering Measurement and Analysis Team

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University.

© 2000 by Carnegie Mellon University

Software Engineering Institute

Process Maturity Profile of the
Software Community
1999 Year End Update

Carnegie Mellon University

2 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Outline

Introduction

Current Status

Community Trends

Organizational Trends

Summary

3 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Introduction -1: Purpose and Source

Characterize the process maturity of the software
community

This briefing uses information from reports of CMM®

Based Appraisals for Internal Process Improvement
(CBA IPIs) and Software Process Assessments (SPAs)

® CMM, Capability Maturity Model and Capability Maturity Modeling are registered in the U.S. Patent and Trademark Office.

4 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

CBA IPIs and SPAs conducted since 1987
through and returned to the
SEI by

• assessments
 CBA IPIs
 SPAs
• organizations
• participating companies
• reassessed organizations
• projects

Please refer to: Terms Used in this Report on page 29

Introduction -2: Data Description

December 1999
January 2000

1512
1024

1166
309
283

6168

488

5 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Introduction -3: Report Contents

This briefing includes three primary sections:

• Current Status
- Snapshot of the software community based on the

most recent assessment, since , of reporting
organizations

• Community Trends
- Global distribution of assessments
- Growth in the number of assessments performed
- Shifts in the maturity profile over time

• Organizational Trends
- Analysis of Key Process Area (KPA) satisfaction
- Time to move up in maturity

1995

6 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Current Status

Assessments conducted from through

• organizations
• participating companies
• projects
• offshore organizations

Please refer to: Terms Used in this Report on page 29

870
256

4110
29.9%

December 1999
1995

7 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Based on organizations

9.4%

30.0%

60.6%

0% 10% 20% 30% 40% 50% 60% 70%

Military/Federal

DoD/Fed Contractor

Commercial/In-house

% of Organizations

Reporting Organization Types

870

8 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Business Services
17.1%

Offshore (SIC Code Not
Applicable)

29.9%

Retail Trade
0.2%

Engineering & Management
Services

9.0%

Transportation,
Communication, Electric, Gas

and Sanitary Services
4.5%

Finance, Insurance and Real
Estate
4.9%

Public Administration
(Including Defense)

9.3%

Health Services
0.8%

Membership Organizations
0.3%

Services, Nec
0.1%

Transportation Equipment
6.2%

Educational Services
0.1%

Instruments And Related
Products

6.7%

Electronic & Other Electric
Equipment

5.1%

Industrial Machinery And
Equipment

3.4%

Fabricated Metal Products
0.5%

Printing And Publishing
0.2%

Wholesale Trade
0.7%

Unknown (No Data Provided)
0.3%

Construction
0.2%

Tobacco Products
0.2%

Chemicals And Allied
Products

0.1%

Types of Organizations
Based on Primary Standard Industrial Classification (SIC) Code

Based on organizations870

Manufacturing
22.4%

Services
27.5%

9 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Based on organizations reporting size data

Organization Size
Based on the total number of employees primarily engaged in
software development/maintenance in the assessed organization

25 or less
7.4%

101 to 200
24.6%

201 to 300
10.3%

76 to 100
11.1%

51 to 75
12.5%

25 to 50
16.2%

301 to 500
7.8%

501 to 1000
6.2%

1001 to 2000
2.6%

2000+
1.2%

201 to 2000+
28.2%

1 to 100
47.3%

728

10 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

39.3%
36.3%

17.7%

4.8%
1.8%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial Repeatable Defined Managed Optimizing

Organization Maturity Profile
%

 o
f O

rg
an

iz
at

io
ns

Based on most recent assessment, since , of organizations. For a perspective, please see page 18.870

March 2000

1995

11 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Maturity Profile by Organization Type

42.7%
39.1%

11.6%

4.9%
1.7%

27.2%

33.7%
31.8%

5.0%
2.3%

56.1%

26.8%

12.2%

3.7%
1.2%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial Repeatable Defined Managed Optimizing

Commercial/In-house DoD/Fed Contractor Military/Federal

%
 o

f O
rg

an
iz

at
io

ns

Based on most recent assessment, since , of organizations1995 870

12 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Maturity Profile by Organization Size
Based on the total number of employees primarily engaged in
software development/maintenance in the assessed organization

51
.9

%

38
.1

% 42
.9

%

32
.1

%

33
.0

%

29
.3

% 33
.3

%

31
.1

%

31
.6

%

33
.3

%

44
.4

%

48
.3

%

33
.0

%

45
.7

%

39
.1

%

41
.3

%

42
.1

%

24
.4

%

10
.5

%

22
.2

%

1.
9%

11
.9

% 18
.7

%

19
.8

%

20
.7

% 25
.3

%

15
.8

%

24
.4

%

15
.8

%

11
.1

%

1.
9%

1.
7% 3.
3%

2.
5% 5.

6%

2.
7% 5.

3%

13
.3

%

26
.3

%

22
.2

%

2.
2%

1.
7%

1.
3% 3.

5% 6.
7%

15
.8

%

11
.1

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

25 or
less

25 to 50 51 to 75 76 to
100

101 to
200

201 to
300

301 to
500

501 to
1000

1001 to
2000

2000+

Initial Repeatable Defined Managed Optimizing

Based on organizations reporting size data

The 1001 to 2000 and 2000+ categories are of a small percentage
which will inflate the maturity level bars. Please see page 9 and
take this into account. The purpose of this chart is to indicate
that all size categories contain most of not all maturity levels.

728

13 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Based on U.S. organizations and offshore organizations

USA and Offshore
Organization Maturity Profiles

43.4%

34.4%

17.5%

3.3% 1.3%

29.6%

40.8%

18.1%

8.5%

3.1%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial Repeatable Defined Managed Optimizing

USA Offshore

%
 o

f O
rg

an
iz

at
io

ns

610 260

14 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Community Trends

Assessments conducted from 1987 through

• assessments
• organizations
• participating companies
• reassessed organizations
• projects

Please refer to: Terms Used in this Report on page 29

December 1999

1512
1166

309
283

6168

15 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Countries where Assessments have been
Performed and Reported to the SEI

Argentina Australia Barbados Belgium Brazil Canada Chile China
Colombia Denmark Finland France Germany Greece Hong Kong India
Ireland Israel Italy Japan Korea, Republic of Malaysia Mexico Netherlands
Philippines Portugal Puerto Rico Saudi Arabia Singapore Spain Sweden Switzerland
Taiwan Thailand Turkey United Kingdom United States

16 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

0

50

100

150

200

250

300

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

First Assessment Reassessment

Number of Assessments Reported
to the SEI by Year

N
um

be
r

of
 a

ss
es

sm
en

ts

Based on assessments conducted through and reported to the SEI by 1512 Dec '99 Jan 2000

17 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Number of Assessments Reported by
Organization Type and Year

0

50

100

150

200

250

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Commercial/In-house DoD/Fed Contractor Military/Federal

Based on assessments. Note: Other/Unknown category, pre- , not included.

N
um

be
r

of
 a

ss
es

sm
en

ts

1507 1995

18 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Trends in the Community Maturity Profile

80
.0

%

12
.3

%

6.
9%

0.
8%

64
.7

%

21
.7

%

11
.8

%

1.
4%

0.
5%

60
.5

%

22
.5

%

14
.2

%

2.
1%

0.
6%

54
.6

%

26
.7

%

14
.7

%

3.
2%

0.
8%

48
.6

%

30
.5

%

15
.6

%

3.
8%

1.
5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial Repeatable Defined Managed Optimizing

1987-1991
1992-1996
1997
1998
1999

%
 o

f O
rg

an
iz

at
io

ns

Based on a cumulative view of the most recent assessments of organizations up through the year indicated.
This accounts for the difference from the figures on page 10.

Year Orgs
130
637
795
968

1166

19 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Organizational Trends

Assessments conducted through

• Key Process Area (KPA) profiles
- satisfaction of KPAs by maturity level for

organizations assessed at levels 1 and 2
• reassessed organizations

- accounting for assessments
- although some organizations conducted

multiple reassessments, only the first and
latest assessments were used in creating the
charts on pages 22 & 23

Please refer to: Terms Used in this Report on page 29

283

755

December 1999

635

20 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Repeatable

Defined

Managed

Optimizing

Key Process Area Profiles -1
Organizations Assessed at Level 1

0% 20% 40% 60% 80% 100%

PCM

TCM

DP

SQM

QPM

PR

IC

SPE

ISM

TP

OPD

OPF

SCM

SQA

SSM

PTO

SPP

RM

Fully
Satisfied
Rated

Based on IPI assessments

% of assessments

374

Software Subcontract Management (SSM) is
not applicable/not rated in many assessments.
Please take that into account when interpreting
its Fully Satisfied rating.

21 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

0% 20% 40% 60% 80% 100%

PCM

TCM

DP

SQM

QPM

PR

IC

SPE

ISM

TP

OPD

OPF

Fully
Satisfied
Rated

Key Process Area Profiles -2
Organizations Assessed at Level 2

Based on IPI assessments381

Defined

Managed

Optimizing

% of assessments

22 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Maturity Level of
First and Latest Assessments

64.3%

29.3%

4.9%
1.1% 0.4%

13.4%

38.5% 37.8%

6.0% 4.2%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Initial Repeatable Defined Managed Optimizing

First Latest

 Based on reassessed organizations using their first and latest assessment

%
 o

f O
rg

an
iz

at
io

ns

283

23 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

No Change
14.9%

Moved Down
4.3%

Level 4 to 5
0.7%

Level 3 to 5
1.8%

Level 3 to 4
1.4%

Level 1 to 4
1.4% Level 1 to 3

19.1%

Level 2 to 5
1.1%

Level 1 to 2
33.7%

Level 2 to 4
2.8%

Level 1 to 5
0.4%

Level 2 to 3
18.4%

Reassessments
Change in Maturity Level

 Based on reassessed organizations using their first and latest assessment283

Level 1 to 1 9.9%
Level 2 to 2 4.9%
Level 3 to 3 0.4%
Level 4 to 4 0.4%
Level 5 to 5 0.4%

24 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Time to Move Up

Number of months
to move to next
maturity level

Largest observed
value that is not an
outlier

75th
Percentile

25th Percentile

Median

Smallest observed
value that is not an
outlier

Recommended
time between
appraisals {

100

30

18

0

50

All (1987 to Present)

1 to 2 2 to 3 3 to 4
 123 89 13

1992 to Present

1 to 2 2 to 3 3 to 4
 99 77 11

Pre-1992

1 to 2 2 to 3
 24 12

75

25 27

39 40

Time Period of Initial Assessment

Level
Orgs

36

23 24

37

25 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Maturity Summary - 1
Current Status

Number of organizations initiating software process
improvement continues to increase

Increasing proportion of commercial and in-house
organizations

Of U.S. organizations, the services and
manufacturing industries are conducting the most
software process assessments

Nearly half of the organizations reporting size have
100 or less software personnel

26 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Maturity Summary - 2
Community Trends

Overall community profile continues to shift towards
higher maturity

Trend towards higher maturity profile for offshore
organizations compared to U.S. organizations
continues

27 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Maturity Summary - 3
Organizational Trends

Software Quality Assurance is the least frequently
satisfied level 2 KPAs among organizations* assessed
at level 1

Integrated Software Management, Training Program
and Organization Process Definition are the least
frequently satisfied level 3 KPAs among
organizations* assessed at level 2

Higher maturity has been reached among those
organizations reporting reassessments

*Adjusted for number of organizations rating the KPA.

28 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Maturity Summary - 4
Organizational Trends (continued)

For organizations that began their CMM-based SPI
effort in 1992 or later, the median time to move from:

• maturity level 1 to 2 is 25 months
• maturity level 2 to 3 is 23 months
• maturity level 3 to 4 is 36 months

29 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Terms Used in this Report
Assessments - The assessment methods used in this report are the Software

Process Assessment (SPA) and CMM-Based Appraisal for
Internal Process Improvement (CBA IPI). We do request and
receive other Software CMM-based appraisals such as Software
Capability Evaluations (SCE) and Interim Profiles. As our
sampling size of these other methods increase, they will be
reported here.

Company - Parent of the organization
 A company can be a commercial or non-commercial firm, for-

profit or not for-profit business, a research and development
unit, a higher education unit, a government agency, or branch
of service, etc.

Offshore - An organization whose geographic location is not within the
United States. The parent of the organization may or may not be
based within the United States.

Organization - Appraised entity
 The organization unit to which the appraisal results apply. An

appraised entity may be any portion of an organization
including an entire company, a selected business unit, units
supporting a particular product line or service, etc..

30 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Feedback & Questions Welcome
We are always interested in improving the maturity profile to
serve you better. To do this, we need to know a little more about
you. Please let us know

1. How you use the information in this report

2. What additional information would you like to see presented
in the maturity profile report

3. If there is a problem in your supplying us with the required
data to create the information you would like to see

As always, if you have questions or comments, we would
appreciate hearing them.

Please respond to: PAIS Include your: Name
Software Engineering Institute Address
4500 Fifth Avenue Phone
Pittsburgh, PA 15213 Fax

or E-Mail to: pais@sei.cmu.edu E-Mail

31 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Submit Your Appraisal Data

Visit our Web site for forms used to submit data and
for future maturity profile reports:

http://www.sei.cmu.edu/sema/packet.html

Send the forms and your appraisal data to

PAIS
Software Engineering Institute
4500 Fifth Ave.
Pittsburgh, PA 15213

32 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

A Web Based Interactive Maturity Profile is
available through the Software Engineering
Information Repository

http://seir.sei.cmu.edu

• Create a particular Maturity Profile chart for a more specific segment within
the software engineering community

• The Interactive Maturity Profile contains all releases of the Maturity Profile. Of
the charts within a Maturity Profile, fourteen can be customized.

• The segments are from our seven categories (Commercial, In-House, DoD or
Federal Contractor, etc.) or from the Standard Industrial Classification Code.

• Best of all a chart can be enlarged and/or printed once you create it.

33 © 2000 by Carnegie Mellon University Process Maturity Profile of the Software Community 2000 Update - SEMA.3.00

Carnegie Mellon University
Software Engineering Institute

Contacts for General SEI
Information
SEI Customer Relations (412) 268-5800
SEI FAX number (412) 268-5758

Internet Address
 customer-relations@sei.cmu.edu

Mailing Address
 Customer Relations
 Software Engineering Institute
 Carnegie Mellon University
 Pittsburgh, PA 15213-3890

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix M

Software
Complexity

M-2

Appendix M: Software Complexity GSAM Version 3.0

Content
M.1 Introduction ... M-3
M.2 Open Re-engineering.. M-5

M.2.1 Common Complexity Measures.. M-6
M.2.2 Complexity and Testing .. M-7
M.2.3 Complexity and Re-engineering ... M-8
M.2.4 Complexity and Reuse .. M-8
M.2.5 Implementing A Complexity Measurement Program M-9

M.3 Conclusions.. M-9
M.4 References.. M-10
M.5 Editor’s Note.. M-11

M-3

Appendix M: Software Complexity GSAM Version 3.0

M.1 Introduction

Software complexity is one branch of software metrics that is focused on direct measurement of software
attributes, as opposed to indirect software measures such as project milestone status and reported system
failures. Current military metrics programs emphasize non-complexity metrics that track project management
information about schedules, costs, and defects. While such project tracking measures are necessary to any
substantial software engineering effort, they lack predictive power and are thus inadequate for risk
management. Complexity measures can be used to predict critical information about reliability and
maintainability of software systems from automatic analysis of the source code. Complexity measures also
provide continuous feedback during a software project to help control the development process. During
testing and maintenance, they provide detailed information about software modules to help pinpoint areas
of potential instability. Figure M-1 shows the control flow graph of a simple, low-risk software module.
Figure M-2 shows a complex, moderate-risk software module. Figure M-2 shows an extremely complex,
high-risk module. Complexity metrics quantify that difference for use in software management. Measurement
of software complexity provides substantial value to a software metrics program.

1

0

8

Program : G raphs
Low ri sk (A)
C yclom ati c G raph
C yclom ati c 7
Essenti al 1
D esign 4

N ov.1,1994
U pw ard Fl ow
D ow nw ard Flow

15

14

13

12

11

17

20
19

18

16

7

6

4

5

10

9

3

2

Figure M-1. Simple, Low-Risk Software Module

M-4

Appendix M: Software Complexity GSAM Version 3.0

Figure M-2. Complex, Moderate-Risk Software Module

1

0

8

38
37

27

36

35
34

30

Program: Graphs
Unreliable (B)
Cyclomatic Graph
Cyclomatic 16
Essential 1
Design 3

32

33

N ov. 1, 1994
Upward Flows
Downward Flows

31

29
28

26

24
25

22
21

23

15

14
13

12

11

17

20

19
1816

7
6

4

5

10

9

3

2

M-5

Appendix M: Software Complexity GSAM Version 3.0

Figure M-3. Extremely High-Risk, Complex Software Module

M.2 Open Re-engineering

There are hundreds of software complexity measures, ranging from the simple, such as source lines-of-
code, to the esoteric, such as number of variable definition/usage associations. It is important to select a
good subset of these measures for implementation. An important criterion for metrics selection is uniformity
of application. The key idea here is “open re-engineering.” The reason “open systems” are so popular for
commercial software applications is that the user is guaranteed a certain level of interoperability — the
applications work together in a common framework, and applications can be ported across hardware platforms
with minimal impact. The open re-engineering concept is similar, in that the abstract models used to
represent our software systems should be as independent as possible of implementation characteristics such
as source code formatting and programming language. Complexity measurement is a fundamental
application, but open re-engineering extends to other modeling techniques such as flow graphs, structure
charts, and structure-based testing.

1
0

8

38
37

27

36
35
34

30

Program: Graphs
Unmaintainable (C)
Cyclomatic Graph
Cyclomatic 22
Essential 22
Design 6

32
33

Nov. 1, 1994
Upward Flows
Downward Flows

31

29

49

47
45

46

43
42

40
51
52

48

44

41
50

39
28

26

24

25

22

21

23

15
14

13
12

11

17

20

19

18

16

7

6
5

4

10
9

32

M-6

Appendix M: Software Complexity GSAM Version 3.0

We want to be able to set complexity standards and interpret the resultant numbers uniformly across projects
and languages. A particular complexity value should mean the same thing whether it was calculated from
Ada source code or from Jovial. Otherwise, to get predictive benefits from the complexity measures we
would have to calibrate the results based on “similar” projects with known outcomes, and the process
becomes too subjective for effective management. The most basic complexity measure, the number of
lines-of-code, does not meet the open re-engineering criterion, since it is extremely sensitive to programming
language, coding style, and textual formatting of the source code. The “cyclomatic complexity” measure,
which measures the amount of decision logic in a source code function, meets the open re-engineering
criterion. It is completely independent of text formatting and is nearly independent of programming language
since the same fundamental decision structures tend to be available and uniformly used in all common
programming languages. The software functions represented in Figures M-1, M-2, and M-3 have cyclomatic
complexity measures of 7, 16, and 22 respectively.

Certainly, there are valuable complexity measures that are not “open.” For example, the amount of access
to global data elements is very useful in managing C projects, even though that measure is useless for
COBOL in which all data is global. However, as a foundation for a complexity measurement program, it is
best to concentrate on measures that can be applied consistently across projects and languages. That way,
the same interpretations and methodology can be used without having to perform applicability assessments
for each project.

M.2.1 Common Complexity Measures

We’ve already discussed lines-of-code, which is about the weakest complexity measure in common use. A
refinement is to count the lines of executable code, data declarations, comments, and so on individually,
then look at derived measures such as the percentage of comment lines. These all suffer from the weakness
that most of what is being measured is source text format, which is not an intrinsic attribute of the software
implementation. Most languages have “pretty printers” available that reformat code to a desired set of
standards, and the “indent” program for C has about 50 switches that configure behavior. This leads us to
a related set of measures, that of coding standards conformance. If code is supposed to have a comment at
the beginning of every procedure, the percentage of procedures that actually have the comment can be
measured. While these source format measures give useful information for project management, they are
not uniformly applicable. Their extreme sensitivity to cosmetic attributes of the source code makes them
unsuitable as core complexity measures.

The Halstead Software Science metrics are a significant step up in value. [HALSTEAD77] By counting
the number of total and unique operators and operands in the program, measures are derived for program
size, programming effort, and estimated number of defects. Halstead metrics are independent of source
code format, so they measure intrinsic attributes of the software. Since different languages have different
sets of operators, it isn’t immediately obvious that these measures can be applied across languages, but
there’s a “language level” measure that can help with conversion. Halstead metrics are a bit controversial,
especially in terms of the psychological theory behind them, but they have been used productively on many
projects. The main drawback is that the mathematical formulas of the major Halstead metrics are significantly
removed from the code, so there isn’t a strong prescriptive component. You can identify code as potentially
unreliable, but the Halstead theory doesn’t say much about how to test it or how to improve it. Also, and
this gets back to uniformity of application, there aren’t any established threshold values for what constitutes
dangerous software; you’re pretty much on your own when deciding what values constitute unacceptable
risk. Despite these drawbacks, Halstead metrics are very useful for identifying computationally-intensive
code with many dense formulas, which represent potential sources of error that other complexity measures
are likely to miss.

M-7

Appendix M: Software Complexity GSAM Version 3.0

The McCabe cyclomatic complexity measure is so versatile and widely used that it is often referred to
simply as “complexity,” and we recommend it as the foundation of any software complexity program.
[McCABE76] Since it is based purely on the decision structure of the code, it is uniformly applicable
across projects and languages and is completely insensitive to cosmetic changes in code. Many studies
have established its correlation with errors, so it can be used to predict reliability. More significantly,
studies have shown that the risk of errors jumps for functions with a cyclomatic complexity over 10, so
there’s a validated threshold for reliability screening. Also, this assessment can be performed incrementally
during development and can even be estimated from a detailed design. For an individual software module,
the programmer can easily calculate cyclomatic complexity manually by counting the decision constructs
in the code. This allows continuous control during a project, so that unreliable code is prevented at the unit
development stage. Compliance can be verified at any stage of the project using automated tools. A final
benefit of cyclomatic complexity, which we will discuss in more detail later on, is that it gives a precise
verifiable testing prescription — the more complex and therefore error-prone a piece of software is, the
more testing it requires.

There are several specialized McCabe metrics that are derived by calculating cyclomatic complexity after
all control structures satisfying certain properties have been ignored. These metrics can thus be viewed as
refinements of cyclomatic complexity for specific applications. The most widely used of these specialized
metrics is “essential complexity,” which measures the amount of unstructured decision logic in software.
Unstructured code, typically caused by using “goto” statements or breaking out of loops, is harder to
understand and maintain than well-structured code. This is because control structures that interact in
unstructured ways cannot be decomposed, understood, and modified in isolation. Essential complexity is a
widely used measure of maintenance risk, and a threshold value of four is typical for quality screening.
Also, while cyclomatic complexity increases gradually when code is added during maintenance, essential
complexity can increase dramatically by the addition of a single software patch. The patched code then
becomes a source of risk for future maintenance. Using essential complexity to screen modules after each
modification during maintenance can manage this risk.

As such, essential complexity is a good supplement to cyclomatic complexity as a cornerstone of a complexity
measurement program. Although Figures M-1 and M-2 both have high cyclomatic complexity, Figure M-
3 has high essential complexity and thus carries a significantly higher maintenance risk. Two other McCabe
complexity variants, design complexity, which measures the amount of interaction between decision logic
and subroutine calls, and data complexity, which measures the amount of interaction between decision
logic and data references, are related to integration testing and design coupling. [McCABE89] These
metrics are suitable for inclusion in a mature software complexity measurement program.

M.2.2 Complexity and Testing

The Structured Testing methodology is based on cyclomatic complexity, in the sense that the cyclomatic
complexity is the number of tests required. [McCABE82] Given the correlation of complexity with errors,
this is a desirable result since we want testing effort to be proportional to complexity. Many other coverage-
based testing techniques, from the simple ones such as statement coverage to the complicated ones such as
testing all data definition-usage associations, do not have this property. You could have arbitrarily complex
software with lots of statements and data associations and still satisfy those other testing criteria with one
or two tests, or you might require lots of tests. With cyclomatic complexity and Structured Testing, you
know in advance exactly how many tests you’ll need, so you can do detailed test planning and manage the
schedules, costs, and risks associated with unit testing. Design complexity provides similar benefits for
integration testing.

M-8

Appendix M: Software Complexity GSAM Version 3.0

However, the connection between complexity and testing goes much deeper than the number of tests. From
mathematical analysis, we know that the cyclomatic complexity gives the exact number of tests necessary
to test each decision outcome in a function independently. The Structured Testing methodology says that
we should run such a set of tests. Thus, we’re not just testing statements or decisions individually; we’re
verifying the interactions between different parts of decision logic. In the underlying mathematical model,
we can construct any path from a combination of the tests we are required to run during testing, so we’re
likely to detect any sources of potential error. There are techniques to calculate a set of test paths manually
from the source code, and automated tools can verify that a satisfactory set of paths has actually been run
during testing. The number of independent decision outcomes exercised then becomes a dynamic metric,
and testing progress can be measured and managed as this number approaches the cyclomatic complexity.

M.2.3 Complexity and Re-engineering

One of the most difficult tasks in software is maintaining a system without knowing the physical design of
the code and how it relates to the original abstract design. For a large system, design documentation only
takes you so far, then you have to work with the code. Not only does this entail risk in terms of introducing
errors due to misunderstanding code, but in the absence of complexity analysis this is unmanageable risk.
The scheduling and costing problems are almost as bad, since on the surface the code and documentation
give very little indication of how big a particular maintenance task really is. Complexity analysis is a
critical component of successful scheduling and risk management in a re-engineering environment.

Studies confirm that cyclomatic complexity is significantly correlated with debugging time, to a much
greater extent than lines-of-code. [SHEPPARD81] Cyclomatic complexity has also been used successfully
as the core metric of formal re-engineering cost models, and this is an area where a lot more work remains
to be done. [DeFEE94] Although cyclomatic complexity is a good foundation and has been used in
numerous case studies, for something like formal estimation we should work towards including a
representative mix of complexity measures such as essential complexity and the Halstead metrics. Even
the number of lines-of-code has a solid place in software management — complexity metrics don’t replace
your current system of software controls; they just add a new dimension of predictability, reliability, and
risk management to your software process.

M.2.4 Complexity and Reuse

There’s a lot of redundant code in software systems. This code duplicates the functionality and in many
cases the actual implementation of other code in the system. The redundant functions tend to be maintained
individually, so they diverge, and there’s an enormous proliferation of errors. Redundant code is a particular
risk on systems that are funded by the line-of-code, as we’ve seen when doing Independent Verification and
Validation. It’s definitely to our advantage to locate and eliminate redundant code, so that we can increase
the amount of reuse and reduce the total complexity of our software. Complexity analysis can provide a lot
of support. One important observation is that independent implementations of the same functionality tend
to have similar control flow structure. Therefore, we can use complexity measures as a screen to identify
sets of software that are potentially redundant. Using the cyclomatic and essential complexity measures to
identify candidate redundant modules then proceeding to examine the full flow graph diagrams and source
code, a significant amount of redundant code can be removed, with resultant benefits to system size and
stability. [WILLIAMSON93]

M-9

Appendix M: Software Complexity GSAM Version 3.0

So, complexity measurement can help us find redundant code during maintenance. But what about preventing
it during development? There are many products that locate reusable code in databases, usually based on
matching text in a functional description with requirements characteristics. These techniques are valuable,
but are limited by the amount of effort put into documenting the code in the repository. A supplementary
approach based on complexity measurement can be used with an arbitrary collection of code with no
documentation or database indexing overhead. The key lies in estimating the complexity metrics of the
desired component from the design or pseudo-code, and then searching the source code database for code
with similar metrics. For this application, a wide variety of metrics are useful.

“Open” metrics are still important to find existing code in multiple languages, but if all you’re looking for
is Ada, you can get a lot of benefit out of measuring specific language constructs. The main requirement
for using complexity measures to find reusable code is that the range of the complexity measure can be
predicted from the design specification for the code. For example, you might know that a particular routine
should have cyclomatic complexity between five and eight, have 20 to 50 lines-of-code, not contain any
exception handlers, and contain exactly one loop. Then, just as with a text-oriented database search, you
get the number of software functions that match your criteria, and you can refine or relax the criteria until
you get a reasonably sized list of candidates. At that point, you can look at the implementations and
possibly save a lot of work with pretty much no extra overhead. This is just-in-time reuse, and complexity
measurement provides the technology. The only organizational overhead is running a complexity
measurement tool over the source code, which will be done anyway, and wasteful development of redundant
code is avoided.

M.2.5 Implementing A Complexity Measurement Program

Complexity measurement is such a large and powerful area that it’s tempting to assess hundreds of potential
metrics, run pilot projects to assess potentially useful metrics, mandate data collection, correlate metrics
with project performance, and eventually have a committee produce a complexity measurement policy.
This doesn’t work. It takes years to start getting value out of that kind of process, and we need to use
complexity analysis to help manage projects right now.

The best way to implement a complexity measurement program is to start small. Collect data on a wide
variety of metrics, but pick a small, validated, intuitive set of metrics to actually apply. Continue to use
lines-of-code, and add cyclomatic complexity and essential complexity. Train the developers to calculate
complexity by hand, and use tools to automate the process. Start using the complexity threshold of 10
immediately to improve software reliability. Start evaluating test plans in terms of complexity to make sure
that error-prone code gets the testing attention that it needs. Then, once the operational benefits of complexity
analysis have been widely experienced, risk management models can be refined with measures such as the
Halstead metrics and data complexity.

M.3 Conclusions

Complexity analysis has an extremely high payoff for the investment. Moving from counting lines-of-code
to calculating cyclomatic complexity has immediate, measurable benefits in terms of risk management,
reliability prediction, cost containment, project scheduling, and improving overall software quality. Unlike
the number of lines-of-code, a good measure like cyclomatic complexity can be used to give an objective
assessment of software that is directly comparable across different projects, coding styles, and even
programming languages. This enables organization-wide standards and procedures that can bring true

M-10

Appendix M: Software Complexity GSAM Version 3.0

repeatability and predictability to software. There are many valuable complexity metrics, and more are
being developed every day, so it’s important to start simple, not get overwhelmed, and build a solid complexity
analysis program as a foundation for adding new metrics as their benefits are demonstrated.

Thomas J. McCabe
Voice: (410) 995-1075
Fax: (410) 995-1528
Internet: tom@mccabe.com

Arthur H. Watson
Voice: (410) 995-3770
Fax: (410) 720-0192
Internet: arthur@mccabe.com

McCabe & Associates, Inc.
5501 Twin Knolls Road, Suite 111
Columbia, MD 21045

M.4 References

[HALSTEAD77] Halstead, Maurice H., Elements of Software Science, Elsevier North-Holland, New York,
1977

[McCABE76] McCabe, Thomas J., “A Complexity Measure,” IEEE Transactions on Software Engineering,
SE-2 No. 4, pp. 308-320, December 1976

[McCABE89] McCabe, Thomas J., and Charles Butler, “Design Complexity Measurement and Testing,”
Communications of the ACM, 32, pp. 1415-1425, December 1989

[McCABE82] McCabe, Thomas J., Structured Testing: A Software Testing Methodology Using the
Cyclomatic Complexity Metric, National Bureau of Standards, Special Publication 500-99, December
1982

[SHEPPARD81] Sheppard, S., and E. Kruesi, The Effects of the Symbology and Spatial Arrangement of
Software Specifications in a Coding Task, Tech Report TR-81-388200-3, General Electric Company,
Arlington, Virginia., 1981

[DeFEE94] DeFee, Joseph M., “Integrating Analysis Complexity Tool Output with Formal Re-engineering
Estimation Processes,” Proceedings of the Second Annual McCabe Users Group Conference, Baltimore,
Maryland, 1994

[WILLIAMSON93] Williamson, Eldonna S., “Determination of Redundancy using McCabe Complexity
Metrics,” Proceedings of the First Annual McCabe Users Group Conference, Baltimore, Maryland,
1993.

M-11

Appendix M: Software Complexity GSAM Version 3.0

M.5 Editor’s Note

This article, originally published in the December 1994 edition of CrossTalk, was reviewed by subject
matter experts prior to publishing. One reviewer cautioned that any attempt to apply complexity
measurements requires a thorough understanding of both the method and the software. When the decision
is made to choose a method to measure software complexity, there is no single method that will meet every
need and the use of hard and fast rules may actually increase complexity. Questions to the STSC, regarding
software metrics, should be addressed to:

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: (801) 775-5555 DSN 775-5555
Fax: (801) 777-8069 DSN 777-8069
E-mail: consulting@stsc1.hill.af.mil
http: www.stsc.hill.af.mil

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix N

Metrics -
The Measure of
Sucess

N-2

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

Content

N.1 Editors Note...N-3
N.2 Foreword..N-3
N.3 Introduction ...N-3
N.4 Overview of the Sample Project..N-4

N.4.1 Project Schedule ...N-5
N.4.2 Milestone Reports ...N-6
N.4.3 Rate Chart Report ...N-6
N.4.4 Earned Value Report ...N-7
N.4.5 Financial/Staffing Report ...N-8
N.4.6 Size Trend Report ...N-9
N.4.7 Productivity Measurement Report ..N-10
N.4.8 Software Problem Status Report...N-10
N.4.9 Quality Indicator Reports ... N-11
N.4.10 Defect Density Tracking Report ...N-12
N.4.11 Target System Resource Usage Report ...N-13
N.4.12 Scope Change Report ...N-14

N.5 Afterword ..N-15
N.6 Glossary/Acronym List...N-17

N-3

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

N.1 Editors Note

“Metrics: the Measure of Success” © 1994 was originally published as a brochure under the sponsorship
of the Hughes Software Network Management Council. Reprinted with Hughes Aircraft Company’s
permission. All rights reserved.

N.2 Foreword

“Our highest priority operating commitment is to quality and continuous measurable improve-
ment in everything we do.”

These words from the statement of Hughes Guiding Values emphasize the importance of quality and
continuous measurable improvement. Measurement (using metrics) serves as a powerful management tool
for evaluating effectiveness and efficiency. Metrics enable us to manage on the basis of facts and data.
Continuous measurable improvement cannot be achieved without measuring an existing process, changing
some aspect of the process, and then measuring the result to verify it is an improvement. Measurement is
an essential element in supporting Integrated Product Development (IPD). The IPD philosophy employs
multi-disciplined teams to integrate and apply the best processes to effectively develop products that satisfy
every customer’s needs.

Common software processes based on best practices are being implemented throughout Hughes Aircraft
Company to gain competitive advantage and reduce risk. These processes include standard reporting practices
that define the metrics for monitoring project status and for communicating that information to functional
and product management.

The metrics described in this brochure have evolved as best practices from more than 20 years of metrics
data collection and reporting. They provide the means to measure cost, schedule, process, product quality,
productivity, and technical parameters, each of which contribute to our fundamental measure of success —
customer satisfaction. Our challenge is to continuously use data in optimizing our software development
processes to ensure that Hughes remains a successful World Class performer in the global marketplace.

Terry R. Snyder
Manager, Software Engineering Division
Chairman, Software Network Management Council
Hughes Aircraft Company

N.3 Introduction

Building a successful business often means building better software. In today’s highly competitive markets,
where software is increasingly a critical factor, a company’s ability to plan and control its software
development activities is essential. But, according to the Software Engineering Institute (SEI), most American
companies lack a well defined and measurable process for managing software development. Typically,
these companies face a high rate of failure because of unpredictable product quality, higher costs, and
delivery schedules that are out of control.

N-4

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

There is a better way. Using the SEI’s Capability Maturity Model as a framework, we find that implementing
process maturity criteria, based on a controlled and measurable software development process, can reduce
costly software errors, cut the risk factors, increase productivity and product quality, and shorten cycle
time. Those organizations that achieve higher process maturity levels typically demonstrate significant
control over their software development processes. One of the keys to achieving this control is the use of
metrics. Basically, a metric is a standard of measurement. Just as a yardstick is used to measure height in
inches or feet, a software metric allows us to use quantitative values to assess how well we’re doing in
relation to things such as budget or schedule.

Nowadays, a physician uses a digital thermometer to measure a patient’s temperature. If the temperature
exceeds the norm by several degrees, it’s an indication that something may be wrong. Other tests are run to
determine the cause of the increased temperature (e.g., blood pressure, respiration, and white blood count).
Once the medical data (usually referred to as the patient’s “vital statistics”) has been collected and analyzed,
the doctor can recommend treatment to restore the patient to health.

Metrics have a similar function. During the life of a software development project, metrics are the statistical
tools that help the software management organization determine how well it is achieving its scheduled
commitments. Basically, metrics provide the factual basis for effectively evaluating a project’s performance
over time (measured in relation to budget, schedule, and other key factors). Metrics are used by managers
to assess the progress being made (the overall “health” of the project) or to detect unfavorable trends and
do something about them before they become show stoppers. Organizations that wish to improve their
software development processes can realize a significant return by establishing metrics programs that include
the people, facilities, tools and training required for collecting and interpreting metrics data. Hughes Aircraft
Company’s expanding emphasis on metrics reflects the company’s top-down commitment to quality and
continuous measurable improvement. The story that follows provides insight into how metrics can be used
to quantitatively — and successfully — manage software projects.

This document is not intended as an academic exercise nor does it cover all of Hughes’ metrics activities.
It provides a description of 12 metrics that have proven useful in the management of software development
projects at Hughes. Our experience with software measurement over the years has shown us that metrics
work — they help us do our jobs better. The objective in this brochure is not only to define the metrics
themselves, but to describe their use (and ultimate value) in the real world by relating them to a hypothetical
project.

N.4 Overview of the Sample Project

This brochure uses a hypothetical software development project to illustrate the uses of metrics. It provides
a basis for understanding how metrics actually function in the life and health of a project. Although the
data shown is entirely fictitious, the intent is to make this generic software project as “real” as possible,
based on the sort of problems one would expect to encounter in a development effort of moderate size. The
project has the following general characteristics:

• 30 month schedule,
• 82,000 source lines-of-code (SLOC) delivered,
• Staff peak of 33 people,
• Consists of two software builds, and
• At this point in time, the first build has been completed and we are two-thirds into the project schedule.

N-5

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

The story line has one main theme: during the Preliminary Design phase, project personnel tried to reduce
the size and complexity of the job through automatically generated code and software reuse. But, this
inadvertently created a problem: the new design required more memory than allocated. Without metrics,
the problem might not have surfaced until very late in the project, during the final stages of integration and
testing (around months 23-24), resulting in a major redesign effort with a severe impact on cost and schedule.
With metrics, just as in medical science, the key to success is the early detection of problems.

N.4.1 Project Schedule

Project managers need to visualize how and when key activities are planned to occur over the life of the
project. They also need a progress report that tells them where they are in relation to this plan. The Project
Schedule is a tool that provides a “quick picture” of the project. It maps out the workflow, shows the
relationships between activities over time, and illustrates progress. It can also be used to identify problems
and as an aid to taking corrective action.

The Project Schedule is structured as a timeline plotting all major activities and milestones from project
inception to scheduled completion. This schedule reflects all current officially approved activities, dates,
and progress status (including any slippage from the officially approved plan). Also shown (at the bottom
of the schedule) is a running total of planned and actual data deliveries for each scheduled timeline increment.

In our sample project, there were some early problems in accomplishing the software design. The need to
address these design problems caused delays, which, in turn, had a ripple effect on the design reviews.
However, early corrective actions allowed the overall project to recover and get back on schedule.

Figure N-1

N-6

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

N.4.2 Milestone Reports

The Milestone Report is intended to identify major software tasks specified in the Project Schedule,
intermediate checkpoints for those major tasks, more detailed software component and documentation
deliveries, and management-oriented activities (for example, quarterly self-audits). These milestones
are listed by description, plan date, latest estimate date, actual date, and reason for slippage.

The Milestone Summary Report is a summary of the data from the Milestone Report that can be merged
with milestone data from other projects to measure the organization’s overall effectiveness in meeting its
customers’ expectations for delivery. In order to merge later milestone data from many different projects,
a set of standard milestones is included in all project milestone statusing and used as the basis for the data
in the Milestone Summary Report.

N.4.3 Rate Chart Report

Software development activities must be planned in great detail. For each of the hundreds (and often
thousands) of software units, milestones are established for design, code, unit test, and integration. As time
passes, the actual completion dates for these milestones are recorded. This milestone data can be used to
measure the software development effort. The reporting of this status is accomplished using Rate Charts.

Figure N-2

N-7

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

A Rate Chart for an activity is a two-dimensional graph showing a plan line and an actual line versus
calendar time. The plan line shows the percent of milestones planned to be completed versus time. The
actual line shows the percent actually completed. With this effective management tool, you can quickly see
where you are in relation to the plan at a given point in time, and you can visualize your rate of progress. By
comparing the actual line with the planned line, management is alerted to trouble early in the development
process and can consider corrective action to remedy the situation (for example, allocation of more resources).

A phase Rate Chart simultaneously provides rate charts for design, code, unit test, and integration. A
composite Rate Chart depicts, at a higher level, a weighted summation of several parallel activities of
planned and actual work accomplished versus time. It is designed to provide a means to assess the overall
progress and status for a project and its individual development activities.

Most software development Rate Charts are defined and measured in terms of software units. However,
any activity that can be planned as a detailed set of similar milestones can be depicted as a Rate Chart.
Thus, Rate Charts can also be used to report the status of such tasks as documentation and formal test. In
our sample project, the Rate Chart shows rapid early progress due, apparently, to the lower complexity of
the job. But, once the design problem was caught and corrective action took effect, the rate dropped off and
then gradually recovered.

N.4.4 Earned Value Report

The Earned Value Report compares work accomplished against work planned. In this report, the financial
budget (Budgeted Cost of Work Scheduled or BCWS) is plotted along with the actual expenditures (Actual
Cost of Work Performed or ACWP). A third plot, which represents earned value or the amount of the job
that has been completed (Budgeted Cost of Work Performed or BCWP), is then added to the picture. This
graphically illustrates the project schedule and financial status at a glance. What you get is an overview of
the project’s health. For example, if half the money has been spent (ACWP), then half the job should be
completed (BCWP). If money is being expended (ACWP) faster than planned (BCWS), there should be a
corresponding assessment of progress against the project’s milestones (BCWP).

Based on the earned value plots, two additional key indicators can easily be derived and plotted: the Cost
Performance Index (CPI) and the Schedule Performance Index (SPI). The CPI is the ratio of work completed
in dollars (BCWP) divided by the actual cost of performing the completed work (ACWP). Values greater
than “1” mean it is costing less than originally planned to perform the work. The SPI is the ratio of work
accomplished (BCWP) divided by work planned (BCWS). Numbers greater than “1” signify that work is
being achieved quicker than originally planned (i.e., the activity is ahead of schedule).

We see in our sample project that, around month 8, there was a critical dip in the key indicators: money was
being spent, but very little (in terms of earned value) was being accomplished. We were faced with a
slowdown in performance. Immediate corrective action was needed to offset the possibility of a cost
overrun and/or late delivery. Both the SPI and the CPI suffered as a result, but the project gradually
recovered once the design problem was solved. Easy to use and understand, these key indicators are
needed to measure and assess a project’s progress and health. They convey powerful messages. Are we
meeting our schedule? Are we meeting costs? Is the project healthy?

N-8

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

Figure N-3

N.4.5 Financial/Staffing Report

The Financial/Staffing Report provides a clear indication to management of a project’s performance in
relation to financial and staffing plans. The Financial graph shows the cumulative dollars spent to date
compared with the projected budget. The Staffing profile reveals the number of personnel working on the
project each month with respect to the planned staffing levels. The initial baseline plan is established at the
beginning of the project. On a monthly basis, the actuals are compared to the plan. In the event an activity
needs to be replanned, the original plan is retained as a baseline and a Current Operating Plan (COP) is used
to forecast the revised spending and staffing. In our sample project, we recognized the need to take corrective
action to fix the design problem highlighted in the Target System Resource Usage Report. To accomplish
this, more project personnel than originally planned were assigned early in the recovery effort (during
months 8-9) to preserve the schedule. Also, during months 17-20, it appeared that project staff were being
redirected to other efforts and, thus, were not available to this project. The Staffing metric pointed to this
problem and allowed for corrective action.

N-9

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

Figure N-4

N.4.6 Size Trend Report

The purpose of the Size Trend Report is to uncover potential development problems related to changes in
code size before they become critical. This report is updated monthly to show the estimated size at completion.
The size of each Computer Software Configuration Item (CSCI) is tracked via separate Size Trend Reports.
The Size Trend Report is used in conjunction with the Productivity Measurement Report. If size is increasing
(which is often the case in software development projects) and productivity is not above what was planned,
a significant problem exists requiring immediate attention — namely, at a given productivity rate with an
increasing job size, it will take longer to finish the job than what was scheduled.

In our sample project, the size of the job (measured in equivalent source lines-of-code or ESLOC, derived
from actual source lines-of-code by taking into account the reduced effort for reused and modified code)
was reduced because of an efficient design that introduced more functionality in auto code and less in new
code. But, we see that the size of the delivered source lines-of-code (DSLOC) ballooned because of the
growth in the less efficient auto code, which directly impacted memory use. What we were faced with was
a potential “fit” problem requiring more memory than allocated. A new design was required, resulting in
corrective action that had an immediate impact on productivity and cost performance.

N-10

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

N.4.7 Productivity Measurement Report

The Productivity Measurement Report is used to evaluate a project’s performance by measuring software
productivity, which is based on equivalent source lines-of-code (ESLOC) produced per staff month and is
reported for each Computer Software Configuration Item (CSCI). What the report shows is the planned
productivity (based on the estimated size of the CSCI, cumulative planned staffing and planned percent
complete) versus actual productivity (based on current estimated or actual code counts of the CSCI,
cumulative actual staffing and the actual percent complete). Not only does this support better project
management, but it also establishes a baseline for measuring improvement and future cost estimates needed
for bidding. In our sample project, we can see that productivity was running high early in the project due to
the lower complexity of the job. However, once it was realized that a portion of the design would have to
be redone to correct the memory use problem, the rate of productivity slowed down dramatically (while
corrective action was taken) and then gradually recovered.

Figure N-5

N.4.8 Software Problem Status Report

The purpose of the Software Problem Status Report is to track the maturity of deliverable products, measuring
the status of known software problems that need to be fixed versus the rate of closure of problems. Software
problems are tracked after software goes under configuration control, usually at the start of software
integration.

The Problem Change Request is a form used to document software problems. Based on the number of
opened Problem Change Requests, the Software Problem Status Report serves as an indicator of the maturity

N-11

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

of the software product. Software usually is ready for delivery when the rate of finding new problems has
decreased significantly and the gap between opened and closed problems is near zero. The following
measurements are plotted on the graph:

• Opened shows the number of software problems that have been detected and reported by the designated
project authority.

• Resolved shows the number of software problems for which a technical solution has been found and
verified.

• Closed shows the number of problems that have had the correction verified and formally closed by
incorporating the change in the product baseline.

Some projects also find it advantageous to show the number of software problems a project of this size can
expect to encounter over time, based on historical data from similar projects. In our sample project, the
problem reporting began in month 16 as integration started. Initially, problems were detected faster than
they could be resolved. Without corrective action (for example, assigning more resources), a schedule slip
was likely. This project was able to eventually close the gap between opened and closed problem reports
and the rate of new problem reports tapered off, indicating that the software was ready for the Build 1
demonstration during month 21.

Figure N-6

N.4.9 Quality Indicator Reports

The Quality Indicator Reports are summaries of defect data that can be used to understand and improve the
software process. Software quality indicators include both product and process defects.

Defects can be introduced into software during each phase of the software development life cycle. Procedures
need to be established to prevent these defects, wherever possible, or discover their existence at the earliest
possible moment. Data from Hughes projects and other industry sources shows that the earlier you catch
the problem, the less costly it is to fix. The Quality Indicator Reports categorize the kinds of defects
discovered and the life cycle phase in which the defects were detected. The Quality Indicator Reports
consist of the following charts:

• A summary chart showing quality indicator status,
• Charts that focus on type of defect,
• Charts that focus on phase detected, and
• A quality indicator analysis report.

N-12

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

The primary goal of the various charts is to provide management with increased visibility into patterns and
trends appearing from the statistical summary of defects discovered during the software life cycle. This
data gives the manager and technical personnel the ability to home in on the specific causes of defects.
Defect prevention teams can analyze these charts and outline a plan of action to eliminate the root cause of
the most frequent and/or costly defects. The Quality Indicator Reports are an increasingly important part of
the Hughes approach to continuous measurable improvement (cmi).

Figure N-7

N.4.10 Defect Density Tracking Report

Defects are quite simply deficiencies in a product or process (flaws in the design or coding process, for
example) that can lead to development of a product that fails to meet customer requirements. They are
found during both internal and external reviews and testing of software products under development. Projects
identify defects during reviews based on review procedures and checklists. Defects are then documented
when identified, including information on the type of defect, the cost to repair, and the phase in hich each
defect was detected.

Defects cost time and money. Even with defect prevention techniques, experience shows that the best
software processes today are not yet capable of “defect free” results. So, we can expect to find defects.
Historical data from past Hughes projects indicates that it costs significantly less to find and fix defects in
the development phase that caused them rather than later in the project. The early detection of problems is
the key to maintaining high productivity at minimum costs.

The Defect Density Tracking Report is used to compare the number of defects being found in each phase of
software development with historically derived control limits. The control limits determine a planned
range of defects for each phase that a typical project should experience. The actual defect rates being found
are then compared with the control limits to provide insight into the process being used on the project.

If the actual defect rates are within the control limits of the planned defect density, the process being used
by the project is performing as expected. The fact that defect rates are lower than the lower control limit

N-13

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

requires further analysis. It may indicate that insufficient reviews are being conducted, calling for immediate
corrective action. Or, this may mean that the project has found a process improvement that has produced
fewer defects. If so, the improved process should be documented for others to use. Similarly, defect rates
that exceed the upper control limit indicate conditions that should be examined for possible improvements.

In the sample project, where Coding Defect Density was measured per thousand equivalent source lines-of-
code (KESLOC), we saw that the actual data was within the control limits showing that the project was
performing as expected. Hughes is constantly improving its metrics program. The Defect Density Tracking
Report is a recent addition and is currently being piloted on some projects.

Figure N-8

N.4.11 Target System Resource Usage Report

Target System Resource Usage reporting is mainly concerned with the management of computer resources
(e.g., main memory, processor time, mass storage, etc.), measured in terms of percentage utilized. Selection
of which resources to monitor is done in the requirements analysis phase based on how critical the resource
is or how risky it will be to meet the requirement.

Initially, control limits are established that represent the maximum resource utilization allowed under the
contract, along with a management reserve that decreases in size as the ability to estimate/measure the
utilization improves during the life of the project. Exceeding the management reserve figure indicates a
“risk” calling for management action. During the life of the project, the actual resource utilization is
estimated with more and more precision until actual measurements finally replace the estimates.

The key to success here (as in all the metrics) is to manage risk early in the project. In our sample project,
the Target System Resource Usage Report provided an estimate that showed the new design would require
too much memory. This estimate (long before actual memory usage could be measured) allowed us to
focus on the problem early enough so that corrective action could be made with minimal effects on the
project. Without the use of metrics, the problem would not have surfaced until very late in the project,
during the final stages of integration and testing, resulting in a major redesign effort that would have had a
severe impact on cost and schedule.

N-14

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

Figure N-9

N.4.12 Scope Change Report

The Scope Change Report describes any addition or deletion in the scope of work. It forces management to
“size up” a new task or requirement and assess the impact of these changes on cost and/or schedule.
Essentially, it is a technique for managing (and forecasting) changes in the contract’s scope of work, common
to evolutionary product development, which gives project management a basis for understanding what is
currently in the baseline and what is not. This planning tool is also used to look at related new business
opportunities for a project (normally follow-on work from existing contracts) and to assess their impact,
both technically and financially.

N-15

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

Figure N-10

N.5 Afterword

When flying a plane from Los Angeles to San Francisco, a pilot knows the destination and the direction in
which to begin the flight. During the journey, however, winds may be encountered that cause the plane to
go off course. The earlier the pilot detects the problem and corrects for the wind, the more likely the flight
will arrive on schedule. Similarly, software metrics provide the software project manager with the information
necessary to determine when a software development project is on course. As shown by the sample project
in this brochure, metrics analysis enables early detection of problems and allows corrective actions to
ensure delivery of quality products that are on time, within budget, and meet customer expectations.

N-16

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

Hughes has developed several tools for in-house use in collecting, analyzing, and reporting software metrics
data. These include the Quality Indicator Program (QIP) and the Quantitative Process Management
Information System (QPMIS). QIP has been used to collect data on nearly 100,000 defects during the past
five years. Defect prevention teams analyze this data for root causes and select pilot projects to test proposed
changes. Valid improvements are incorporated into the organization’s practices and procedures.

QPMIS captures metrics data in a common database and automates the analysis and reporting for many of
the reports described in this brochure. QPMIS allows software project managers to concentrate on the
content and interpretation of the data and not concern themselves with formatting reports. A centralized
historical database aggregates the information from each completed project and allows electronic access to
the data for organization-wide trend analysis and for future reference.

Hughes has made a strong commitment to metrics over the years with significant support from the Software
Network Management Council and the Company-wide Software Initiatives Program. Training courses are
offered regularly and cover a wide range of topics related to metrics including Software Project Reporting,
Introduction to Quantitative Process Management, Defects Collection, Analysis and Prevention, and Reaching
for Higher Levels of Software Process Maturity.

Software development is a human intensive activity and, as such, is subject to human error. However,
many errors and much costly rework can be avoided by continuously measuring and optimizing defined
development processes. Improvements pay off in many ways. Lessons learned from past projects enable
new projects to be more efficient. Analysis of historical data results in greater accuracy in predicting costs,
schedules, and risks during proposal activities. Even small cost performance index improvements can
translate into substantial savings when accumulated over time on multiple projects.

The successful companies of the future will be those that take advantage of metrics to institutionalize “best
in class” practices and procedures for software development.

N-17

Appendix N: Metrics - The Measure of Success GSAM Version 3.0

N.6 Glossary/Acronym List

ACWP Actual Cost of Work Performed
BCWP Budgeted Cost of Work Performed
BCWS Budgeted Cost of Work Scheduled
CDR Critical Design Review
cmi Continuous Measurable Improvement
COP Current Operating Plan
CPI Cost Performance Index
CSC Computer Software Component
CSCI Computer Software Configuration Item
DSLOC Delivered Source Lines-of-code
ESLOC Equivalent Source Lines-of-code
FCA Functional Configuration Audit
FQT Formal Qualification Test
IPD Integrated Product Development
IRS Interface Requirements Specification
KESLOC Thousand Equivalent Source Lines-of-code
LOE Level of Effort
MAC Month After Contract
ODC Other Direct Costs
PCA Physical Configuration Audit
PDR Preliminary Design Review
PMO Project (or Program) Management Office
QIP Quality Indicator Program
QPMIS Quantitative Process Management Information System
SDD Software Design Document
SDP Software Development Plan
SDR System Design Review
SEI Software Engineering Institute
SLOC Source Lines-of-code
SPI Schedule Performance Index
SRS Software Requirements Specification
SSR Software Specification Review
STD Software Test Descriptions
STP Software Test Plan
STR Software Test Report
TD Technical Director
TRR Test Readiness Review

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix O

Swords &
Plowshares -
The Rework Cycles of
Defense and
Commerical Software

O-2

Appendix O: Swords & Plowshares GSAM Version 3.0

Content
O.1 Introduction ..O-3
O.2 The Rework Cycle..O-3

O.2.1 Observations ...O-5
O.2.1.1 The Sample ...O-5
O.2.1.2 The Problems ..O-5
O.2.1.3 Rework Creation...O-6
O.2.1.4 Rework Discovery ..O-6
O.2.1.5 Rework Execution ..O-7
O.2.1.6 Progress Monitoring ...O-7

O.3 Implications for Improvement...O-8
O.4 Conclusions...O-8
O.5 Notes...O-10
O.6 Acknowledgments...O-10
O.7 About the Authors .. O-11

O-3

Appendix O: Swords & Plowshares GSAM Version 3.0

O.1 Introduction

A worldwide survey recently revealed that less than half of all development projects meet their targets for
development time and cost.1 Technological development projects dominated by software-based systems
constitute increasingly significant portions of companies’ new product and business plans. Traditionally
defense-oriented firms in the post-Cold War period search, with varying degrees of aggressiveness and
desperation, for how to make an effective transition toward commercial markets. Companies already firmly
established in commercial software markets search, with varying degrees of frustration, for ways to bring
new products to market faster and at lower cost. Indeed, the success of virtually all companies has never
before been more dependent upon timely, low-cost development project execution (nor more threatened by
its absence).

With the magnitude of the stakes involved, why does there seem to be so little progress in achieving better-
managed software development projects? Why in such projects are cost and schedule problems so persistent
and pervasive? What are the underlying sources of consistently “surprising” project overruns? Why are
we so bad at estimating when developing products will be completed and ready for the market? How far
must “defense” firms be prepared to go to become commercially competitive? What must both they and
commercial firms alike do in order to achieve dramatic project performance improvement? Are there any
fundamental lessons we can learn and transfer from one “unique” project to another?

Here we aim to provide some initial answers to these questions. To do so we draw upon over ten years of
experience, shared with our colleagues, in developing and applying computer-based dynamic simulation
models2 of software system development projects. We have used such models to accurately recreate, forecast,
diagnose, and improve the performance on dozens of major development programs and projects in aerospace,
defense electronics, financial systems, construction, and telecommunications. Among these, many whole
projects and significant segments thereof have been dedicated to software system development.

At the core of the structure of these models is a different but straightforward view of development project
work — one which recognizes the rework cycle3. Indeed, what is most lacking in conventional methods for
project planning and monitoring is any acknowledgment or measurement of rework. For all their utility,
most planning tools treat a development project as being composed of individual, discrete tasks which are
“ to be done,” “ in process,” or “done.” No account is taken of incomplete or imperfect task products, or the
amount of rework needed. This is particularly inappropriate for naturally iterative development efforts; the
dozens of analyses we’ve conducted show that rework can account for the majority of project work content
and cost!

O.2 The Rework Cycle

Using dynamic simulation models to analyze and aid the management of software development compelled
us to simulate the performance of actual projects as they really did occur — not just how they are planned
to go, or how they “should” go. Hence, we had to design and employ a structure which could accurately
recreate such projects. To do so we had to treat their substantial rework explicitly, as well as its causes,
detection, and execution. We developed a core structure which proved to be universally applicable to
development projects and project stages. We term this structure “the rework cycle.” See Figure O-1.

O-4

Appendix O: Swords & Plowshares GSAM Version 3.0

Figure O-1 The Rework Cycle

At the start of a project or project stage, all work resides in the pool of Work To Be Done. As the project
begins and progresses, changing levels of People working at varying Productivity determine the pace of
Work Being Done. But unlike all other program/project analysis tools and systems, the Rework Cycle
portrays the real-world phenomenon that work is executed at varying, but usually less than perfect, “Quality.”
A fraction that potentially ranges from 0 to 1.0, the value of Quality (as well as that of Productivity)
depends on many variable conditions in the project and company. The fractional value of Quality determines
the portion of the work being done that will enter the pool of Work Really Done, which will never again
need redoing. The rest will subsequently need some rework, but for a (sometimes substantial) period of
time the rework remains in a pool of what we term Undiscovered Rework — work that contains as-yet-
undetected errors, and is therefore perceived as being done. Errors are detected by “downstream” efforts or
testing; this Rework Discovery may occur months or even years later, during which time dependent work
has incorporated these errors, or technical derivations thereof. Once discovered, the Known Rework demands
the application of People, beyond those needed for completing the original work. Executed rework enters
the flow of Work Being Done, subject to similar Productivity and Quality variations. Even some of the
reworked items may then flow through the rework cycle one or more subsequent times.

Undiscovered rework plays a pivotal role in the propagation of problems through a project. Lurking
undetected — for example, as a software “bug,” or design flaw — it causes productivity loss and work
delays, and triggers rework cycles on downstream dependent tasks. The more tightly-scheduled and parallel
the project tasks, the more of a “multiplier effect” on subsequent rework cycles. Undiscovered rework is
the single most important source of project cost and schedule crises. To control undiscovered rework on
software development projects, we must:

• Acknowledge its existence,
• Plan so as to allow for it,
• Measure it (once it is recognized as known rework),
• Prevent it (i.e., improve “quality,” as defined here) as much as possible, and
• Seek to find and identify it early, so as to reduce its propagation.

We offer the following observations in the hope of spurring companies and individual managers to do just
that.

WORK TO BE
DONE

UNDISCOVERED
REWORKKNOWN REWORK

WORK REALLY
DONE

People Productivity
Quality

WORK
BEING DONE

Rework Discovery

O-5

Appendix O: Swords & Plowshares GSAM Version 3.0

O.2.1 Observations

The full simulation models of these development projects employ thousands of equations. They explicitly
portray the time-varying conditions which cause changes in productivity, quality, staffing levels, rework
detection, and work execution, as well as the interdependencies among multiple project stages. All of the
dynamic conditions at work in these projects and their models (e.g., staff experience levels, work sequence,
supervisory adequacy, “spec” stability, worker morale, task feasibility, vendor timeliness, overtime, schedule
pressure, hiring and attrition, progress monitoring, organization and process changes, prototyping, testing)
cause changes — some more directly than others — in the performance of the rework cycle. Because our
business clients require demonstrable accuracy in the models upon which they will base important decisions,
we have needed to develop highly accurate measures of all these factors, especially those of the rework
cycle itself. We do not, however, offer here a treatise on model design. Instead, we draw upon the many
real business applications of our models to provide heretofore unavailable guidelines and benchmarks on
the characteristics of the rework cycle.

O.2.1.1 The Sample

The observations come from seven defense and fourteen commercial software development efforts. They
range from modest upgrades of existing systems that involve about ten people for a year, up to major first-
of-a-kind system development efforts involving many hundreds of people for several years. The defense
projects as a group differ from the commercial projects in many ways (average size, duration, customer for
the product, etc.), so we’ve examined the averages and the ranges of values within these groups as well as
across all the projects. Figure O-2 [not available in this format] shows the difference in planned size and
duration, with the commercial projects averaging under 130,000 hours of planned work over the course of
about a year’s schedule, versus 170,000 hours and a two-year-plus average planned duration for the defense
projects.

O.2.1.2 The Problems

The defense projects’ performance against plans was substantially worse than those of commercial
developments. See Figure O-3 [not available in this format]. On average, the defense projects took about
three times the planned hours, versus about 1.4 times the planned hours for the commercial projects. Schedule
performance was even worse. The commercial projects were poor, taking nearly twice as long to complete
as planned. On average, though, defense projects took over four times as long to complete as was originally
planned.

How could this be? These projects involved some of the brightest, most experienced, and hardest-working
people in the field. They were managed by seasoned and conscientious managers using the standard planning
tools, and yet they still cost many times their budgets. We acknowledge the bias caused by the fact that
easy, smoothly-running projects rarely command the attention of external consultants. Still, these projects
are not anomalies; recall that most projects fail to meet their targets. We believe there are systemic reasons
why software development projects perform so poorly.

To be fair, some of the problems — especially on the defense side — are due to midstream scope and
specification changes by the “customer,” be they internal or external to the company. These are not fully
anticipated at the start of the project, and not reflected in the original budgets and schedules (although,
given the history of large projects, such changes are to be expected). The difference in the typical magnitude

O-6

Appendix O: Swords & Plowshares GSAM Version 3.0

of midstream changes is part of the reason for the differences between defense and commercial project
performance. However, even adjusted for those changes, the same patterns remain. We believe that our use
of simulation modeling has helped identify the systemic causes of those patterns, through the characteristics
of the Rework Cycle — rework creation, identification, and execution.

O.2.1.3 Rework Creation

In the rework cycle, “quality” is the fraction of work being done at any point in time which will not eventually
need to be reworked; the lower the quality, the more rework. The average levels of quality on defense
projects was half that observed on commercial projects, 0.34 versus 0.68. See Figure O-4 [not available in
this format]. In other words, only about 1/3 of the work products being executed on a defense software
development project will not need reworking (or another round of reworking), as opposed to 2/3 in
commercial projects.

The rework cycle quality on the worst of commercial projects was nearly as low as that of the average
defense software project, but the best was nearly “perfect.” The best among defense efforts exhibited a
0.55 quality, but the worst was near 0.10.

O.2.1.4 Rework Discovery

We know of no company which routinely monitors or measures the amount of time elapsed between the
commission of design or coding errors and their detection. And yet it is undoubtedly one of the most
critical determinants of “time to market” and of the true quality (in the conventional sense) of the delivered
product. Think for a moment. On projects of this nature, what would you say is the typical amount of time
between making and finding an error? A week? Two? A month? The actual average across all these
projects is about nine months. See Figure O-5 [not available in this format].

On this measure we find little absolute difference between defense and commercial projects, on average. In
fact, the worst of commercial software projects exhibited longer rework discovery times than the worst
defense projects. Perhaps this is due to the extraordinary amount of oversight, testing, and review endemic
to defense projects. Regardless of the cause, it is troublesome to note that for commercial efforts the
average scheduled duration of work, eleven months (versus 29 for defense), is only three months longer
than the time to detect the need for a single round of rework.

Only the relatively high levels of quality in commercial software developments prevent consistent disasters.
Even so, rework discovery times which are nearly the length of the planned work explain why firms so
consistently overpromise on software product introduction dates (open any business or software journal for
an example). Rework keeps being found near “the last minute,” and revised announcements sheepishly
admit to the delay. The more aggressively the projects are scheduled in response to competitive pressures
to “be first,” or to respond fast, the worse this tendency. No “productivity” gain will help — only
improvements (reductions) in the rework discovery time will.

And when you consider that a project with a 0.34 average quality (the defense average) will require seven
cycles of rework to surpass 95% real completion, for a rework discovery time of 9-10 months for each cycle
would add over five years to an effort for which rework was not planned. Interestingly (and not
coincidentally), that is near the amount by which real completion of defense software development projects
in our sample exceeded their schedule targets.

O-7

Appendix O: Swords & Plowshares GSAM Version 3.0

O.2.1.5 Rework Execution

As the rework cycle structure indicates, some work may cycle through multiple times before it is complete
and correct. Figure O-6 [not available in this format] shows the average number of full revisions5 of each
task (e.g., specifications, modules). The average task product on defense projects was revised fully three
times. On commercial projects, only 40% of the tasks were revised, on average. This is the major reason
for the cost and schedule performance differences. Some commercial software projects saw over one full
round of revisions, and defense projects as many as seven.

So where was all the time spent? On defense projects, more time was spent on rework than was spent to do
tasks for the first time. See Figure O-7 [not available in this format]. An average of nearly one and a half
hours were spent fixing, for every one hour spent to do it the first time. Even on commercial projects, over
forty minutes were spent on rework for every hour spent on the first iteration. This is even more astonishing
when put in perspective: about half of the time spent on all these software development projects was for
work not even tracked in most planning and monitoring systems!

No wonder managers of software projects have difficulty — they’re using tools that only let them see half
of the job. Even worse, in the later stages of a project, 70, 80, even 90 % and more of the work is “invisible”
to their planning systems. Managers and staff on these projects aren’t incompetent, they aren’t (usually)
deceitful, and they aren’t lazy — they are misled by their planning tools.

Experienced managers are certainly aware of rework, and make allowances for it. However, this means
that all of their “sophisticated” planning tools become nearly worthless at the end of the project, when the
bulk of the work is rework. Instead that effort is being forecasted purely on the basis of instinct. For most
project managers, a handful of projects constitutes a career. By the time some managers work up to a really
difficult project, they may have had little experience with “major rework” on which to base their planning
(and promises). Under tremendous pressure to deliver (from senior management, the customer or the
marketplace, and dependent efforts), managers’ well-intended plans and promises will be thwarted by the
rework cycle.

O.2.1.6 Progress Monitoring

Just how thwarted those plans can be is illustrated in Figure O-8 [not available in this format]. This
“progress ramp” displays the accuracy of progress monitoring in the sampled commercial software
developments. For the range of commercial efforts modeled, the display charts the perceived progress, as
it was reported at different points in time, against the real progress (which excludes undiscovered rework)
at that time. Perfectly accurate project progress monitoring would yield a straight 45° diagonal (hence the
triangular ramp shape): at a perceived/reported condition of 20% complete, the actual % complete would
be 20%, and so on. Instead, real progress is typically less than reported progress.6

Note that the “best” of the sample achieved nearly perfect monitoring. The lower the quality, and the
longer the rework discovery time (hence the more undiscovered rework), the larger the gap between real
and reported progress, and the longer that gap persists: the “worst” of the commercial efforts reported 90%
completion when as little as 60% was really complete. With 40% of the effort really left, it is easy to see
why that last “10%” can seem to take so (unexpectedly) long, with the attendant delays in product introduction
dates. Indeed, the product is often delivered when perceived “complete,” leaving it to customers to find the
as-yet-undiscovered rework. Before moving on to a comparison with defense software projects, imagine
the difference in ease of management and accuracy of projections just between these two commercial

O-8

Appendix O: Swords & Plowshares GSAM Version 3.0

extremes. When considering best-practice/TQM/process re-engineering, consider the differences displayed
here — all caused by variations in “quality” and rework discovery time.

Figure O-9 [not available in this format] overlays the same kind of envelope for progress monitoring in the
defense software efforts modeled. Generally longer rework discovery times, and notably lower levels of
“quality,” produce a much more bowed shape overall, reflecting less accurate progress monitoring. The
best of the defense projects is near the typical commercial project in progress monitoring accuracy. The
worst among the defense efforts, with quality levels near 0.10, reports 75% completion when less than 15%
is really done. After reaching 90% reported completion, the line goes nearly vertical — meaning a long
time was spent thinking the end was near, only to discover more and more rework that extended the project
and increased its cost far beyond the original and interim plans. By these measures again, the distance that
defense firms must move in order to be viable commercial competitors is a long one. And, again,
“productivity” improvement is not the answer. Instead, the answer lies in measures that are rarely monitored,
let alone being the focus of control and improvement efforts — quality and rework discovery times.

O.3 Implications for Improvement

The nature of the performance improvement that can be achieved if efforts are successfully focused on
rework cycle quality is illustrated in Figure O-10 [not available in this format]. The individual data points
from all the software development efforts chart (a) their average quality achieved versus (b) their costs
incurred, as a ratio to their budgets. As an example, we’ve circled one data point for a project that achieved
an average of 70% quality, and saw a cost/budget ratio of about 1.5 (a 50% overrun).

Of course, the accuracy of the original budgets causes some deviation among the plotted points. Nevertheless,
the pattern is clear: higher quality, lower cost. Most projects with quality levels in excess of 0.70 achieve
costs comparatively near their budgets. In contrast, projects with a quality less than 0.40 exceeded their
budgets by factors of 3, 4, ... 5!

We overlaid on this chart a line that plots from several simulations the resulting costs versus budget for one
identical project which varies among the simulations only in the average quality achieved. We do so to
drive home the extent to which quality improvement translates to cost performance improvement. With no
productivity change whatsoever, a change in rework cycle quality from 0.35 to 0.55, for example, would
eliminate most of the project cost overrun, reducing costs by an amount equal to the original budget.

O.4 Conclusions

We need to improve our fundamental understanding of how development projects really work. In order to
avoid the persistent cost and schedule performance problems so closely associated with software development
efforts, we must take a more strategic and realistic view of project work content and processes. While the
products and technical steps may indeed be unique, we need to recognize that there are common structures
and processes, and common problem causes. Only then is it possible to extract lessons and to implement
changes that achieve radical improvements in project performance and business success.

Our experience in simulating software development projects indicates that conventional methods and systems
are inadequate to support the management of such projects. Further, the improvement in project or product
development performance sought by most companies is frustrated by the prevailing managerial mindset. It

O-9

Appendix O: Swords & Plowshares GSAM Version 3.0

is a mindset encouraged by the use of systems which treat projects as the sum or sequence of purely discrete
tasks.

We need to recognize the flows of work in software development projects, flows in which there are multiple
rework cycles. Managerial systems which ignore rework and its cycles are deficient, misleading, and
constitute a roadblock to achieving breakthrough improvements in project and product development
performance.

Indeed, we see from the reported results a clear indication of just how dramatic a breakthrough is required
in order for traditionally defense-oriented firms to transfer their substantial expertise to compete effectively
in commercial markets. Their cost performance against targets must improve by at least a factor of 2.
Schedule performance versus targets must improve by a factor of 3, lest faster and more nimble commercial
competitors thwart the attempted transition to “plowshares.” Rework content in their projects must be cut
to 1/3 to 1/2 of currently prevailing levels. The “quality” of on-going work must double. Rework detection
must be encouraged, to avoid the snowballing effects of undiscovered rework. Both better quality and
rework detection are required to improve radically managers’ ability to: (a) contain costs; (b) assess accurately
the true state of ongoing projects’ work progress; and (c) foretell dependably the time at which developing
products will be completed and delivered to the market.

And all this presumes that commercial development efforts themselves do not improve — that they represent
a standing target. This would be imprudently optimistic, for there is substantial room for improvement in
most complex commercial software developments as well. Managerial, technical, and procedural
improvements which could increase work quality by just 10 points would cut cost overruns in half. Most
significant for commercial projects, reductions in the rework discovery time would yield a faster “time to
market,” and more dependable estimates thereof. But we cannot control by mandate the “levers” of quality
and rework detection in the rework cycle. Instead we need to influence them through that which we can
control, or more directly influence — interim schedule targets, staffing, monitoring systems, coding
techniques, testing practices.

The role of a simulation model on a specific project is to portray accurately the project and to aid its
managers in evaluating potential actions through “What if” analyses. However, employed on several
development projects, the model also helps to illuminate the underlying structure of such projects. In the
“ rework cycle” we have developed a near-universal structure which facilitates both roles. The resulting
improved understanding helps managers to identify transferable lessons. In turn, these do lead to significant
performance improvements. Indeed, without some more complete and realistic “model” than is now the
norm, the seemingly intractable cost and schedule problems of software development projects will continue
to plague defense and commercial firms alike.

O-10

Appendix O: Swords & Plowshares GSAM Version 3.0

O.5 Notes

1. “Strategic Management of Technology: Global Benchmarking,” Dr. Edward B. Roberts, December 10,
1992, Cambridge, MA.

2. These project models were built using the dynamic continuous simulation language DYNAMO; see
DYNAMO User’s Manual, Pugh-Roberts Associates, and Introduction to System Dynamics Modeling
with DYNAMO, Richardson, George P. and Pugh III, Alexander L.

3. The concepts and workings of the rework cycle model were explained in “The Rework Cycle:
Benchmarks for the Project Manager”, Cooper, K. G., from which some introductory description here
is excerpted, and first published in Project Management Journal, March 1993.

4. Do the math: Really complete after 1st release= .34; after 1st rework cycle= prior complete + (quality
• remainder)= .34 + (.34 x .66)=.56; after 2nd cycle= .56 + (.34 x .44)=.71; 3rd= .71 + (.34 x .29)=.81...
after 7th rework cycle= .96

5. Revisions reported here are normalized to be equal in effort to a full re-execution of the first release of
the work product, so as to correct for significant variations in the effort content of different revisions.

6. With the benefit of data on a completed project or project stage, one may construct one’s own “progress
ramp” chart by plotting for the completed project: (1) the historically reported “% complete,” versus
(2) a retrospective computation of the % really complete then (you should compute the % really complete
based on hours spent to that point, relative to the total hours eventually spent).

O.6 Acknowledgments

Many years of work by our colleagues and clients have gone into making possible these observations and
findings. Without naming the dozens of individuals and companies with whom we have worked, we wish
to acknowledge here their invaluable contribution. We wish to thank explicitly our colleagues, Dr. Thomas
G. Kelly and Alexander L. Pugh, for their substantial and timely help in preparing the material on which
this article is based. The interpretation of the assembled information remains the authors’ responsibility.

O-11

Appendix O: Swords & Plowshares GSAM Version 3.0

O.7 About the Authors

Kenneth G. Cooper is Director of the Management Simulation Group and Senior Vice President of Pugh-
Roberts Associates, a division of PA Consulting Group. Mr. Cooper’s management consulting career spans
twenty years, specializing in the development and application of computer simulation models to a variety
of strategic business issues. His clients include AT&T, Aetna, Arizona Public Service, Hughes Aircraft,
IBM, Litton, MasterCard, McDonnell-Douglas, Northrop, Rockwell, and several law firms. Mr. Cooper
has directed over a hundred consulting engagements, among them analyses of sixty major commercial and
defense development projects. Mr. Cooper is an original author of the program management model introduced
in this article. His group’s offices are in Cambridge, Massachusetts and Oxford, England. Mr. Cooper
received his bachelor’s and master’s degrees from M.I.T. and Boston University, respectively.

Thomas W. Mullen is a Senior Manager in the Management Simulation Group of Pugh-Roberts Associates,
a division of PA Consulting Group. Mr. Mullen has managed and participated in over thirty consulting
projects in his eight years with the firm. He has concentrated on the use of simulation models to analyze
and aid major commercial and defense development programs. Mr. Mullen has worked with many clients
in the aerospace, software, and financial services industries. He has also managed the development of
several simulation software products. Mr. Mullen received both his bachelor’s and master’s degrees from
M.I.T.’s Sloan School of Management.

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix P

Rate Monotonic
Analysis: Did You
Fake It?

P-2

Appendix P: Rate Monotonic Analysis: Did You Fake It? GSAM Version 3.0

Content

P.1 Rate Monotonic Analysis.. P-3
P.2 RMA: Did You Fake It? ... P-3

P.2.1 The “Did You Fake It?” Quiz .. P-4
P.3 RMA in Practice .. P-5
P.4 References... P-5

P-3

Appendix P: Rate Monotonic Analysis: Did You Fake It? GSAM Version 3.0

Reprinted from the Software Program Manager’s Network newsletter, NetFocus: Technology Update,
Number 210, June 1994

P.1 Rate Monotonic Analysis

“In the past, developers have had few tools to help them ensure on-time performance of their
real-time systems…A real-time system generally has several activities (or tasks), each of which
must be completed by a specified deadline. Some of these deadlines may be hard (or critical) and
some may be soft (such as those based on average performance). Missing a hard deadline can
result in catastrophic loss of system performance or even loss of life.” [OBENZA94]

P.2 RMA: Did You Fake It?

Did you fake it? This is the question concerned program and software managers should ask their development
teams when it comes to the design and implementation of their real-time systems. Not only has “faking it”
been an option when designing real-time systems, it has become the process. Unfortunately, there is immense
corporate ignorance for the need of a proven analytical process to address real-time requirements at the
design stage of a real-time system. With the exponential growth of the size of real-time systems, the
decrease of development dollars, and the liability issues that are emerging due to defective software, faking
it is no longer a viable option.

Schedulable, “on time” software is essential for real-time systems. Without such a capability, task timing
conflicts cannot be identified early enough in development to avoid timing overruns, which cause system
crashes and the subsequent need for budget-busting corrective measures. Simulation alone isn’t the answer,
for it doesn’t guarantee timing, besides being extremely costly in time and money.

An alternative to faking it is Rate Monotonic Analysis (RMA). RMA is a scientific and mathematically
sound way of guaranteeing the timing requirements of time-sensitive systems and is one of the most well
known and often used scheduling algorithms for realtime applications. Boeing, General Electric, General
Dynamics, Honeywell, IBM, McDonnell Douglas, Magnavox, Mitre, NASA, Naval Air Warfare Center,
and Paramax are just some of the growing number of organizations beginning to use RMA on actual systems.
RMA will increase your project’s productivity and reduce integration and testing costs, risk and complexity.

RMA’s system scheduling heuristic is shortest-task first, so the ready task with the shortest period always
runs. The analysis considers worst-case time and combinations of system load, phasing, and resource
consumption, ensuring real-time performance and stability under heavily loaded conditions. RMA provides
insight into the hardware and software design that effects system timing performance and helps to identify
possible bottlenecks and errors that degrade schedulability. RMA has the ability to predict timeliness —
processing of an event during worst-case time — and guarantees that events meet their deadlines.

When you begin to integrate RMA into your process, you will become aware that the scheduling of tasks
for a real-time system is significantly different from the traditional forms of scheduling. It will become
apparent that tasks compete for resources; whether it’s a CPU, backplane bus, or network. This requires
that more important tasks be given priority to execute over all other tasks. A preemption occurs when a
higher priority task replaces a currently running task on a resource. Preemption by way of priorities, to
increase the responsiveness of a system, brings up several questions:

P-4

Appendix P: Rate Monotonic Analysis: Did You Fake It? GSAM Version 3.0

• How do you ensure beyond a reasonable doubt that the lower-priority tasks will ever get access to the
resource?

• If there are simultaneous activities, how do you guarantee that all of them are completed on time?
• If they all cannot finish in a timely manner, which one succeed and which ones fail?
• Is it possible for all the tasks to run in a way that guarantees timely access to the resource?
• And most importantly, will the tasks meet their execution deadlines?

All of these questions can be answered through the use of RMA.

Adoption of RMA has been met with reluctance in the past. Questions arise about the costs of training,
materials, and access to the appropriate tools that support RMA. Today, however, affordable CASE tools
that support RMA are available, and provide a proven process as part of good engineering discipline in
real-time systems. Unfortunately, management cannot promote good discipline if it doesn’t thoroughly
understand real-time system development issues. System engineering practitioners need the ability to analyze
the run-time performance of a real-time system at all phases of the software life cycle:

• During the proposal phase there is a demand for support in system prototyping, iterative development
techniques, and trade studies.

• Guaranteed timing deadlines and adequate system hardware are a necessity during system requirements
definition — before writing a single line-of-code.

• At the time of implementation, the intent is to painlessly detect scheduling errors, calculate overall
CPU usage, and diagnose corrective actions.

• The objective during test is to reduce testing, verification, and demonstration validation with the
confidence that the algorithmic proof used at the design phase guarantees the system performance.

Achieving the objectives of real-time systems is possible if a system is designed with the support of a RMA
CASE tool. CASE tools provide a practical, highly cost-effective, and easy way to automate use of RMA.
Emerging RMA CASE tools take the guesswork out of identifying significant performance issues and can
help develop an overall solution strategy as opposed to spending dollars on new hardware or using a less
effective approach to modify a real-time system.

Adopting RMA methods as part of an organization’s general engineering discipline and standard software
development process will provide real cost savings and quality process improvements.

P.2.1 The “Did You Fake It?” Quiz

1. When it comes to real-time software, do you practice the method of first making the software work, and
then trying to make it meet timing requirements?

2. Do you have unrepeatable system failures?
3. Have you ever bought a larger CPU to solve timing overruns?
4. Has rewriting your software in a different language been proposed as the answer to a timing error?
5. Do you wish you had a process on your current real-time program?
6. Do you think real-time means real fast?
7. Do you wish you had an accurate account of your real-time system’s processing limitations?
8. Are you tempted to push more processing down to an interrupt level to get your system to run faster?

P-5

Appendix P: Rate Monotonic Analysis: Did You Fake It? GSAM Version 3.0

An affirmative answer to one or more of these questions indicates that your real-time systems are at high
risk. Just say no to faking it by saying yes to the benefits of effectively using RMA.

P.3 RMA in Practice

A contractor had been directed by their customer to learn more about RMA and perform real-time analysis
on the system they were building. They indicated that they did not need to perform any analysis because
their simulation proved the system could meet timing requirements. By gathering information to understand
the simulation, an RMA expert was able to extract the system design, analyze it, and identify a queue that
was approaching overflow and would eventually bring the system down. The RMA expert asked the
contractor to run the simulation an additional 10 minutes, which did cause the system to fail.

A Navy contractor had been building a submarine sonar trainer. At integration testing, the system was
experiencing severe timing overruns, which were causing the system to crash. RMA showed only 300
lines-of-code had to be modified to fix the timing problems. This was considerably cheaper than recoding
17,000 lines of Ada to C, which was the original plan. The real-time analysis also showed that recoding to
C would not have solved the problem.

Through the use of rate monotonic scheduling, we now have a system that will allow [Space Station]
Freedom’s computer’s to budget their time, to choose [among] a variety of tasks, and decide not only which
one to do first, but how much time to spend in the process. — Aaron Cohen, then Acting Deputy
Administrator of NASA in 1992

RMA is derived from a paper presented by C.L. Liu and James Layland in 1973. In it they state that a set
of n independent tasks will always meet its deadlines, for all task phasings, if:

C

T

C

T
U n nn

n

n1

1

1
2 1+ + ≤ = −... () ()

C
1

 = worst-case task execution time of task
T

1
 = period of task

U
(n)

 = utilization bound for n tasks

NOTE: For more information on RMA, see SEI’s A Practitioners’ Handbook for Real-
Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems.

P.4 References

[OBENZA94] Obenza, Ray, “Guaranteeing Real-Time Performance Using RMA,” Embedded Systems
Programming, May 1994

Part 3: Engineering-Related Appendices GSAM Version 3.0

Appendix Q

On Board Software
for the Boeing 777

Q-2

Appendix Q: On Board Software for the Boeing 777 GSAM Version 3.0

Content

Q.1 Abstract ...Q-3
Q.2 Introduction ..Q-3
Q.3 Perspective for Success...Q-4

Q.3.1 Size ...Q-4
Q.3.2 Communication ..Q-5
Q.3.3 Requirements ..Q-5
Q.3.4 Functional Analysis ..Q-6

Q.4 The ICD Database..Q-6
Q.4.1 Protocol Test ...Q-7

Q.5 Simulation and the Laboratories..Q-7
Q.5.1 Software Metrics...Q-8
Q.5.2 COTS Software...Q-8

Q.5 Summary ...Q-9
Q.6 References..Q-10

Q-3

Appendix Q: On Board Software for the Boeing 777 GSAM Version 3.0

Robert Lytz
Boeing Commercial Airplane Group

Q.1 Abstract

The 777 is the most software-intensive commercial airplane the Boeing Company has produced, and it was
the most mature at entry into service. This paper describes critical factors in the success of the embedded
software effort for the 777.

Q.2 Introduction

In May of 1995, United Airlines accepted delivery, on schedule, of the first Boeing 777-200 airplane to
enter passenger service. At that time, five 777s had completed 1,751 test flights totaling 3,379 hours, and
90 flights had been flown by United to simulate day-to-day flight maintenance and operations procedures.
The delivery celebration occurred four and one-half years after Boeing had committed to 777 program go-
ahead. The program goal of delivering a service-ready airplane on schedule was achieved, and it was done
with a large amount of software developed during a relatively short time. About 2.5 million source lines of
on-board code were newly written for the 777. This is six times the amount produced for the 747-400, the
most recent Boeing Commercial Airplane program. On-board software for the 777 totals over four million
lines of code when commercial off-the-shelf software (COTS) and software provided as options to customer
airlines are included. The software was partitioned into more than one hundred major components
corresponding to physical boxes (line-replaceable units, or LRUs) in the airplane’s control system, and it
was produced by various suppliers external to Boeing Commercial Airplane Group (BCAG), the Boeing
operating group which designs, produces and markets commercial aircraft.

The Airplane Information Management System (AIMS), supplied by Honeywell, is a good example of use
of software in the 777 for advanced functionality and integration of functionality. AIMS provides the
following functions:

• primary pilot display
• flight management
• thrust management
• central maintenance computing
• airplane condition monitoring
• data communication management
• data conversion gateway
• flight data acquisition

Along with several other large systems, AIMS represents the “high end” of software in the 777. It is
important to recognize, however, that virtually every system involved in controlling the airplane had a large
software component.

Q-4

Appendix Q: On Board Software for the Boeing 777 GSAM Version 3.0

Q.3 Perspective for Success

In discussing 777 software-development, it is useful to examine some traditional problems in the embedded
software business. A recent example, the 1994 Scientific American article “Software’s Chronic Crisis”
[1], noted that “some three quarters of all large systems are operating failures that either do not function as
intended or are not used at all.” This situation has historic roots. A quarter-century ago a NATO conference
of software experts [2] included the following in a list of severe software-development impediments:

• Poor communication among groups working on the same project
• Lack of understanding in system requirements on the part of customers and designers
• Difficulty in monitoring progress in a software project, since program construction is not always a

simple progression in which each act of assembly represents a distinct forward step
• Lack of inventories of reusable software components
• Rapid growth in size of software systems

In the 777 program, solutions to these software problems were worked by Boeing, its customers, and its
suppliers. These solutions — in communication, understanding of requirements, progress tracking, reuse,
and size — are a useful framework for understanding software development for the 777. In 1987, Fred
Brooks [3] advised the software community not to look for “silver bullets” with which to slay the “monsters”
that afflict software development efforts. In the 777 program, several tools, techniques, and facilities were
crucial to delivering a mature product on time. These should be seen as viable means of accomplishing
established software objectives, rather than as magic bullets.

Q.3.1 Size

In his Silver Bullet article, Brooks also emphasized that many classic problems of software development
stem from nonlinear increases of complexity with software size. This means that if one system has twice as
much software as another, it is likely to be more than twice as complex, require more than twice as much
labor to develop, and take more than twice as long to build.

One standard engineering solution to inefficiencies of scale is to partition a system into well-defined pieces
with well-defined, simple interfaces among them. This was done for the 777, allowing the pieces to be built
independently and simultaneously. However, reduction in complexity and inefficiency with this approach,
and ultimate success when the pieces are put together, are not guaranteed. They depend on the quality
(stability, coherence, and completeness) of developers’ understanding of the functionality of the pieces and
their interfaces. The need to partition a large system is so obvious that it usually goes unremarked. Yet the
difficulties associated with partitioning — incoherent functionality on integration, unstable or poorly
communicated interfaces — are so common that partitioning often seems to be more trouble than it is
worth. Most of the measures taken in the 777 program to produce successful software were intended to
take advantage of the benefits of partitioning a large software system and to avoid the pitfalls associated
with doing so.

Q-5

Appendix Q: On Board Software for the Boeing 777 GSAM Version 3.0

Q.3.2 Communication

“Working Together” was the slogan of the 777 Program. At the 777 All Operators Flight Operations
symposium in October 1995, United Airlines fleet captain Lew Kosich stated, “I’ve never seen a program
go like this. Working together was absolutely awesome. When the airplane was finally inaugurated into
service June 7, it was almost a non-event for us. We were inaugurating a mature airplane.” The reality of
this working-together approach in 777 development is evident in listening to anyone who helped specify,
design, or build the airplane. Pilots, engineers, and maintenance personnel from customer airlines worked
with their BCAG counterparts from the start. Suppliers, including software suppliers, were involved earlier
and more completely in the overall process than for previous BCAG airplanes. For example, Boeing made
protocol-test and simulation tools (described below) available to suppliers so they could begin verifying
message interfaces early in the program.

It is hard to quantify day-to-day causes and effects in the working-together policy. However, its utility
needs to be taken seriously. Most participants in the 777 program believe the working-together approach
was an absolute prerequisite for success. The rest of the approaches, techniques, and tools described here
would have been less valuable if they had been applied in a less collaborative environment.

Q.3.3 Requirements

At the outset, program management set challenging “service-ready” objectives which drove the 777 program.
These objectives, met at delivery, contributed to early refinement and stability of requirements. They were:

• The airplane and its systems are mature at first delivery.
• Airplane support programs are complete and available at first delivery.

Achieving these objectives meant that many development and test activities occurred earlier in the 777
program than they had in previous ones. For individual LRUs, there was emphasis on having all stand-
alone testing performed at supplier sites prior to beginning any testing at Boeing. Similarly, detailed system-
integration testing was begun as early as feasible in the program. For every activity that was moved forward
(compared with previous development efforts), there was increased opportunity to catch defects, particularly
defects in requirements. It has been well established for twenty years that the earlier in development
software defects can be caught, the less expensive it will be to correct them [4]. Emphasis on maturity at
delivery contributed to increased maturity at each point in development, and vice versa.

Several top-level documents contributed to the cohesion of the software effort. The 777 Design Requirements
and Objectives (DR&O) document was the single point from which all other airplane requirements, including
software requirements, were ultimately derived. For each system, a System Requirements and Objectives
(SR&O) document, setting forth high-level requirements, was prepared, based on the DR&O. Each SR&O,
in turn, was the basis for the Specification Control Drawing (SCD), the definitive requirements document
for each system. Requirements flow-down was managed systematically with appropriate technical detail at
each level, resulting in a secure basis from which to build software.

The General Technical Requirements (GTR) document was new for the 777. This single source provided
generic material that would otherwise have been included redundantly in each SCD. Pulling the GTR
together and referencing it from each SCD not only saved the work of restating general design considerations;
more importantly, the GTR promoted uniform understanding of those considerations.

Q-6

Appendix Q: On Board Software for the Boeing 777 GSAM Version 3.0

Q.3.4 Functional Analysis

A concerted requirements-validation activity contributed to timeliness, stability, and coherence of
requirements, making software re-work less likely. Validation analyses for the 777 documented the
equipment-operability conditions under which the airplane would, or would not, be allowed to be dispatched,
and they provided assurance that safety and redundancy features would accomplish their intended function
if called upon to do so. In addition to the prime intent of satisfying safety requirements, 777 validation
activity ensured that documentation needed for customers would be available immediately on first delivery.
The significance for software was that functionality and interface issues were worked thoroughly.

The system functional analysis for validation proceeded in three phases. In the first phase, the functionality
expected for each individual system was examined for intra-system effects of single and multiple-point
failures. This phase was concluded before program go-ahead, and its results were folded into the SCD for
each system. In the second phase, the effects of single and multiple-point failures were examined across
system boundaries. In the third phase, similar analyses were done top-down from the airplane point of
view. In each phase, discrepancies were formally registered and worked, and SCDs were updated as a
result. In addition, the analysis scenarios used were incorporated into laboratory integration tests and flight
tests where feasible. The resulting maturity in definition of functionality and interfaces materially affected
software development and quality.

Q.4 The ICD Database

For the 777, the overall bus architecture and its interfaces were designed to provide appropriate connectivity,
isolation, redundancy, and bandwidth across the airplane and its systems. The buses involved were four
ARINC 629 systems data buses, three ARINC 629 flight control data buses, and numerous ARINC 429
buses. The ARINC 629 systems data buses redundantly provide high-bandwidth broadcast messages and
directed messages among LRUs over the entire airplane. The ARINC 629 flight control buses provide
similar communication facilities for the redundant flight computers, actuator electronics, and associated
power supplies and sensors. ARINC 629 buses were first used in the 777. ARINC 429 buses, an older
technology, provide point-to-point connections — typically between LRUs that are derivatives from previous
airplanes.

Consistency of expectations between the transmitter and ultimate users of each message is a pressing issue
for any program where computers must exchange data. For the 777, the issue was amplified by the number
and variety of messages, sources, and destinations. The 777 development program managed this issue
systematically and with a whole-airplane perspective. This was done using procedures and tools associated
with the Interface Control Drawing (ICD) Database.

From the beginning of the program, the 777 ICD Database documented bus messages within the 777 computer
architecture, as well as most discrete-level signals. In all, the 777 ICD Database describes 3000 analog
signals and 40,000 digital signals. There are several factors that account for success of the ICD database in
dealing with the variety of 777 message and signal traffic:

1. Prior to program go-ahead, the ICD Database was the single, authorized repository of 777 bus-message
information.

2. Use of the ICD Database was integrated into the 777 development process.

Q-7

Appendix Q: On Board Software for the Boeing 777 GSAM Version 3.0

3. Tools associated with the ICD Database detected and reported discrepancies between sources and users
of communication data.

4. The ICD Database automatically generated required interface documents.
5. The ICD Database directly fed protocol-test and simulation software.

Interface descriptions were put into the ICD Database as they became available. By November 1992, a tool
to check for discrepancies between transmitters and receivers of information was placed on-line. Initial use
of this tool confirmed the need to have both the transmitter and the receiver(s) of any given message
document their expectations independently. Within two months of initial deployment of the tool, 50,000
instances of discrepancies between transmitters and receivers had been detected. The discrepancies were
worked intensively. As a result, their number decreased to 3000 in two more months. In addition to the
discrepancy checker, other tools were built to take advantage of the ICD database. One was a documentation
generator that pulled printed message tables from the ICD database for inclusion in required documentation.
As described below, other tools pulled message information from the database to support emulation and
simulation directly. Overall, use of a single, on-line source of interface descriptions promoted stability of
on-board software during its development and test.

Q.4.1 Protocol Test

Message extracts from the ICD database directly fed the Protocol Interface Test Tool (PITT), which was
written by BCAG to test two critical interfaces to each LRU with connections to the newly-developed
ARINC 629 bus. These interfaces are the Central Maintenance Computing Function, which monitors the
health of each LRU, and the Data Load Gateway Function, which loads on-board software and software-
configuration data into each LRU. PITT provided facilities to test nominal and off-nominal message
transmission associated with these functions. The tool was based on the new message protocol for ARINC
629 buses. Suppliers used PITT at their sites for about three-quarters of the software LRUs in the 777, and
BCAG used it in verification of all software delivered. In addition to verifying protocol for individual
LRUs, the PITT identified instances where protocol definition needed to be upgraded. This activity, like
the others described here, contributed to the maturity and stability of the product and development
environment.

Q.5 Simulation and the Laboratories

Laboratory simulation, used on a scale unprecedented at BCAG, was crucial to delivering the 777 on time.
Ground-based integration and integration-testing of systems have traditionally been accomplished on actual
airplanes at BCAG. At the beginning of the 777 program, a corporate decision was made to commit
resources to BCAG laboratories that would allow integration testing of the entire control system of the 777
and future airplanes. Laboratory work was expected to be, and proved to be, essential to the fundamental
goal of producing a truly service-ready airplane. Compared with ground-testing on prototype airplanes,
laboratory testing yielded improved access to components and enhanced ability to instrument the software
and hardware. There was a great deal of flexibility in configuring and scheduling various arrangements of
airplane equipment, test equipment, on-board software, and simulation software. In the laboratory
environment, planned stages of testing were accomplished sooner and in a greater variety of configurations
than they could have been otherwise.

Q-8

Appendix Q: On Board Software for the Boeing 777 GSAM Version 3.0

Strong emphasis on providing a good simulation environment augmented the attention BCAG and its suppliers
gave to requirements and interfaces. Developers of simulation software were an additional group of users
of requirements for 777 functionality and interfaces. Thus, in addition to meeting its primary goal of
testing on-board software and equipment thoroughly, the laboratory simulation effort provided one more
source of early requirements analysis, making the software development process more stable.

The simulation environment was large, and the simulation work could not have been accomplished without
automatic code generation facilities. In all, about 3.4 million lines of code were developed at BCAG to
support laboratory simulation — more than the total for new on-board software for the airplane. About
60% of the simulation software was autocoded, including all 1.4 million lines of interface software, which
were generated directly from the ICD database.

Q.5.1 Software Metrics

Uniform use of software metrics was instituted about half-way through the 777 development program.
From the beginning of the program, supplier software engineers and their BCAG counterparts used various
software measures to communicate status of the work at hand. Due to the diversity of these measures, it
was difficult to get a comprehensive view of the overall state of software development. Late in 1992,
suppliers were asked to report simple, standard software metrics, and they began doing so for most systems
within a few months. The metrics used [5], included plans and actuals for software design, coding, test
definition, test execution, and resource utilization. In addition, actuals were collected for software problem
report totals.

Simple as the uniform metrics were, they provided an excellent medium for communication and an impetus
for more detailed understanding of plans and status at all engineering and management levels. From the
beginning of their application, uniform metrics encouraged application of reasonableness checks on plans
and discussion of those checks. Over time, there was variation among systems in their degree of adherence
of actuals to plans. Where actuals and plans diverged, there was opportunity for BCAG and its suppliers to
examine causes and solutions or work-arounds for problems underlying the metric data. The conversations
between Boeing and suppliers that were prompted by metric data were as important as the metric data itself.

Analysis of software-metric data at the conclusion of the development program yielded useful lessons for
future programs. In seeking to identify the most potent early indicators of final schedule behavior, there
was a serendipitous result. Both the time it took suppliers to begin reporting metrics coherently and the
degree of adherence to early software-testing schedules were found to be strongly correlated to final software-
test schedule slides and with the date when systems were ready to pass from engineering-development
control to manufacturing control.

Q.5.2 COTS Software

Commercial off-the-shelf software (COTS) was used to a greater extent in the 777 program than in previous
Boeing commercial aircraft. Two examples of COTS are the Ada run-time-systems whose code became
embedded in the software for many LRUs and the DOS / Windows environment. In both cases, substantial
economic benefits were realized.

Q-9

Appendix Q: On Board Software for the Boeing 777 GSAM Version 3.0

For some systems, such as Cabin Entertainment, products like DOS, Windows, and X-windows were used.
These had the enormous benefit of not having to re-invent functionality which was already available
commercially. For some other systems where desired functionality was available in COTS (for example,
X-Windows), the off-the-shelf products were not used. This is because, in order to meet certification for
the level of safety required, the cost of developing appropriate tests to perform upon COTS would have
been greater than the cost to develop the functionality directly. One consideration here is that testing COTS
functionality, which often exceeds the functionality that a particular application needs, can be more expensive
than testing only the functionality that is required. Also, the Ada run-time system represented a substantial
amount of “off-the-shelf,” reused code for the 777, even though it is often not thought of in this way. Ada
was used, with restrictions depending on system criticality, for over half of the LRUs in the 777.

COTS will probably become even more accessible to future airplane development efforts. This is because
interfaces and version interoperability are becoming better defined and standardized, because COTS software
is being tested more rigorously as time goes on, and because generic tests one might perform on COTS
products are themselves becoming available as COTS.

Q.5 Summary

In software development for the 777, new techniques, tools, and facilities were crucial to program success.
Rather than seeing any of these as “silver bullets,” it is probably most useful to regard them as effective
ways to achieve well-established, software-development objectives. In the 777 program, there was effective
communication. Requirements for functionality and interfaces were developed early, they were systematically
refined through the program, and they were carried through to final integration, laboratory test, and flight
test. Simple, consistent measures of software progress were used. Commercially-available software was
incorporated where feasible. Overall, the system and the development effort were partitioned and managed
to reduce complexity, to allow work on components to proceed independently and “in forward steps,” and
to ensure successful delivery of a mature product.

Q-10

Appendix Q: On Board Software for the Boeing 777 GSAM Version 3.0

Q.6 References

[1] Gibbs, W. W., “Software’s Chronic Crisis,” Scientific American, 271, 86-95, (September, 1994)
[2] Naur, P. and B. Randell (eds.), Software Engineering: Report on a Conference Sponsored by the NATO

Science Committee, Brussels, Scientific Affairs Division, NATO (January 1969), as quoted in: Cusumano,
M. A., Japan’s Software Factories, Oxford University Press (1991)

[3] Brooks, F. J., Jr., “No Silver Bullet,” IEEE Computer, 20, 10-19 (April, 1987)
[4] Boehm, B. W., Software Engineering Economics, 39 (1981)
[5] Lytz, R., Software Metrics for the Boeing 777: A Case Study, Software Quality Journal, 4, 1-13 (1995)

Part 4: Management-Related Appendices GSAM Version 3.0

Appendix R

Lessons-Learned
from the BSY-2’s
Trenches

R-2

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

Content

R.1 Introduction ... R-3
R.2 People... R-3

R.2.1 Motivation... R-4
R.2.2 Change Is Good .. R-5
R.2.3 Diversity.. R-7
R.2.4 Software Architects... R-9

R.3 Process.. R-11
R.3.1 Initial Establishment of a Process ... R-11
R.3.2 Interfaces... R-12

R.3.2.1 Utilize Code in the IDD .. R-12
R.3.2.2 Put Inter-Process Interfaces in the IDD R-13
R.3.2.3 Keep SRS Interface References to the Message Level R-13
R.3.2.4 Combine the IRS with the IDD .. R-13
R.3.2.5 Configuration Management .. R-13
R.3.2.6 Distributed Object Systems .. R-14

R.3.3 Integrated Product Teams ... R-14
R.3.4 Reuse... R-15
R.3.5 Waterfall versus Spiral Model .. R-16
R.3.6 Configuration Management .. R-17

R.4 Technology... R-18
R.4.1 Use of Ada .. R-18

R.4.1.1 There’s No Substitute for Experience ... R-18
R.4.1.2 Self Documenting Code.. R-18
R.4.1.3 Use Tasks Wisely .. R-19
R.4.1.4 Integration Techniques ... R-19
R.4.1.5 Design for Tuning Up Front ... R-19
R.4.1.6 Ada Is Not for Everything .. R-19

R.5 Summary.. R-20
R.6 References.. R-21
R.7 About the Author .. R-21

R-3

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

Robert F. Sullivan Jr.
PROSOFT, Inc.

R.1 Introduction

You’ve read the headlines. You’ve watched “60 minutes.” Large government software development programs
ending up in huge cost overruns, way over schedule, and no clear indication of either the quality or the
functionality that the government is receiving for the enormous price tag. Everyone wonders what went
wrong. So when a subset of the seven sensor AN/BSY-2 Combat System (the single sensor AN/BQG-5)
was deployed on the USS Augusta in 1994, and initialized properly the first time it was powered up on the
submarine, and generally performed outstanding in its first sea trials, you have to start asking what went
right. The following areas are arguably the most succinct summary of what went right. However, there are
a great many lessons learned. These 4 key areas are not a silver bullet. The areas are:

• Emotional Mission Statement. There was a strong, emotional purpose attached to the project and
everyone involved bought into it;

• Process improvement culture. Over the course of the project, there were vast, and essential process
improvements;

• Strong configuration management. Reliable, effective, automated baseline control and problem reporting;
• Use of Ada. Strong typing, information hiding, and other factors lead to a solid, reliable product.

To get an appreciation of BSY-2 and the magnitude of its success, you have to appreciate the immense size
of it. It is over 3 million lines of tactical code, with several million lines of support software. The tactical
code is broken up into over 100 CSCIs. Most CSCIs were assigned to an individual team. Several of the
CSCIs are so large and complex, no one person knows all the details the CSCI. Needless to say, no one
person knows all the details of the entire system.

For sure, there is some breakthrough technology involved. But the challenge of creating that technology is
dwarfed in comparison with the challenge of creating the countless pieces of “trivial” functionality that
must all play together. Taken individually, most of the pieces are relatively easily understood. But that’s
the danger and the ultimate challenge. Few of the pieces can be taken individually. They all must play
together with other pieces. The inter-team interaction required to pull this off is unlike any other program.
Its difficult enough to balance the dynamics within one team. Imagine trying to balance the dynamics of
over 100 interacting teams? Imagine if the teams are spread over several geographic locations? Imagine if
not all the people on a given team report to the same functional management? Imagine if the support groups
like configuration management, test support software, simulation/stimulation software, and CSCI integration
report to different management than the majority of organizations they serve? Sounds like a formula for
disaster? Well it could have been. The successful techniques can be broken up into management of 3
categories: people, process, and technology.

R.2 People

There is little breakthrough technology involved, so we aren’t talking about finding a few superstars, giving
them everything they want, and watching them do good things. We are talking about finding scores of
solid, team players. This challenge is more difficult than any technology problems faced. You need to find
good people, properly reward and motivate them, ensure a dynamic organization that responds well to
change, and balance inter-team dynamics.

R-4

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

R.2.1 Motivation

Create an emotional mission statement that achieves buy-in from the entire team and their
families.

This project required a tremendous, sustained commitment for many years. With anything this size, there
will be built in bureaucracy, to the point where it’s hard to do the right thing; much easier to conform to
inefficient rules and regulations. But conformation leads to stagnation and over the 7 years, there are
bound to be profoundly better ways of doing business.

How do you get several hundred people motivated to sustain long hours away from their families and
friends, work crazy hours and keep bucking the system to make it better, no matter how hard it is? Just like
you’ll see in many “peak performance” books, the trick to superhuman effort, be it individual or team
(although much more vital to a team), is commitment to an important mission. Everyone needs to feel
important and adequate. What better way than to contribute to something vital to our nation’s security?
The Seawolf computer system!!! The Soviet Union had caught us sleeping, had advanced their submarine
technology beyond ours and we needed to catch up in a hurry.

What a motivator! Everyone knew the importance of their contribution. Everyone wanted nothing but the
best in quality. No one would settle for anything less. The customer didn’t need to worry about getting
shortchanged. There was a passion for quality, a passion to build the best that America had to offer, the best
in the world. One bad apple couldn’t spoil the show, a dozen others would expose and correct the problem
and preserve the integrity of the project. A tremendous emotional motivator produced superhuman results.

Any motivator such as this must be emotional. It has to touch the families of the engineers, not just the
engineers. There is a sacrifice on everyone’s part, and everyone must know what they are getting for that
sacrifice. Peace of mind, the Seawolf sub will protect us from the bad guys. It will make the world safe for
democracy and freedom. And we would prosper as a company with it. We have found that financial
rewards are a side effect of a good emotional motivator. It is much more effective than a financial motivator,
alone.

Print up T-shirts, get coffee mugs and hats with exciting, emotional logos and pictures. Outfit the family
with the paraphernalia. Have family events and tours of the facilities. One of the most difficult aspects of
this job was the security. We were sequestered off in a closed room. No family members allowed. It was
6 years into the program before I thought to bring home the office seating diagram. My wife was elated
because she could relate better to my world. A simple little picture gave her a whole new understanding
and appreciation for my work. And it increased her buy-in.

Watch the results. If the family buys into the mission statement, you’ve got it made. Tremendous things
will happen. If the family doesn’t buy in, you’ve got an uphill battle.

So how did we keep going when the Soviet Union collapsed and removed the threat, thus removing the
main point of the mission? It’s never been the same. But that doesn’t mean it demoralized everyone. Sure,
there were a few rough months. Sure, many good people left. Sure, some people retired on the job. Then
throw on top of that the congressional budget cuts, eliminating production of several systems per year to
only 2 systems overall!!! Not only is the mission removed, but the economic stability is damaged. Family
security is at risk. How can you recover from something like this?

R-5

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

We did the only thing we could. We found another mission. We would strive to make the Seawolf technology
be the foundation for the New Attack Submarine (NAS). The NAS is vitally needed for trouble areas like
the Persian Gulf, where our current subs are too big or not sensitive enough. It wasn’t a great substitute, but
it was the only option available. It revitalized many and gave the promise of economic stability and growth.

We were back on track. Until the NAS funding got delayed, pending the success of the Seawolf. Now the
pressure was on. Our economic stability was tied to the completion of this program, and even then, there
was no guarantee. There might be a delay between the end of the Seawolf and any NAS funding. The
family security was damaged. The mission was weakened. Luckily, there was enough momentum and
enough process safeguards that the project will complete no matter what. Had this happened a few years
ago, we would have been another disaster on 60 minutes.

In summary, if you don’t have an emotional mission, get one.

R.2.2 Change Is Good

Create a culture where constant change is encouraged, embraced, and rewarded.

People tend to resist change. It makes them uncomfortable. It’s harder because you have to learn a new
way of doing business. It worked this way before, why can’t we stick with it?

With a program this size, most of the old rules are history. With the global competition, most of the old
rules are history. One management expert describes the only true, sustainable, competitive edge, as the
ability to learn faster than the competition.[1] Learning new things implies changing the way you do
business. On a program that stretches over 7 years, there are going to be vast changes in industrial best
practices. If you don’t prepare for change, it will hurt. Either you won’t change and become obsolete, or
the changes will not be embraced properly and you won’t get the payoff.

How do you prepare for change? Well, it’s got to start with upper management, and end with everyone
involved. It’s got to be embraced by everyone, including (and especially) the customer. The typical DoD
project gets its share of standards imposed on it (including the contract itself). However, these standards
are made to be tailored to industry and the contractor’s best practices. It is in everyone’s best interest to do
this. Blindly adhering to a standard is no excuse for thinking, adapting, and changing. You and your
customer should approach each standard as if its first requirement read, “You shall continuously refine,
document, and improve your interpretation and implementation of this standard”. Associating change with
a “shall” makes it a requirement that needs to be met.

What happens too often is the customer and the contractor’s standards enforcers, commonly known as
gatekeepers or speed bumps, enforce the standards for the sake of enforcing the standards. There is no
room for interpretation or change. There is often no written interpretation either. This mindset is deadly. It
leads to demoralization and resentment. It stifles creativity. It creates bottlenecks with no apparent value
added. We’ll talk more about the process specific aspects of this later but let’s concentrate on the people
aspects now.

You’ve heard of manufacturing success stories where direct discussions with people doing the work, senior
management, and the customer produced miracles. Software development is no different. If change and
improvement are part of the contract, part of the requirements, and embraced by everyone involved (especially

R-6

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

the people in the trenches), people will create better solutions than any standard could have dictated or even
hoped for. There is no standard process or guideline that should be imposed blindly on any software
project, let alone imposed across the board on a huge project. Once a standard is in place, naturally it
should be documented and enforced to the extent practical. But if the culture is not in place to constantly
refine and improve standards and their implementation (yielding more efficiency without a compromise in
quality), you will waste big bucks, and build frustration and resentment.

With the refinement must come the rewards. Now there are several lessons here. First, the struggle to
implement change is often made unnecessarily difficult due to the bureaucracy, or inertia built up. Without
the culture described above, you often end up with these brick walls on both sides — contractor and customer
are both afraid to change. The walls are protected by the standard’s enforcers (gatekeepers). Interpretation
and implementation is often dictated or heavily influenced by the gatekeepers. The engineers implementing
the standard are often unequally represented, both internally and with discussions with the customer. The
fear is that the engineers will take the shortest path, thus compromising quality and product integrity. But
in reality, rigid adherence to any standard cannot, by itself, ensure a quality product. Yet for any standard
or process to be effective, the people doing the work need to buy into the spirit of the standard.

This apparent deadlock can be broken by tapping into the natural tendency of many (some argue all) engineers
— they like to complain. They are constantly striving to avoid the hard stuff. But that is the irony. That is
what they are trained to do, to create products and services that make tasks convenient, easy, or efficient.
Without problems to complain about, they have no mission (there’s that word again). Encourage and
develop their complaining skills, and demand that they do something about it (active complaining). This is
a reward in itself. By having more control of their own destiny, just about anyone is bound to have an
increase in morale.

In this new style organization, the gatekeepers (for both contractor and customer) are still a vital piece of
the puzzle. After all, a standard or process is nothing if it is not followed. The typical gatekeeper is very
knowledgeable in the vast myriad of standards. As a change is proposed, the new role of the gatekeeper
should be to ensure continued compliance with the contract (including standards imposed by the contract).
Embrace the change as something that will make the standard, and consequently the product, better, not as
something that threatens it. When a change causes a requirement (or interpretation of a requirement) in the
contract to change, they should participate in the modification of the contract.

A very effective vehicle to accomplish this is a “Memorandum of Agreement” or a “Memorandum of
Understanding.” These are nothing more than a change to the contract or an interpretation or clarification
of the contract. However, it is drafted with the help of the people implementing it. Since it is drafted by the
people charged with implementing it, by default it carries a much higher probability of success than one
drafted by some authority. This is not meant to be a dissertation on how to coddle an engineer. Complaining
must be measured against productive change. Changes must be weighed against programmatic (cost and
schedule), contractual, and technical objectives. But there is often tremendous room for flexibility within
these constraints, especially over a long development cycle. With this flexibility will come improved
morale.

Now all pieces described here are vital to a creating successful culture of change. The people implementing
a standard must be equally represented on all decisions relating to that standard. The people enforcing the
standard must know and embrace their role. The customer must encourage change by the contractor. And
management must reward change when it pays off. One final note relates to an observation and suggestion
on an ideal organization to implement change. Most organizations, once they establish a process, establish
some form of process improvement team. This can range from informal to formal. In either case, there are

R-7

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

often strong individual advocates for change that get involved one way or another. But even the most
staunch advocates for change are susceptible to building walls and impeding change. Advocates for change
often fight passionately about a few key issues that are close to their heart, often after they have spent many
frustrating hours struggling with the current system. They typically can not sustain the energy necessary to
constantly improve and question other aspects of the system.

To solve this, I suggest an organization where the improvement team is constantly changing also. This can
be “chaired” by the same person but the people doing the leg work need to have fresh legs. By making the
team’s accomplishments recognized, involvement on this team becomes a reward, an opportunity. You will
get plenty of fresh legs asking to get a chance to play. The veterans are still required to make sure the
integrity of the product is maintained. But by constantly getting fresh legs, a fresh look at existing problems,
you foster more innovation. And the competition can instill renewed vigor in the veterans.

In summary, change is not only good, it is required.

R.2.3 Diversity

You need to motivate as many people as possible, to be as productive and happy as possible.

With any large program, you will have a melting pot of people. From self starters, to superstars, to lazy but
effective (if properly motivated) people, you’ll see them all. The trick is to get as many people as possible,
as productive and happy as possible. This involves quite the juggling act when there are scores of engineers,
each with their own aspirations and needs. The corporate ladder becomes harder and harder to climb.
Much of the management and senior technical people are entrenched in their positions, and necessarily so
for consistency and continuity to the program. After all, we are talking about many years of development.

This is an eternity for a project. What’s in it for the average engineer? Where’s the career path, the upward
mobility? Sure, there will be some attrition in the management and senior technical chain but there are
dozens waiting to fill those shoes. The key becomes making each contributor feel like a vital piece in the
big picture. Software development is a team sport. On a large program, it becomes a multiple team sport.
You can’t rely on a few superstars to carry the whole load. Upper management needs to balance the
importance of each team. Middle management or the team leader needs to balance the importance of
individuals on each team. As a project matures, different teams play different roles. At one time in the
program, a certain team may be facing the number 1 high risk issue on the program. This team will get
more than its share of attention. If the team performs well, it will get some rewards. The balance of
criticality, performance, and rewards, as perceived by other teams, is the most important factor in keeping
a diverse project productive.

This balance requires a positive environment. On a project where it is so difficult and long, it is easy to get
caught up in the practice of catching people doing something wrong. After all, we all need to look for
problems to solve, we all need to constantly improve to stay competitive. But the masses will thrive in a
culture that catches people doing something right, and rewards those positive actions. The typical rewards
just don’t cut it on a large program. Most organizations will have some form of management awards, some
will also have peer awards. Certainly, these and salary actions are the most tangible rewards. But this is
only the tip of the iceberg. The rewards must be as diverse as the people involved. Each person has
attached their own emotional reasons for their commitment to the mission. Understand that reason, each
person’s motivation, and you have the key to the proper rewards.

R-8

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

For example, some people are motivated by a purely technical challenge. This person would be thrilled to
receive a gift certificate to a local computer bookstore, or a personal Internet account, or attendance to an
industry conference. Others are motivated by family security. What about a family oriented reward? Like
a dinner certificate for the entire family? The late hours wouldn’t hurt so bad, the spouse and kids would
think the company really appreciated the whole family’s commitment. Another example is someone with
many leisure activities. Some unexpected paid time off after a few long months would make it easier to
work the overtime when it is called for again (and you know it will be called for again, and again, and
again). The rewards don’t need to cost money to be effective. A visit by someone from upper management
to a team meeting before, during, or after a big deadline to say thanks for the effort goes a long, long way
towards instilling a feeling of appreciation.

Earlier we talked about perception. This is nine-tenths of the law. The perception of balance is more
important than the reality of balance. Not all jobs are glorious. Not all teams get the exciting work. Not all
teams are equal (nor should they be). But all jobs and teams are vital. All teams must feel vital. It may take
some creative advertising to increase the perceived criticality of some tasks, and the team that performs
those tasks. Equally important, if a team doesn’t have the reputation for performance yet gets recognized
for an achievement, resentment will grow. And obviously no one team should get all the glorious work.
Balance the perception between teams and you are half way there.

If you don’t achieve this type of balance, you will fail in other inter-team aspects. All teams will need to
interrelate to other teams in some way. The products produced by one team may need to be used by another
team (e.g., a document produced by the Systems Engineering Team needs to be used as the requirements for
building the product by the Software Engineering Team). Personnel may need to be reallocated from one
team to another. If the teams aren’t balanced, you will see negative side affects in the team members, and
in the team leaders (e.g., middle management). This will produce an impossible situation to deal with for
upper management. Now we aren’t saying make everything equal. Balance does not imply equality. Some
jobs are more difficult and will need better players. Some jobs are less difficult and can get by with lesser
skilled players. The point is the differences in skill level needs to be accepted, and respected, not flaunted.
Below are some examples.

One of the main reasons for poor proliferation of reusable software components is the “not invented here”
or NIH syndrome. Inter-team conflicts reinforce NIH. We have seen reuse fail and we have seen it work.
In all cases, it can be largely attributed to poor or good team dynamics. In one of the failures, the people
doing the work did not have a strong reputation for technical abilities. The result was the other teams had
an inherent resistance to adopting anything produced by this team. Contrary, in one of the best success
stories, some of the best technical people of two teams were pooled together to create a reusable application
architecture. Because the right people were chosen and their abilities were respected (not flaunted), adoption
of the architecture was not questioned.

On any project, there will be changes in the needs of (people) resources for all teams. On a huge project,
any given person will likely work on several different teams over the life of the project. If there are inter-
team conflicts, it will be reflected in the middle management. They will start to protect “their” best players
to keep their team strong, rather than to let the best person fill a particular need on another team. The result
is the whole project suffers. You can work around weak links in the system but eventually these weak links
will reflect on the entire project. You’ve got to be able to “repair” or help the weaker links by improving
that team. Sometimes this demands drafting someone from another team. If there is any conflict between
teams, human nature will often keep management from sacrificing on his or her own team rather than doing
the right thing for the good of the entire project.

R-9

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

Ironically, when the manager has been willing to sacrifice a key player for the good of the entire project,
that player (and most others on the team) feel deeply committed to that manager. They tend to be willing to
go out on loan, as long as they can stay functionally assigned to that manager. So the unselfish manager
gets the best of both worlds he or she helps the program and also earns tremendous loyalty and respect from
the players.

Another classic example is the typical “advisor” organization, or staff engineers. This is supposed to be the
group of experts and hot-shots. Their charter is to provide advice and guidance, and to set policy and
direction. Think about the resentment this organization will face if the people in this group are not perceived
as experts? Or if the people in this group are arrogant, or condescending. Who would go to them for help
and advice? This type of group is perceived as a service group. As with any service group, the customer (in
this case, the other teams) must come first. Service must be with a smile. All actions by this group must
show tangible benefits to the teams they serve. What you are trying to do is get other teams to learn from
this group. Respect, integrity, and benefits are the key ingredients. Get your service teams to exhibit these
characteristics and watch the results.

In summary, balance the perception (of criticality and rewards) between teams, then balance the perception
within each team.

R.2.4 Software Architects

Like a building, a software system needs a solid architecture.

In analyzing an individual team, or more importantly, a collection of tightly coupled teams, it is
helpful to use Dr. Covey’s jungle warfare model.[2] There are the people wielding the machetes
(coders), people sharpening the machetes and motivating the wielders (managers), and the lookout
up in the tallest tree directing the energy of the machete wielders, guiding the path, making sure
they are in the correct jungle (software architect). To this model, we would like to add the policy
makers, the ones that put the team in the jungle in the first place with some objective (systems
engineers). Without a balance in all parts, a team will lose effectiveness. If one team within the
entire project loses effectiveness, other teams suffer and need to compensate.

Our experience has been that the most difficult role to fill is the lookout, the team leader, what we
call a software architect. A software architect is a good communicator, an effective system engineer,
an interface expert, and a proficient software designer. Often the ideal software architect can pound
out excellent code and a typical reaction is to keep that person producing. This is a mistake. Many
people can develop into proficient or adequate coders. Not everyone can become a proficient
designer. Fewer still can become interface experts. Even less can understand requirements, the big
picture. Rare is the individual with all the other attributes plus the ability to communicate.

These software architects must be carefully detected, and removed from a heavy production role.
They are much more effective in this new role. On a large project, software architects are needed to
provide the glue to hold the entire system together, especially in the early phases. It is difficult to
document and articulate precisely a software architecture. It is more of a concept than a collection
of rules. Until the foundation of the system is matured, the software architects must provide guidance
and direction to ensure that all the pieces will fit together.

R-10

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

This is where interface definition and communication skills are most vital. Interfaces are the biggest (and
sometimes the only) inter-team communication method. The combination of the CSCI architecture and the
interface definition becomes the architect’s leverage and communication vehicle. In designing interfaces,
data format and content is important, but message sequencing in all phases of a CSCI’s life are more tightly
coupled to a CSCI’s architecture. The sequence of messages must take into account initialization,
reconfiguration, failures, and restoration. The CSCI’s tasking interaction model, input and output mechanisms
and sequencing, and major state sequencing (e.g., initialization, reconfiguration, etc.) all make up its
architecture. Understanding the true requirements is essential to this task. As you can see, this is a rare
individual.

Software architects are not always easy to spot, although there are trends. There seems to be an inbred
attitude to be unselfish, to sense the greater need, to work on what’s really important, not what’s urgent.
They are compelled to climb the tree to get a look (at the big picture), rather than to attack every clump of
brush (code) they see. However, since they can produce, if pressured, they will produce, and often with star
or superstar results.

Here is the danger. It is very difficult to comprehend that your best coder, who also happens to be your best
(and quite possibly your only) architect, should be taken off coding and put on requirements analysis,
interface design, software tasking interaction, and design guidelines. Why can’t he or she just review other
peoples design or code to make sure it is close enough, while he or she keeps swinging the machete? Why
have the lookout direct the energy of the machetes before its expended? Energy spent is not recoverable.
Development dollars spent are not recoverable. This is your most precious resource. And a good software
architect can give you the most effective balance.

How? By making sure the vital tasks are done with consistency and accuracy. Requirements analysis is
accepted as vital. But different pieces within a CSCI are often reviewed by different people. Often designers
or coders are given a piece of the CSCI and allowed to run with the entire piece, from requirements analysis
to tasking structure and software design, to coding and integration. The results can range from excessive
use of tasking, to incompatible interfaces, to correct implementation of the requirements but discovery that
the requirements had some fundamental flaw. This cost is compounded in a large system. The results often
affect another team. Expand the problem from a stand-alone functional piece of one CSCI to a more
complex scenario, the requirements for a thread of functionality that spans several CSCIs. Without a
software architect ensuring that the thread will work from a structural and architectural point of view, its
not worth getting the other players in the game yet.

Good team dynamics are essential to effectively utilizing a software architect. The architect doesn’t typically
write requirements, but guides their writing, ensures that each requirement fits in with the vision for the
architecture. This can cause problems if the architect and systems engineers don’t share mutual respect. It
is even more difficult if the systems engineer is part of a different functional organization. On the positive
side, establishing the position of software architect frees up a lead design spot for an individual CSCI. This
gives other engineers a growth position and a chance to learn from the architect.

Some CSCIs need a software architect all to themselves, while in other cases one architect best serves a
collection of interrelated CSCIs. Interaction between CSCIs is the most important aspect to manage early,
and the most chain reactive. With a large program and the typical matrix organization, it is inevitable that
the ideal coupling of CSCIs to architect will cross some organizational boundaries. Tough. If you don’t do
it, you will pay many times over. Give up your architect for the good of the project. Give the architect the
authority to influence your CSCI’s structure, to be consistent with the rest of the group.

In summary, identify and support Software Architects. It is a key ingredient to success.

R-11

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

R.3 Process

Effective use of a process was one of the most important lessons learned. We define a process as the set of
procedures used to produce some result. Thus, process affects every aspect of the development. The key
areas presented here are the initial establishment of a process, several life cycle specific issues, the waterfall
versus spiral (or evolutionary) development model, and configuration management.

R.3.1 Initial Establishment of a Process

Lets figure out how we want to do business, before we do business.

Initial establishment and continuous improvement of a software development process is an investment and
an attitude. You need to assign some of your best people to defining it (investment). One of the biggest
dangers is letting who ever is available work on process. The group defining and improving the process is
viewed as a service group. Remember the lessons about team dynamics. The service group must command
respect and exhibit integrity. The group must provide demonstrable benefits. By putting some well respected
individuals on this team, you start off on the right foot.

Initial establishment is often one of the most difficult hurdles in any organization. If there has been no
formal process, it is difficult to comprehend the need for one (attitude). This is compounded when tackling
a project that dwarfs any other project performed by that organization. It is difficult to anticipate just how
different this large project will be. The need for a solid process that is embraced by all grows exponentially
with project size. Obviously you need to change the attitude if you want the process to pay dividends. If
the leaders have bought into the need for a process, and participate in its creation and maintenance, the rest
will follow and watch for results (which must come soon).

Here are some tips on how to start. First, get complete buy in from your leaders. This must eventually
include all groups that will be touched by the process, from the program office and systems engineering, to
software design, test, integration, quality assurance, configuration management, and last, but not least, the
customer. Start with a small group of representative people that can work together. It doesn’t matter that
you might be leaving someone important out yet, getting the ball rolling is most important at this stage. The
people that will eventually use this process need to see momentum, not promises.

Start out simple and flexible. Don’t take the whole life cycle at once. Grow the process. As you tackle
different pieces of the life cycle, add the appropriate organizations to the team. One size will never fit all so
don’t try to spell out all possible combinations. Rather, strive for the architecture of the process. Let each
team or subsystem tailor the process for their specific applications. Here is where the software architects
can play a key role. You don’t want each team to do their own thing, because that cancels out the consistency
across the board, which is important for efficiency in the support organizations and to the customer. Try to
keep each team or subsystem’s tailoring definition to one or two pages.

Strive for readability first, completeness second. It doesn’t matter if the process is 100% complete if no one
reads it, follows it, or checks for compliance. Challenge each step to calculate the added value. Value is a
difficult quantity to measure or anticipate. Perception plays a strong role here. If everyone perceives a
certain step adds value, they will attempt to follow it rigorously. As discussed previously, rotate people on
the process improvement teams to keep fresh ideas coming.

R-12

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

One final note on participation. Similar to the team dynamics lessons, all groups that touch the product in
some way, shape, or form should be represented in the process and on the process definition / improvement
team. If one group is excluded (by their or someone else’s choice), problems will arise. Resentment will
build. Quality will suffer. You need complete participation.

In summary, process is an investment and an attitude.

R.3.2 Interfaces

A large system lives or dies by its interfaces.

Interface definition is not part of the classical life cycle. Yet interface definition on a large, distributed
system is vital. This can not be stressed enough. The problem is compounded when the development team
is geographically separated. Concurrent development and the typical waterfall mentality add further
complications.

Typical implementations of MIL-STD-2167A call for an IRS (Interface Requirements Document) and an
IDD (Interface Design Document). The way I look at the interfaces is like a contract. If I sign my CSCI up
to an interface, I am signing a contract that I will hold up my end of the deal. I am assuming the other side
of the interface will do the same. It is an excellent vehicle to manage parallel development. However, it
takes quite an effort to completely define one CSCI’s interfaces. It is not a waterfall type activity. It can not
be completely specified up front, any more than the requirements for a CSCI can be completely specified
before designing or coding anything. The amount of detail required to unambiguously specify an interface
is tremendous. Here are some tips for success. As discussed previously, the software architects should play
the lead role in managing interfaces.

R.3.2.1 Utilize Code in the IDD

The use of code in the IDD, to the extent possible, provides an unambiguous definition. The use of Ada
allows complete message formats to be specified. But this is the easy part of interface definition. The
format of a message doesn’t impact the CSCI architecture as much as the communications address of the
message, sequencing, frequency of transmission, initiating conditions, and expected responses. These
latter interface requirements can have a direct effect on a CSCI’s tasking structure, its architecture. Some
of these items may be well represented in code. For example, the frequency of transmission can be a
constant. The initiating conditions and expected responses could often be specified as the identifier of
another message (e.g., this message is initiated upon receipt of message X). As we’ll discuss later in the
section about reusable CSCI architectures, this type of information can go a long way toward removing any
ambiguity from interfaces. The more information that is unambiguous, the more effective parallel
development will be, and the easier integration will be.

For Ada to Ada interfaces, as long as both sides utilize the same compiler, the definition is sound. If the
interface is from an Ada to non-Ada CSCI, it isn’t obvious how to proceed. The Ada CSCI needs the
definition to be in Ada anyway, so as a minimum, that work needs to be done. Here is where I would
recommend the generation or purchase of a tool. This tool would take the Ada interface definition and
generate the non-Ada definition. In the case of an assembler based CSCI, the complete definition could be
specified using “equate” statements. This type of convention would need to be specified at the start of a
program.

R-13

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

R.3.2.2 Put Inter-Process Interfaces in the IDD

The larger the CSCI, the larger the need for some type of internal interface definitions. This does not need
to be formal, as in an IDD. But we have seen large programs with few CSCIs struggle due to a lack of
internal interface control. In these programs, large CSCIs may physically be spread over several processors
and/or processes. These CSCIs could be better managed by either splitting the CSCI (across physical
boundaries, i.e., processor or process boundaries, or individual Ada programs), thereby causing more
information to be put into the IDD, or by documenting internal CSCI interfaces (again, using physical
boundaries) in the IDD. Putting these internal interfaces in the IDD causes some benefits. First, it raises
the importance of the interface. It won’t be carelessly changed. Second, it allows more parallel development
by establishing a contract between the different pieces of the CSCI. Third, it benefits integration. By
putting these interfaces in the IDD, it allows test software, simulation / stimulation software, and data
collection software to utilize the same interfaces as the CSCI under test.

Typical embedded systems often have one application process per processor, but as future systems move to
a COTS (commercial-off-the-shelf) hardware environment, many processes may co-reside on the same
workstation. This increases the need to document these interfaces in a formal manner.

R.3.2.3 Keep SRS Interface References to the Message Level

We’ve seen a lot of SRSs, and we argue that they could all adequately specify the requirements by referencing
only the message level. The key things needed within an SRS are the processing and sequencing around the
messages. What happens before sending this message, what should we do when we receive this message.
The algorithmic details in the SRS may imply some data format content but refrain from putting that detail
in the SRS.

R.3.2.4 Combine the IRS with the IDD

All SRS messages must be represented, one for one, in the IDD. Since the SRS doesn’t mention message
content, only message name and sequencing/processing requirements, the IDD is still free to implement
that message using any style necessary. On a distributed system, each CSCI under test will need to be
stimulated using the IDD anyway. The IRS interfaces are of no use. The requirements in the SRS for
message sequencing are utilized to generate test cases for formal CSCI testing. The message content
details from the IDD are used to create the test case messages.

Within the IDD, all sequencing details for SRS specified messages become requirements. All message
content becomes implementation. Implementation only messages are still allowed in the IDD. These
messages are typically utilized for low level handshaking that is not appropriate for an SRS. Since the IDD
contains as much code as possible, including the complete message format, it gives you binding power and
a built in management capability. The IRS is paper or an electronic model, and has no binding power.
Therefore, it will inevitably drift out of date. If everyone is forced to use the same Configuration Managed
IDD when building their code, interface problems will tend to settle themselves.

R.3.2.5 Configuration Management

Once an interface agreement is reached, get that agreement into the formal program baseline as soon as
possible. Ideally, the interfaces would enter into the baseline before or during design of the components
that will utilize the interface. This preserves the investment in the component and increases the importance

R-14

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

to the contract. As discussed above, forcing the use of the formal program baseline IDD helps resolve
conflicts.

R.3.2.6 Distributed Object Systems

One final futuristic point is about distributed objects. There is much work going on in this area and it could
solve a lot of the interface problems. By localizing the data and its functions into an object that is shared
between applications, it localizes all the processing associated with the data into one entity (e.g., a single
Ada package). The single entity can be built by a single group. This will eliminate much of the interpretation
problems of today’s message based systems, where the source group builds some processing, and the
destination group builds the rest of the processing.

Until there are standards and environmental support for distributed objects, intelligent linkers can give
some benefit today. Many Ada environments provide linkers that only include subroutines that are referenced
by the program. Thus, we could create packages that encapsulate all the processing related to a message,
including creation, population, transmission, receipt, usage, and release. This naturally partitions into
source and destination subroutines. The source CSCI only references the source subroutines, the destination
CSCI only references the destination subroutines. The linker is intelligent enough to only include the
appropriate subroutines in each CSCI’s image, thus optimizing image size. The package can be built by one
individual or team, reducing or eliminating the possibility of ambiguity.

In summary, manage the interfaces, and you can manage the project.

R.3.3 Integrated Product Teams

Reduce inter-team conflicts by creating integrated product teams.

As discussed above, team dynamics are difficult to balance. Why not avoid the balancing act as much as
possible? Integrated product teams are the answer. By locating all the people responsible for building and
testing a product or component under the same functional management, and ideally in the same physical
location, you tear down many artificial walls Within a CSCI, the key functional areas include systems
engineering, and software test. Within a subsystem (a collection of similar or tightly coupled CSCIs),
support software and CSCI-CSCI integration should be joined with the development team.

Here are some examples of the benefits of eliminating these walls. If the requirements generation and
software design are tightly coupled, there will be more flexibility and support for the spiral development
model. The requirements vital to CSCI architecture can be prioritized first. Complex requirements can be
prototyped to see what makes sense, and what is unrealistic. Including software test on the same team
allows them to be involved in more discussions, allowing them to achieve a better understanding of the
CSCI under test. The manager must not allow the independent validation process to be compromised, but
the benefits far outweigh the risks.

On a larger, subsystem scale, combining support software and CSCI-CSCI integration with the development
teams removes several problematic walls. Support software is often a lower priority. By including them on
the same team, there is more flexibility of moving people around, more sharing of knowledge, more assurance
that the true requirements for support software will be built. Traditionally, one of the biggest walls is
between the development team and CSCI-CSCI integration. Here is where the individual pieces of the

R-15

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

product must come together into a system. Here is where early requirements, interface or design flaws will
show up for the first time. Tension can easily build and finger pointing is a natural response. Finger
pointing can build walls in a flash. If we are all part of one big team, the possibility of everyone being
committed to an integrated product increases. There are less turf wars. You should never hear a developer
saying to an integrator, “I don’t have a requirement to do that.” An integrated team like this should all adopt
this extra requirement — “we shall build a product that works reliably, and meets the budget and contractual
obligations.” Adding this requirement eliminates a lot of finger pointing.

One specialty note on integrated product teams. Often there are organizations with specialized integrators,
or integration support teams. These teams often are the wise old lab gurus. They have the ability to set up
procedures and techniques that will help other integrators and developers. Often, there are also several
CSCIs that form the services layer of functionality, the layer that other applications will utilize to perform
their tasks. This includes the operating system, inter-program communications, display interfaces, resource
management, and data management. These two groups have tightly coupled responsibilities, yet they are
often chasing conflicting priorities and deadlines.

By combining the two teams, you have the ability to influence the design of the service layer with hooks
and angles that will pay for themselves many times over in integration.

In summary, combine teams for better productivity and efficiency.

R.3.4 Reuse

Reuse offers an often elusive payback.

Reuse, like process definition, is an investment and an attitude. It requires an investment by your best
engineers to find what should be reusable, and build it so it is easy to use and reliable. This also helps with
the attitude, having respected engineers sign off on a product makes its adoption easier. Sometimes, the
attitude requires some legislation. Engineers are always trying to create. Trying to get them to reuse a
component gives the perception of removing some of the creativity. But if the policy is established and the
cost savings obvious, they will stop complaining, stop trying to show why they can’t reuse a particular
component (or why they could build a better component), and get on with it.

When dealing with reuse across teams, solid cost models must be established. These models must take into
account the extra cost of building something for reuse as well as the payback when something gets reused.
Middle management often gets measured on cost. Who would volunteer to spend extra money to build
something reusable if there wasn’t a mechanism to reflect the extra cost of construction and the payback
when it is reused? How successful a reuse program is often comes down to deciding whether or not to make
an investment in good people to manage and implement the program.

One overlooked possibility for reuse is a common CSCI software architecture. This helps in several ways
— by using a proven architecture, each development team would not have to spend time integrating the
basics — it would be a given. Integration of CSCIs would be simplified, and people would be more able to
adapt to new assignments on other CSCIs. Understanding the basic CSCI architecture would need to be
done once. Understanding each CSCI’s unique part would be the only task on a reassignment.

R-16

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

Most CSCIs in a distributed system can initialize in the same basic way, elaborate, open their communications
agents, request disk-based data, signal that they are ready to run, then run. And all but the hardest real time
CSCIs could utilize the same type of input / output mechanisms and tasking structure. The use of common
Ada package specs, and either unique package bodies or separate subprograms gives developers a compile-
time binding to the common architecture.

In summary, reuse is an investment and an attitude.

R.3.5 Waterfall versus Spiral Model

The waterfall model has many shortcomings for large systems.

There is much enthusiasm in the literature for the spiral model of software development — design a little,
code a little, test a little. On a project that must follow MIL-STD-2167A, and is too large to comprehend by
one person, it may be difficult to decide where to start designing. Plus, the typical contract is structured
with big, waterfall type events such as SSR (System Segment Review), PDR (Preliminary Design Review),
and CDR (Critical Design Review). This waterfall contract encourages everything to proceed in parallel.
In reality, some pieces (e.g., CSCIs) will progress more quickly than others, and some pieces are needed to
mature earlier than others.

Why not structure the waterfall events in phases? Establish a layered approach to the system with the
service layer first. Then add the other functionality into phases based on its criticality to the mission. Write
the contract to have the SSR, PDR, and CDR for each phase. This allows the critical layers to mature when
necessary. It also allows more resources to concentrate on the biggest risk areas up front. Having the
service layer built first gives many benefits. It allows all future development and integration to start with a
solid system foundation. It allows tools and integration techniques to be matured as development and
integration needs dictate. If the service layer were being built concurrently, there is often not enough
resources to add the integration hooks and handles. But if the service layer is established, mature, and
baselined, the layer experts could easily enhance it to grow with integration’s needs.

Ideally, CSCIs will interface only with other CSCIs from the same phase. This sounds nice but will rarely
happen in practice. In this case, we suggest a phased delivery for the CSCIs. Perform some top level design
on the interfaces with CSCIs in later phases, but only build the portion that interfaces with CSCIs in this or
earlier phases. This may sound radical but countless dollars are spent on rework because of immature
interface contracts. By the time the later CSCI really evaluated the interface, it was found to be inadequate,
thus wasting all the time spent by the earlier CSCI. Now for trivial interfaces, they can be specified early,
but for any nontrivial interface, it pays to wait until both sides are really ready to sign a binding contract.

In keeping with the spirit of the spiral model, the contract must grow too. But it must grow together. This
lock-step approach to the spiral model has some nice benefits. A functional system is ready much sooner,
and much more often. Updates have less of a ripple effect since both sides of an interface have waited to
take the next step together. This scheme causes some different tracking models to show progress. Functional
threads, spanning more than one CSCI and the associated messages, become the ideal tracking mechanism.
It is relatively easy to identify the messages and software components that support that thread, thus it is
relatively easy to track their implementation progress. A good Configuration Management (CM) system
will assist in this task by allowing related changes to be grouped or tracked together.

R-17

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

Using the spiral model also moves emphasis from documentation to functionality. The sooner this shift
occurs, the better. The documentation is essential but it should not drive the program. Integrated product
teams also greatly assist with implementing the spiral model.

In summary, structure the contract to map to the spiral model.

R.3.6 Configuration Management

Without a solid CM process, you will struggle.

Configuration management (CM) is important to any size project. It is absolutely required for a large
project. All items generated on the project should be controlled in some manner. This includes all
requirements, white papers, designs, code, test data and results, integration scenarios and results, everything.
Now the degree to which each piece of information is controlled varies. Some items require customer
approval to change. Milestones such as CDR trigger the transition from informal (or developmental) (DCM)
to formal CM (FCM). Other items such as software development folders are always under DCM and never
under FCM. One can think of the difference in the degree of formality in terms of who should approve
changes or proposed changes. The less critical or smaller the chance of a ripple effect, the closer the
approval should be to the person making the change (if there is no chance of a ripple effect, it may be
appropriate to have no approval). The more critical or higher the chance of a ripple effect, the more people
should be involved with approving the change. Ideally, the DCM and FCM environments should be one in
the same. As the degree of formality increases, the approval simply increases to the appropriate level(s).

CM serves as a natural communication mechanism. Using only baselined items to perform all software
builds, document generation, etc., provides a controlled mechanism to help mature the system (a nice
complement to the spiral model). Once the community buys into utilizing CM properly, product integrity
improves. This can be achieved for little cost. CM doesn’t have to be expensive, but not having CM is very
expensive. Having DCM and FCM can provide some other benefits as side effects. Some obvious benefits
are automated build support. Further, automated tools can be run on the baseline to calculate metrics, and
perform compliance and consistency checks. The life cycle can be modeled in the automated CM systems.
This modeling allows the developmental and maintenance process to be enforced, automated, and tracked.

For example, let’s assume the process for a given CSCI is design, code, test, then baseline into FCM. As
the design review is completed, the librarian could enter the review results into the system and the system
would automatically register the items that completed the review. This could then be used to calculate
some “percentage complete.” The same analogy could be used for code and test. Once baselined, the items
should only change for additional functionality or rework. In either case, the change causes the items to
revert back to some previous process phase (either design or code in this example). By indicating the items
that must change, the process phase, and an estimate of the effort to implement the change, the system can
keep track of how much additional functionality or rework is outstanding.

Some specific items that require extra attention are interfaces. These can be inter-CSCI interfaces or intra-
CSCI interfaces. We’ve already discussed inter-CSCI interfaces and the importance of managing them,
including configuring them. For intra-CSCI interfaces, utilizing Ada and the package spec, we can achieve
similar control and benefits. Placing a more formal level of control on package specs elevates their importance

R-18

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

and reduces the risk when developing in parallel. For example, after a design review the package specs
may be placed into DCM and the CSCI team leader must approve all changes to them.

In summary, establish a complete CM process — don’t start coding without it.

R.4 Technology

On a program this large, it may seem odd that we aren’t talking much about technology. There were some
high-tech developments in fault tolerance and sonar. But as far as the use of technology to manage the
program, there wasn’t too much to talk about. We had a variety of homegrown interface and integration
tools that were utilized with much success. We had an enormous UNIX development and integration
environment that gave us the horsepower needed to manage the vast amounts of data and code. There was
always a search for silver bullet tools that would alleviate this or that problem. Most proved to be of
arguable value. The only technology we want to single out is the Ada language itself.

R.4.1 Use of Ada

Ada was designed for large programs.

We feel no other language (except possibly C++) would have survived on a program of this scale. The
benefits provided to us by Ada were tremendous. Sure, we stressed the Ada environment often, and broke
it more than a few times. But the benefits far outweighed the problems. You’ve no doubt heard about the
benefits of information hiding. We’ve already discussed the use of Ada for interfaces. Below are some
additional benefits and techniques learned.

R.4.1.1 There’s No Substitute for Experience

Ada is a rich language. It provides many features that need to be used in moderation on a large, real-time
program such as this. Experience with the run-time properties of some of Ada’s more mysterious features
paid off time and time again. In examples where a team did not have access to an experienced Ada person,
often the results showed. Some of the dangerous features were over use of generics and tasks, use of
variant records (caused many run-time problems), too much nesting of generics and packages, and too
much information in the package spec (resulting in global objects).

R.4.1.2 Self Documenting Code

Maintenance on a large program such as this is actually performed ongoing. People leave or get reassigned
and someone needs to pick up and finish where the originator left off. Reliance on external documentation
often proves to be futile. When well designed, Ada code can be self documenting. Naturally, there were
exceptions to the rule. But when done properly, the maintenance payoff was felt early.

R-19

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

R.4.1.3 Use Tasks Wisely

Tasks are not free. In a real-time system, improper use of tasks can wreak havoc. But when used properly,
tasks provide a natural expression of the real concurrency problem being solved. When possible, utilize a
common CSCI architecture. Here are a few suggestions on the use of tasks.

• Utilize the main program — it is in reality a task. We suggest using the main program to orchestrate the
application’s major state changes (e.g., initialization, shutdown, etc.). This allows a single reference to
understanding each application’s state transitions. By using common package specs for the common
components of each application, the main program can even be common (yielding a common
architecture). Even if it isn’t, using this approach provides a consistent scheme among all CSCIs.

• Utilize an event management scheme within tasks, as appropriate. An event management scheme is a
method where multiple, simultaneous events are managed within one task. This allows for more
concurrency without more tasks. By constructing a common event management package early, you
enable designers to reduce the number of tasks needed.

R.4.1.4 Integration Techniques

Several Ada environments provide excellent program debuggers. These tools are tremendous in isolating
problems. Adding TEXT_IO statements to display intermediate states, events, and results also help isolate
many problems. However, there will undoubtedly be problems that can’t be found or even isolated with
debuggers due to the timing or real-time nature of the problem. TEXT_IO may cause performance problems
and therefore be impractical for all problems. We offer the following hybrid approach.

Sophisticated logic analyzers exist that can unobtrusively capture data from a system. By taking advantage
of the analyzer’s strengths, namely the ability to capture data from a specific address range, we can add
instrumentation to key algorithms and functions and gain a tremendous insight into the underlying system.
For example, we might create a block of 10 integers, each one corresponding to some key function. Whenever
one of the key functions invoked, say a memory allocation routine, the function writes a code (in this case,
the amount of memory allocated) to the corresponding integer. The code should be designed in such as way
as to allow analysis of the operation through the logic analyzer. The analyzer simply captures all “writes”
to these integers. Simple tools can decode the results. The instrumentation doesn’t add any significant
overhead, but the results can help find many tough problems.

R.4.1.5 Design for Tuning Up Front

Integrating a large system will require many intermediate test environments. There won’t always be the
complete system to work with. Some components will need to be simulated, some will need to be turned
off. Designing up front to support tuning is one of the most important factors for success. Utilizing the
service layer and / or configuration files to turn on or off functionality, can provide the needed integration
flexibility. With this mechanism in place, the TEXT_IO approach to logging events and data can also be
useful.

R.4.1.6 Ada Is Not for Everything

Ada is not ideal for everything. Operating systems and low level functionality may be better served with C
or assembler. Graphical User Interface functionality can benefit from automated tools that generate C or

R-20

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

C++ code. Accepting this fact, you next need to deal with a mixed (Ada to non-Ada) environment. As
discussed in the interface section above, do not treat this environment lightly.

In summary, Ada has what it takes for large systems.

R.5 Summary

Models such as that presented above should help guide medium to large scale programs. Given the proper
management support and risk management strategies, the processes and technology for tackling tomorrow’s
complex systems exists today.

R-21

Appendix R: Lessons-Learned from the BSY-2’s Trenches GSAM Version 3.0

R.6 References

[1] Tom Peters, “Thriving on Chaos”, Harper Collins.
[2] Dr. Steven Covey, “The Seven Habits of Highly Effective People”, Simon and Schuster.
[3] F. Gregory Farnham and Kevin J. McSweeney, “Going to Sea with Ada”, Defense Electronics, October

1994.
[4] F. Gregory Farnham, “Lessons Learned on BSY-2”, Software Technology Conference, April 1993.

R.7 About the Author

Robert F. Sullivan Jr. is Vice President of Technology and Product Development at PROSOFT, Inc., located
in Syracuse, NY. He is responsible for development and improvement of PROSOFT’s state of the art
Configuration Management product, XStream.

Part 4: Management-Related Appendices GSAM Version 3.0

Appendix S

Software Source
Selection

S-2

Appendix S: Software Source Selection GSAM Version 3.0

Content
S1.0 Tab 1: Source Selection Under Acquisition Reform.............................. S-6

S2.0 Tab 2: Software Capability Evaluation (SCE)....................................... S-7
S2.1 SCE Implementation Guidelines.. S-7

S2.1.1 Applicability .. S-7
S2.1.2 SCE Appraisal ... S-8

S2.1.2.1 Source Selection Evaluation of SCE Results S-9
S2.1.2.2 Post Contract Award.. S-10

S2.2 Evaluating Ada Experience During SCE.. S-10
S2.2.1 SCE Key Process Areas (KPAs) for Ada Evaluation S-11

S2.2.1.1 KPA Questions .. S-11
S2.2.1.2 Non-KPA Questions .. S-12

S2.3 Subprocess Area Selection Tables.. S-12
S2.3.1 How to Read the Tables in This Section ... S-13
S2.3.2 Repeatable Level Key Process Areas (KPAs) S-13

S2.4 Notes... S-22
S2.5 SCE Text for Inclusion in Instructions to Offerors.............................. S-22

S2.5.1 Section L ... S-22
S2.5.2 Sample 1 .. S-22

S2.6 SCE Text for Inclusion in Instructions for Preparation of Proposals
 (IFPP).. S-22

S3.0 Tab 3: Sample RFP Preparation Checklists... S-24
S3.1 Sample Questionnaire for Site Visit Preparation................................. S-24
S3.2 Program Profile Outline... S-24
S3.3 Proposal Evaluation Checklist... S-25

S3.3.1 Program Management ... S-25
S3.3.2 Subcontractor Management .. S-26
S3.3.3 Metrics Management ... S-26
S2.3.4 Software Quality Assurance Management .. S-26
S3.3.5 Configuration Management .. S-27
S3.3.6 Peer Reviews Management ... S-27
S3.3.7 Training ... S-27
S3.3.8 Standards Management ... S-28

S-3

Appendix S: Software Source Selection GSAM Version 3.0

S4.0 Tab 4: Sample Paragraphs for RFP Inclusion..................................... S-29
S4.1 Software Quality Requirement... S-29
S4.2 Software Testing Requirement... S-29
S4.3 Software Life Cycle Development and Support Environment
 Requirement... S-29
S4.4 Software Life Cycle Development Technology Scalability
 Requirement... S-30

S5.0 Tab 5: Source Selection for Software Supportability.......................... S-31
S5.1 Instructions to Offerors (Section L)... S-31
S5.2 Supportability Issues... S-31
S5.3 Additional MIL-STD-498 Considerations... S-31
S5.4 Additional AFSCP/AFLCP 800-45, Software Risk Abatement,
 Considerations... S-33
S5.5 Sample Section L... S-33

S5.5.1 Proposal Evaluation Supportability Criteria S-38
S5.5.2 Other Evaluation Criteria .. S-38
S5.5.3 Source Selection Evaluation Considerations S-39
S5.5.4 DoD-STD-1467(AR), Software Support Environment,
 Considerations .. S-39
S5.5.5 AFOTEC Pamphlet 99-102, Volume 3, Software Maintainability
 Evaluation Guide, Considerations .. S-40
S5.5.6 Additional Considerations... S-40
S5.5.7 Software Language Considerations... S-42
S5.5.8 AFSSI 5100, The Air Force Computer Security (COMPUSEC)
 Program, Considerations ... S-42
S5.5.9 MIL-STD-498 (or Industry Equivalent) Documentation
 Requirements Considerations ... S-42
S5.5.10 AFOTEC Pamphlet 99-102, Volume 5, Software Support
 Resources Evaluation, Considerations .. S-42
S5.5.11 Other Supportability Source Selection Considerations S-43

S6.0 Tab 6: Lessons-Learned in the GSA Trailboss Course....................... S-44
S6.1 Background.. S-44
S6.2 Industry Trail Boss Presentation Approach... S-44

S6.2.1 Lessons-Learned.. S-44
S6.2.1.1 Obtain Top Management Support Before Proceeding S-45
S6.2.1.2 Consider a Congressional Support Strategy.............................. S-45

S-4

Appendix S: Software Source Selection GSAM Version 3.0

S6.2.1.3 Involve Your End Users Meaningfully and Continually........... S-45
S6.2.1.4 Market to Your Vendors Pre-RFP ... S-46
S6.2.1.5 Develop a Plan to Use the RFC or DRFP Effectively............... S-46
S6.2.1.6 Use Experienced Qualifiers .. S-47
S6.2.1.7 Use Functional (Performance) Specifications........................... S-47
S6.2.1.8 Challenge Complexity and Non-Value-Added Reviews and
 Approvals ... S-48
S6.2.1.9 Distribute Risk Equitably ... S-48
S6.2.1.10 Really Work Hard on Internal and External RFP Integration . S-49
S6.2.1.11 Publish Detailed Evaluation Criteria and Methodology S-49
S6.2.1.12 Ensure that the Evaluation Methodology and Criteria both
 ALLOW and REQUIRE You to Select the Best Vendor S-50
S6.2.1.13 Tell your Bidders Everything .. S-50
S6.2.1.14 Don’t Drop the “Curtain” Until RFP Release S-51
S6.2.1.15 Communicate with Your Vendors Frequently After the
 “Curtain” Drops .. S-51
S6.2.1.16 Use LTDs Only to Reduce Unacceptable Risks and
 Uncertainty ... S-52
S6.2.1.17 Be Certain that COTS and NDI Products Exist When You
 Call for Them.. S-52
S6.2.1.18 Integrate the Debriefing Requirements Early into the
 Acquisition Process .. S-53
S6.2.1.19 Cut to a Small Competitive Range When Possible S-53
S6.2.1.20 Have Oral Presentations and Discussions S-54
S6.2.1.21 Schedule Submission of the Cost Volume at Least 2 Weeks
 After the Other Volumes — More if No BAFO S-54
S6.2.1.22 Find a Way to Waive Cost or Pricing Data Requirements S-55
S6.2.1.23 Critically Examine the Need for 3rd Level and Lower
 Detail in the Cost Volume (the Lowest Value-Added
 Exercise of All) .. S-55
S6.2.1.24 Allow Enough Time for the Intense Activities S-55
S6.2.1.25 Never, Never, Never Slide the Schedule S-56
S6.2.1.26 Carefully Analyze, Map, and Monitor All of the
 Stakeholders ... S-57
S6.2.1.27 Challenge the Unproductive Things that Your Culture
 Requires ... S-57
S6.2.1.28 Objectively Evaluate and Share Acquisition and Program

Successes ... S-57
S6.3 Conclusion.. S-58

S-5

Appendix S: Software Source Selection GSAM Version 3.0

S7.0 Tab 7: Contracting for Success.. S-59
S7.1 Abstract.. S-59

S7.1.1 Overview ... S-59
S7.2 The Importance of “The Written Word” .. S-59
S7.3 Structuring The Contract to Best Allocate Risks................................. S-59

S7.3.1 Cost Risks.. S-60
S7.3.2 The Premature Use Of A Fixed Price Contract Invites Failure......... S-61

S7.3.2.1 The Premature Use Of Fixed Price Contracts Favors Vendors With
Immature Processes ... S-61

S7.3.3 Performance Risks... S-62
S7.3.4 Changes Can Impact The Previous Allocation Of Performance RiskS-63
S7.3.5 Performance Risk Regarding Architecture S-64
S7.3.6 The More Participatory The Government Is In The Design, The More

Difficult It Is to Shift Performance Risks to The Contractor S-64
S7.3.7 Schedule Risks .. S-65
S7.3.8 The Evaluation Criteria Should Be Structured to Maximize the

Probability of Selecting a Highly Competent Vendor S-66
S7.4 Software Engineering Institute’s Software Capability Evaluations... S-67

S7.4.1 Past Performance ... S-68
S7.4.2 Previous Experience .. S-69

S7.5 Sample Problems... S-69
S7.6 Avoiding “Buying-In” ... S-70
S7.7 About the Author... S-72

S-6

Appendix S: Software Source Selection GSAM Version 3.0

S1.0 Tab 1: Source Selection Under Acquisition
Reform

Under acquisition reform, the offeror’s process and past performance are considered as significant criteria.
Therefore you, as software acquisition managers and software engineers participating in source selection,
must evaluate the contractor’s processes and experience to select the best offeror capable of providing a
quality system with the lowest development and life cycle risks. The newly revised DoD Directive 5000.1,
Defense Acquisition, 15 March 1996, describes “broad management principles that are applicable to all
DoD acquisition programs.” It states the following about acquiring software-intensive systems:

Software is a key element in DoD systems. It is critical that software developers have a successful past
performance record, experience in the software domain or product-line, a mature software development
process, and evidence of use and adequate training in software methodologies, tools, and environments.

Regardless of acquisition size, you should evaluate these areas during source selection. Remember, while
it is necessary for a contractor to have a mature software development process, you should examine the
process that particular division or component within the organization proposes to use on your program.
The parent organization as a whole might have a mature process; however, certain divisions or components
within the organization might not be as experienced in or knowledgeable of that process. To assess this,
you should ask if the division or component you are evaluating has successfully adopted the parent
organization’s process. You should also examine the division’s or component’s specific experience in
using these processes in your application domain.

One last consideration is source selection for post-deployment software support. If you perform a source
selection at this time, you must make sure the proposed post-deployment software support process will
provide at least the same level of quality software as the development process provided. To do this, you
should use the same rigorous methods for source selection of the post-deployment software support
organizations that you used for the development organization.

S-7

Appendix S: Software Source Selection GSAM Version 3.0

S2.0 Tab 2: Software Capability Evaluation (SCE)

As mentioned in Volume 1, Chapter 10, Software Development Maturity, there are two software development
capability assessment methods effective for determining the maturity of an organization’s software
development (and support) process — the Software Development Capability Evaluation (SDCE), developed
by Aeronautical Systems Center, and the Software Capability Evaluation (SCE) developed by the Software
Engineering Institute. While this section provides information on how to implement the SCE, if you are
acquiring a C3 or ground electronics system, your are encouraged to contact Electronic Systems Center
(ESC) for assistance in conducting the SCE.

While this section does not address the SDCE, you can find out more information (including about training)
by contacting Aeronautical Systems Center (ASC) . For additional assistance with MIS acquisition, please
contact the Standard Systems Group (SSG). For Air Force in-house software development organizations
with questions on Software Process Improvement and Software Maturity Assessments, contact the Air
Force C4 Agency.

S2.1 SCE Implementation Guidelines

Software Capability Evaluation (SCE) offers a means to evaluate an organization’s software process
capability, that is, how well an organization manages the process it uses to create software. SCE provides
a way to compare a development organization’s software process against a predefined standard. The purpose
of these guidelines is to standardize the application of SCE on source selections. The Software Engineering
Institute’s (SEI) Capability Maturity ModelSM (CMMSM) is the basis for this SCE appraisal. The SCE
appraisal is intended to be considered as an integral part of the source selection evaluation, however, the
SCE evaluation team may operate independent of other area/factor source selection evaluators. SCE results
should be evaluated consistent with evaluation criteria specified in the Request For Proposal (RFP).

S2.1.1 Applicability

SCE applies to all source selections for Management Information Systems (MIS) and Command, Control,
Communications, Computer, and Intelligence (C4I) Systems with software development costs greater than
$10 million. Software development includes: development of new code, modification of existing code,
and integration of software modules. Source selections with software development costs less than $10
million should consider the use of SCEs based on a cost/benefit tradeoff and the goal of acquisition
streamlining. An SCE should always be performed on prime contractor Offerors. The only exception is
when the proposed prime does not do, and never has done, software development, and is acting as only a
“general contractor.” In this exception, the proposed prime must not impose any process guidance on
proposed subcontractors that affect the sub’s software development activities.

Conducting multiple SCEs on an Offeror’s team is encouraged if one or more proposed subcontractors are
to perform significant software development. All proposed subcontractors performing more than $10 million
or 35% of the software development using their own processes should be evaluated. SCEs are normally not
applicable for source selections for the acquisition of commercial-off-the-shelf (COTS) or non-developmental
item (NDI) software. SCEs should be performed when NDI software modifications to satisfy Air Force
requirements or “glue code” development to link COTS packages will cost more than $10 million.

S-8

Appendix S: Software Source Selection GSAM Version 3.0

S2.1.2 SCE Appraisal

The source selection related SCE appraisal should investigate/cover, as a minimum, all Key Process Areas
(KPA) and goals for the Repeatable and Defined maturity levels described in the CMM.SM The appraisal
should not tailor the KPAs or goals specified in the CMM.SM The SCE appraisal team may be independent
but is part of the source selection team. The SCE appraisal should be conducted as soon as possible after a
competitive range decision is made and discussions with contractors are authorized. Normally, each SCE
includes a 4-5 day site visit, in addition to preparation and wrap-up time for each site visit for a total of up
to ten (10) days.

The SCE appraisal should be conducted by a team trained in the CMMSM version to be used and comprised
of members from the Air Force and/or an Air Force approved independent organization. If a contractor is
used to conduct the SCE appraisal, FAR Subpart 9.5, Organizational and Consultant Conflicts of Interest,
shall be adhered to. In selecting programs for review, the priority should be programs currently being
worked, or recently completed, by the Offeror rather than programs most similar to the acquisition. The
programs must be from the same organization. The reviewed programs should be approximately the same
size, from the same development site, and from the same broad domain. Offeror must be put on notice in
the Request For Proposal (RFP) that process documentation from selected programs must be available at
the unclassified level.

An Offeror’s software engineering/development practices should be considered validated if: (1) a written
and approved procedure for a practice exists; (2) the procedure implementation is effective for the
organization; (3) evidence exists showing that procedures are followed; (4) evidence exists that training for
the procedure is planned, funded, scheduled, required, and accomplished in a timely manner; and (5) the
procedure has been institutionalized. An institutionalized practice or procedure is one that has been in
place and practiced for greater than 12 months. Practices and procedures less than six months old may be
considered a process improvement activity. Practices and procedures in place and practiced for less than 12
months but longer than 6 months may, by SCE team consensus, be considered institutionalized.

There are three components of the CMMSM reference model that can be rated: goals, KPAs, and maturity
level. SCE results are documented as KPA findings of general observations, strengths, weaknesses, and
process improvement activities. A strength is a particular part of the software process capability that is
sufficiently robust to mitigate the development risk due to software process. A weakness is a particular part
of the software process that has characteristics that increase the risk due to software process. A process
improvement activity is a practice or procedure that is not yet institutionalized and indicates potential
mitigation of risk due to software process. Maturity level ratings are optional since the rating itself provides
minimal visibility into the state of an appraised contractor’s software process. All findings are determined
by team consensus.

• Goal. A goal is satisfied when the associated findings indicate that the goal is implemented, as defined
in the CMM,SM with no significant weaknesses or that an adequate alternative exists, and is
institutionalized, as defined in paragraph 4.5 above.

• KPA . A KPA is satisfied when all goals for that KPA have been investigated/covered and rated as
satisfied. A KPA is weak if one or more goals for it are not satisfied. A KPA is assigned “Not Rated”
if any of the goals for the KPA are not investigated/covered.

• Maturity Level . A maturity level is achieved when all KPAs for that level and all of the levels below
it have been investigated/covered and rated as satisfied.

S-9

Appendix S: Software Source Selection GSAM Version 3.0

At the conclusion of each SCE, a findings exit brief should be provided at the site. The exit brief is to
provide a courtesy one way information flow of the draft findings to the Offeror before the SCE team leaves
the site, and allow the Offeror to provide information and/or artifacts that may have been overlooked. The
exit brief should include the PCO name, address, contact method, and instructions for the Offeror to respond
or comment on the draft findings presented by the SCE team. The RFP should explain the exit briefing
rules.

S2.1.2.1 Source Selection Evaluation of SCE Results

Normally, the SCE will be designated as a factor in the management area. The source selection
evaluation team should evaluate the SCE results using the following procedures.

The SCE shall be a significant factor. Do not include in the SCE factor any augmentation elements.
Any augmentation elements should be evaluated in a separate factor.

In addition to affecting the SCE factor rating, the SCE results may affect proposal risk assessments
relevant to other factors.
Evaluation of SCE subfactors should be standardized. When converting the SCE subfactors into a
factor color, the following criteria should be used:

• BLUE . There are no weak KPAs at the Repeatable and Defined maturity levels.
• GREEN. There are no weak KPAs at the Repeatable maturity level and four (4) or less weak KPAs at

the Defined maturity level.
• YELLOW . No KPAs at the Repeatable maturity level are rated weak and five (5) to seven (7) KPAs at

the Defined maturity level are rated weak; or
− One (1) KPA at the Repeatable level is rated weak and six (6) or less KPAs the Defined level are

rated weak; or
− Two (2) KPAs at the Repeatable level are rated weak and five (5) or less KPAs at the Defined level

are rated weak; or
− Three (3) KPAs at the Repeatable level are rated weak and four (4) or less KPAs at the Defined

level are rated weak.
• RED. There are four (4) or more weak KPAs at the Repeatable maturity level or eight (8) or more weak

KPAs in the Repeatable and Defined maturity levels.
− When multiple SCEs for an Offeror — proposed subcontractor team are conducted, the following

standards should be used to determine the team’s SCE factor color rating and proposal risk.
− Where the proposed prime’s color rating is lower than one or more of its proposed subcontractors,

the team’s color rating should always reflect the rating of the proposed prime.
− When the team members each use their own processes, the lowest color rating among them should

determine the proposal’s color rating.
− If a higher color rated proposed prime imposes its higher level processes on the proposed

subcontractor(s), the higher color rating may be used, with proposal risk being assessed to indicate
that one or more lower rated proposed subcontractors have never used the process.

− Where the team members are equally color rated and they will integrate their processes, the color
rating should be the color rating of the individual team members and the proposal risk should be
other than LOW.

S-10

Appendix S: Software Source Selection GSAM Version 3.0

S2.1.2.2 Post Contract Award

Contracts should be structured to allow the performance of one or more SCEs subsequent to contract award
to assure the evaluated level is maintained and/or to verify progress against Software Process Improvement
Plans (SPIPs).

S2.2 Evaluating ADA Experience During SCE

Objective. This provides an outline of the issues that should be addressed when assessing a contractor’s
ability to develop programs in Ada during a Software Capability Evaluation (SCE).

Background. A SCE can provide a snapshot of a contractor’s past process implementation, current process
activities, and futures process potential. SCE’s are based on the Software Engineering Institute (SEI)
Capability Maturity ModelSM (CMMSM) assessments. The SEI CMMSM Version 1.1 is a good starting point
for assessing the capability of a contractor. This can provide the basis for a similar assessment of a language
capability. Once the language is known (be it Ada, Fortran, or C), we can ask the contractor a new set of
questions focused on that language. Most of the issues are not specific to any particular language, e.g.,
Ada. The approach to take is to identify the issues needed to access the contractor’s capabilities in a given
language and then to fill in the details when the language is Ada.

Proposal. There are six SEI CMMSM Key Process Areas (KPAs) that can be tailored to include assessment
of the contractor’s Ada capability. The first two KPA’s, Software Tracking and Oversight, Software Quality
Assurance (SQA), can be used to get a snapshot of how a contractor performs on Ada Programs. The
following are those KPA’s and some issues that can be addressed during the evaluation.

KPA — Training Program . The SCE team could first learn about the contractor’s Ada capabilities from
reviewing their training program. The training plans should show what type Ada training is planned. For
example, is there Ada training for other than programmers (e.g., program managers, SQA, and SCM
personnel). The employee’s training records should reveal who has been trained and was the training taken
at the appropriate time (i.e., prior to the start of working on an Ada program).

KPA — Software Program Planning. This KPA allows the SCE team to see how a contractor develops
estimates for schedules, manpower, facilities, and sizing (lines-of-code). When reviewing the contractor’s
estimating methodologies and procedures, the team would look for an Ada influence. The contractor’s
management should show an understanding of the Ada language and its use. The people selected for
programs should have used the language within the domain of their program. Domain experience is more
important than language experience. If the language used in previous programs is similar, then this should
be an advantage. While reviewing the contractor’s program plans, the team can see if the selected hardware
meets the need of the developers. Does the contractor plan for adequate file server processing capacity and
disk storage to support the program? Ada tends to need more computer cycles and disk storage than other
languages. Finally, the management must demonstrate a commitment to doing what is necessary to make
the program a success (e.g., additional training, software tools, hardware, etc.).

KPA — Software Program Tracking and Oversight. Once the team has seen how the contractor plans
for Ada programs, then they should see how the plans work on those programs. The tracking metrics
should be tailored for the use of Ada. The data collected from these metrics should be reported to management.
The management should show a commitment to taking any corrective actions necessary based on the results
from the metrics.

S-11

Appendix S: Software Source Selection GSAM Version 3.0

KPA — Organization Process Definition. This KPA’s force is on the company standards and procedures.
The SCE team would be looking for Ada programming standards and procedures. These standards should
be up to date and easily available to all programmers. The Unit development folders should show signs that
the standards are being used.

KPA — Software Product Engineering. Under the Software Product Engineering KPA, the SCE team
should be looking at how the software environment is set up for building the Ada software. For example,
are the following tools used?

• CASE tools,
• Configuration management tools,
• Compilers,
• Integration tools, and
• Code generators that support Ada development.

These tools should be integrated with the contractor’s overall software development methodology and
software development process. It is also important for the contractor to have experience with these tools.

KPA — Software Quality Assurance (SQA). The final KPA that can be used by the SCE team in assessing
a contractor’s Ada capability is the SQA KPA. Under this KPA, the SCE team should review the SQA
procedures to see if any are covering the company Ada standards. The SQA training records should be
reviewed for some type of Ada training.

Summary. The above KPAs and related issues are just a starting point for a SCE team to use in assessing
a contractor’s Ada capabilities. Additional information may be learned under the other KPAs not listed
here. To better help a SCE team in their review, the following sample questions related to the above listed
KPAs has been developed.

S2.2.1 SCE Key Process Areas (KPAs) for Ada Evaluation

The following lists some of the Key Process Areas (KPAs) from the Software Engineering Institute (SEI)
Capability Maturity ModelSM (CMMSM) and questions for a Software Capability Evaluation team to use in
assessing a contractor’s Ada capabilities. In addition are some non-SEI CMMSM KPAs and questions that
should also be considered.

S2.2.1.1 KPA Questions

Training program . Does the training planning include Ada training and is the training provided? Is there
Ada training for other than programmers (e.g., program manager, SQA, and SCM personnel)? Is there any
on-the-job training? Are experienced programmers assigned to work with the under experienced
programmers? Is follow-up training provided? When are the people trained? Have they taken all required
training prior to being assigned to a program using Ada? Are they encouraged and do they take additional
or follow-up training?

Software program. Does the contractor’s estimating methodologies and procedures for schedules,
manpower, and sizing have an Ada influence?

S-12

Appendix S: Software Source Selection GSAM Version 3.0

Planning. Are the people planned for the program those who have used the language within the domain of
the program? Have they used the proposed tools? How well does the management understand the language
and its use? Is the management committed to doing what is necessary to make the program a success?
Does the detailed software development process support the contractor’s management techniques? Is there
adequate hardware available to meet the needs of the developers? Does each developer have a workstation?
Is there adequate file server processing capacity and disk storage to support the team?

Software program tracking and oversight. Are the tracking metrics tailored for the use of Ada? Does
management review the metrics and are corrective actions taken?

Organization process definition. Are there company standards and procedures for Ada? Are they tailored
for each Ada program? Are they used by the programmers? Are they reviewed on a regular basis and
updated as needed? Do the Unit Development Folders show signs the standards are being used?

Software product engineering. Are the following tools used?

• CASE tools,
• Configuration management tools,
• Compilers,
• Integration tools, and
• Code generators that support Ada development.

How are these tools integrated with the contractor’s overall software development methodology and software
development process? What experience does the contractor have with these tools?

Software quality assurance. Review SQA procedures for any covering the company Ada standards. The
SQA training records should be reviewed for some type of Ada training.

S2.2.1.2 Non-KPA Questions

Reuse. Do they have a reuse component in their process? Does it support the language being used (e.g.,
Ada)? Do they have and use a corporate reuse library? How is reuse coupled back to the development
process? How are reusable components tested and validated?

COTS. Do they have experience in integrating COTS products in general and with products they are using
on this program? Do they have experience integrating COTS products written in other languages with the
program’s language (e.g., Ada)?

S2.3 Subprocess Area Selection Tables

The tables in this appendix are provided as an aid to help SCE teams select critical subprocess areas during
Step 5. The tables were created by the SCE program members at the SEI for guidance only. SCE teams are
expected to use their experience and judgement to select critical subprocess areas based on the requirements
of the particular development. Factors considered in selecting critical subprocess areas are the following:

S-13

Appendix S: Software Source Selection GSAM Version 3.0

• What processes would an organization need to manage the aspects of the program which are new to the
organization?

• If the product being developed is new to the end user, what processes will the development organization
need to manage the anticipated requirements changes?

• What are the basic processes that a development organization would need for any software development
effort?

S2.3.1 How to Read the Tables in This Section

This appendix contains a table for each key process area (KPA) in the Repeatable and Defined levels. The
tables contain the following columns.

Subprocess areas column. Each row under this column corresponds to a subprocess area associated with
the KPA. Some of the subprocess areas contain other subprocess areas. These “higher-level” subprocess
areas are indicated by boldface type.1

Major attributes columns (ApD, Pt, Ps, Tw, and Sub). An “X” in the column for an attribute indicates
that the subprocess area listed in that row may be important to the development organization for managing
the risk associated with a lack of experience relative to that attribute. These columns correspond to the five
major attributes from the Experience Table created in Step 4. The Experience Table shows where any of
the development organizations may lack experience with regard to some attribute of the new program.

Operational precedence (Op) column. An “X” in this column indicates that the subprocess area listed in
that row may be important for managing the level of requirements changes which may be anticipated if end
users do not have experience with similar products. The Op column corresponds to the operational
precedence attribute from the Target Product Profile developed by the sponsor. This attribute indicates the
degree to which the product being developed may be new to the end user.

Nucleus capability (*) column. An “X” in this column indicates that the subprocess area listed in that row
is part of the recommended nucleus capability. Nucleus capability refers to a basic set of subprocesses
which are needed for almost any software development.

S2.3.2 Repeatable Level Key Process Areas (KPAs)

Key to Abbreviations:

ApD Application Domain
Tw Type of Work
Op Operational Precedence
Pt Product Type
Sub Subcontracting
* Nucleus Capability
Ps Product Size

S-14

Appendix S: Software Source Selection GSAM Version 3.0

Repeatable Level Key Process Area: Program Management

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

General Management Functions

Committed management process X X X X X

Compliance to organizational
standards

Taking corrective action;
issue/action item tracking

X X

Review and oversight: oversight
by senior management and
management reviews

X

Tracking; actual vs. estimate
comparison; commitment
evidenced by reviews of
compliance

X

Customer interface X X

Usage and collection of
performance data

X

S-15

Appendix S: Software Source Selection GSAM Version 3.0

Repeatable Level Key Process Area: Program Management (cont.)

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Integrated Software Management

Risk management; recognition of risk
events; cost, software technology,
resources, and schedule

X X X X

Tailoring and selection of project
process and its support environment

Maintenance of process performance
database

Coordination between project groups X X X X

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Requirements Management X X X

Requirements allocation

Requirements change X

Requirements implication evaluation X

Matching software architecture to
requirements; transforming
requirements into top-level design

Repeatable Level Key Process Area: Program Management (cont.)

S-16

Appendix S: Software Source Selection GSAM Version 3.0

Repeatable Level Key Process Area: Program Management (cont.)

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Subcontracting

Subcontractor selection

Contracting: subcontract process

Coordination of work with
subcontractor

Subcontractor monitoring

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Testing

Preparing to carry out testing; test
procedures

Carrying out test operations

Reviewing test scenarios,
testbeds, and test cases

Regression testing X

Repeatable Level Key Process Area: Program Management (cont.)

S-17

Appendix S: Software Source Selection GSAM Version 3.0

Repeatable Level Key Process Area: Program Planning

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Project Planning

Size estimation: software
development resources, costs and
critical target and host computer
resources; the scope of work and
effort has a basis in reality

X X X X X

Cost estimation; cost has
documented correspondence to
estimate size and schedule;
software responsibility, software
engineering technical direction

X X X X X

Planning: resource planning and
management for project’s
software size, cost and schedule,
software development plan, the
software life cycle model, planning
schedules, software schedules

X

Commitment process during
change

X X X X X

Project manager’s participation
with the project proposal team

X X X X

Usage of software process
database

Integration of technical direction,
engineering tools and methods
into planning process,
engineering and technical reviews
of plans

X X X X

Product capacity tracking, critical
target computer resources

S-18

Appendix S: Software Source Selection GSAM Version 3.0

Repeatable Level Key Process Area: Configuration Management

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Configuration Management

Status report, monitoring,
configuration responsibility

X

Change control process, standard
forms for reporting errors

X X

SCM plan; baselining of software
engineering products and process
specifications; a configuration
management repository for the
software baselines; software
baseline audits

X X X

Release of software baseline
products

Library support system X

Configuration control board

S-19

Appendix S: Software Source Selection GSAM Version 3.0

Repeatable Level Key Process Area: Software Quality Assurance

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Software Quality Assurance

Auditing: SQA objective evidence of
audits

X

Noncompliance resolution X X X X X

Reporting chain: SQA group reports,
independent authority

X

SQA plan X

SQA concurrence on milestone
progress

X X

SQA group participation

Oversight for all process support
systems; e.g., corrective action
system; data collection of defects;
earned value of system deviation
handling

X X

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Software Engineering Process Group

Assignment of full-time resources,
establishing and supporting

X

Coordination of review with senior
project technical staff, analysis, and
evaluation of software process
definition, responsibility assignment

X X X X X

Planning systems and software
process improvement; review of
existing and proposed process
standards

Defining training requirements X X X

Defined Level Key Process Area: Software Engineering Process Group

S-20

Appendix S: Software Source Selection GSAM Version 3.0

Defined Level Key Process Area: Standards and Procedures

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Standards and Procedures

Planning standard software
process development

X X X X

Implementing standard software
process development

Process assets; a process library
system; library of software
process specifications; software
process database maintenance;
tailoring the organization’s
standard software process

X X X X

Standards for software
development folders

X

Review standards

Human-machine interface
standards

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Software Product Engineering

Integrating the project’s process with
the software architecture: process
change and technology transition
review

X X X X

Investigating software engineering
tools and methods; tool selection and
use with gathering of performance
data

Developing and maintaining the
project’s software architecture

Reviewing the system/software
testing

New technologies X X

Defined Level Key Process Area: Software Product Engineering

S-21

Appendix S: Software Source Selection GSAM Version 3.0

Defined Level Key Process Area: Training

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Training

Planning/procuring training
courses for training curriculum,
courses

Job analysis to support each
project’s training needs

Communicating and keeping track
of delivered training; schedules
for all professional and technical
staff; records of training

Delivering training; management
support

The organization’s training
program; training requirements

SUBPROCESS AREAS MAJOR ATTRIBUTES

ApD Pt Ps Tw Sub Op *

Peer Reviews

Planning/assisting peer reviews;
technical review

X X X X X

Schedule, process for technical
reviews

Conducting peer reviews X

Review assignments

Peer review performance;
organizational database of review
activities; cost; peer review result
handling

Defined Level Key Process Area: Peer Reviews

S-22

Appendix S: Software Source Selection GSAM Version 3.0

S2.4 Notes

1. Most of these became KPAs in the Capability Maturity ModelSM (CMMSM) Version 1.1 [Paulk 93a],
and were established in anticipation of that version of the CMMSM. Some of the subprocess areas
distinguished in this manner are at the wrong maturity level relative to CMMSM Version 1.1; however,
this does not affect how an SCE is conducted, because maturity level scores are not calculated. It does
alter the category the findings are reported under, because findings are consolidated by KPA.

2. The abbreviation Ps stands for “Product Size.” Product Size refers to the “Size” attribute.

S2.5 SCE Text for Inclusion in Instructions to
Offerors

S2.5.1 Section L

The following sample text illustrates how SCEs might be inserted within Section L or M of the RFP. These
examples assume the SCE will be used as a specific criterion for source selection.

S2.5.2 Sample 1

Software Engineering Capability. The Government will evaluate the software process by reviewing the
offeror’s Software Process Improvement Plan and by using the Software Engineering Institute (SEI)
developed technique, the Software Capability Evaluation. The Government will determine the software
process capability by investigating the offeror’s current strengths and weaknesses in key process areas
defined in the SEI report CMU/SEI-TR-11 “Characterizing the Software Process: A Maturity Frame-
work.” The Government will perform an SCE of each offeror by reviewing current programs at the site
proposed on this contract. The evaluation will be an organizational composite. It will be substantiated
through individual interviews and reviews of documentation, of the offeror’s strengths and weaknesses in
key process areas relative to maturity level three; i.e., the extent to which an offeror meets or exceeds
maturity level three criteria. The on-site evaluators may be separate and distinct from the proposal evaluation
team and may include a government contracting representative. The evaluators will have been trained and
experienced in conducting SCEs.

S2.6 SCE Text for Inclusion in Instructions for
Preparation of Proposals (IFPP)

NOTE: Instructions for Preparation of Proposals provide guidance to offerors as to
how they should prepare their proposal. The following text requests the offeror to provide
program profiles, organization charts, sample documentation, and a software process
improvement plan. It also requests the offeror to provide the SCE team with facilities
during the site visit.

S-23

Appendix S: Software Source Selection GSAM Version 3.0

The technical proposal shall include the offeror’s response to the software evaluation process. The offeror
shall provide the following information to assist the Government’s preparation for the Software Capability
Evaluation of each offeror:

1. The offeror shall complete the Program Profile form for 7-9 major software engineering development
programs. All programs should be drawn from the same site and organization (e.g., profit center)
bidding on this solicitation. One of these programs must include the (proposed) software development
effort and the others should be programs that are near completion or completed within the last three
years. These programs should be as similar as possible in scope and magnitude to the (proposed) effort.
The programs should be from programs where the offeror was the prime contractor, at least one program
should include a development where another subcontractor developed portions of the software, and as
least one program should be an Ada program, more if applicable. Program Profiles from Special
Access Programs are discouraged. For offerors with fewer than 7 programs at the bidding site, submit
information for as many programs as are available.

2. Section C, Tab 1, contains the questionnaire outline and report form that should be used to generate the
evaluation profiles for each of the programs. Respond to the SEI questions with a Yes or No answer.
For each “yes” response, please note the mechanism or document for justifying the response on a
separate form.

3. The offeror shall provide program-level and higher-level organization charts. The organization charts
should contain individual’s names and job titles and indicate how the programs above are related to
each other. If there are departments that the software programs rely on, these too should be positioned
on the organization chart (e.g., training, Software Engineering Process Group , quality assurance,
configuration management, standards, policy and procedures).

4. The offeror shall provide a draft Software Development Plan (SDP) and a Software Standards and
Procedure Manual (SSPM). If there are “generic” SDPs and SSPMs those are preferred; otherwise,
select a sample SDP and SSPM from the program that has the most representative SDP.

5. The offeror shall submit their site’s Software Process Improvement Plan, in the form of their choosing,
with their proposal. The document shall be no longer than 15 pages. The Software Process Improvement
Plan shall be detailed enough for the offeror to communicate their current software process capability,
specific planned improvements, dedicated resources, effort estimates, and a time phasing of those
improvements to bring the offeror’s software process maturity to the organization’s desired maturity
level.

6. After the proposal is received, the Government will coordinate a site visit with the offeror to discuss the
questionnaire responses and conduct the Software Capability Evaluation (SCE) at the offeror’s location.
The offeror shall provide a point of contact and phone number for the coordination of all SCE activities.
So that the site visit will go smoothly, the Government will list details about the site visit during the
coordination process; e.g., interview schedules, documentation requests, facilities for the evaluation
team. The offeror shall be notified approximately two working days prior to the site visit of the programs
to be examined. The site visit dates selected by the Government are not open for discussion.

7. During the site visit, the SCE team will need a secure meeting room capable of accommodating at least
eight people. The offeror shall have a copy of the organization’s software standards, procedures and/or
operating instructions, and organizational charts for the programs being reviewed in the meeting room
when the SCE team arrives. All interviews conducted as part of the SCE shall be done in private, one
individual at a time. The SCE team may be separate and distinct from the proposal evaluation team.

8. If security authorization is necessary for the members of the evaluation team, a Fax number and telephone
number of the contractor’s security office should be provided along with a list of any other pertinent
information required to obtain security approval.

S-24

Appendix S: Software Source Selection GSAM Version 3.0

S3.0 Tab 3: Sample RFP Preparation Checklists

S3.1 Sample Questionnaire for Site Visit
Preparation

The following questions are examples of what you should consider as you develop your site visit checklist.
[SOURCE: Yourdon, Edward, Decline and Fall of the American Programmer, Yourdon Press, Englewood
Cliffs, New Jersey, 1992].

• Does this company care about software quality? Does it care enough, for example, to delay putting a
new system into production because its software reliability models indicate an unacceptable number of
latent errors? Does it have software reliability models?

• Does this company care about its people? Has it invested time and money to train its software
development managers to do a better job in hiring people? Does it invest an adequate amount of time
training its technicians, or does it assume that its software engineers are replaceable commodities?
Does it use modern “performance management” methods to ensure that its corporate goals are aligned
with personal consequences of those goals? Do the people in the organization understand what the
organizational goals are, and how they are supposed to fit into those goals?

• Does this company use modern programming tools, languages and methodologies, as opposed to assembly
language and the waterfall life cycle.

• Does this company measure everything it does in the software arena? Does it measure the process of
software development as well as rate the final product? Does it have a separate software metrics
group? Are size, effort, schedule, defects, and rework measured routinely? Are the metrics used in a
positive way, so that everyone in the organization can see how they improve?

• Does this company support the concept of software reusability? More important, does it provide some
incentive (for example, cash royalties) to its software engineers to create reusable components? Has it
considered a separate “Software Parts Department” whose only job is to create reusable components?
Does it estimate the degree of expected reusability at the beginning of programs and base its schedules
and resource requirements on that estimate?

• Does this company have CASE tools? Does it believe that CASE tools are like toothbrushes, that is,
they’re not meant to be shared? Does it provide an adequately equipped PC or workstation for everyone?

S3.2 Program Profile Outline

The following outline is a sample program profile that can be referenced in the RFP. Six to nine of these
forms, for different programs, should be filled out by each contractor.

• Program Name: (name of program listed on the contract)
• Program Number: (unique identifying number on the contract)
• Program Type: (e.g., scientific, human-machine, business, control, support software)
• Customer: (the agency that procured the software and a point of contact within that agency)
• Subcontractors/Prime Contractors: (list any subcontractors employed on the program or list the

prime contractor if the offeror was a subcontractor)

S-25

Appendix S: Software Source Selection GSAM Version 3.0

• Current Phase: (identify the current phase of the software development process; e.g., requirements
definition, detailed design, code & unit test, integration test, maintenance)

• Location: (primary site of the software development effort)
• Start Date: (starting date of the contract)
• Design Completion Date: (estimated or actual)
• Code Completion Date: (estimated or actual)
• End Date: (contract completion date)
• Team Size: (peak man-month period and average man-years over the contract period)
• Estimated KSLOC and Function Points: (estimated/actual thousand source-lines-of-code (KSLOC))

and function points.
• Programming Languages: (percentage of KSLOC in languages (e.g., Ada, FORTRAN, Pascal, C,

Assembly))
• Target Hardware System: (computer on which software executes)
• Development Hardware System: (host computer for the compiler and support environment)
• Applicable Standards: (e.g., MIL-STD-498)
• Cost: (actual/estimated dollars spent to date/completion)
• SEI Questionnaire: (the attached questionnaire and its answer sheet should be completed for each of

the programs)
• Organization Chart : (Most recent organization chart for each program with titles and individual

names. This chart should identify the individual responsible for the following activities: program
management, system engineering, software program management, software engineering, software quality
assurance, software configuration management, subcontractor control, simulation, integration and testing
and other technical software activities.)

S3.3 Proposal Evaluation Checklist

The following checklist is provided as an aid for software development proposal evaluation.

S3.3.1 Program Management

• What was the software manager’s involvement with the proposal?
• How is software progress tracked? Management reviews? Frequency?
• Who will approve software schedules? Cost estimates?
• How are issues raised, tracked, and conflicts resolved?
• What will be the software manager’s reporting chain?
• How does the software requirements team relate to the software design team?
• How much manager visibility into integration and test will be necessary?
• What will be the relationship between the System Engineer and Software? How will tradeoffs be

made?
• Is senior management briefed regularly on software status?

S-26

Appendix S: Software Source Selection GSAM Version 3.0

S3.3.2 Subcontractor Management

• What is the subcontractors’ development process?
• How will qualified software subcontractors be selected?
• Do the subcontractor’s standards, procedures, process comply with the prime contractors’?
• How should the results and performance to commitments be tracked?
• Is the subcontract manager knowledgeable of and trained in the software?
• Are there periodic technical reviews & interchanges with subcontractor?
• Does the prime’s Software Quality Assessment and Configuration Management monitor sub’s SQA &

CM?
• Do the prime’s senior management review the status of the subcontractor regularly?

S3.3.3 Metrics Management

• Is design progress, test progress and staffing measured?
• Is integration progress measured?
• Is software size overtime and memory utilization measured?
• Is throughput and I/O channel utilization measured?
• Is progress tracked and reported to the PM regularly?
• Are technical, schedule, cost, and resources plans prepared?
• How are software size, cost and schedules established? How are document procedures established?
• Document Commitments: Who commits, size, cost and schedules?
• Are there policy exits for resource planning and commitments?
• Are the software managers trained on software estimation?
• Are actual versus planned estimates recorded and compared?
• Is there a central estimation manager and data base for accuracy?

S2.3.4 Software Quality Assurance Management

• Is there an independent reporting chain?
• Are audits conducted at all phases of life cycle and line activities?
• How is it ensured that audits are representative?
• Does SQA have adequate resources?
• Does SQA audit subcontractors?
• Are deviations handled according to documented procedures?
• Does senior management review SQA activities regularly?
• Is SQA authority and concurrence required?

S-27

Appendix S: Software Source Selection GSAM Version 3.0

S3.3.5 Configuration Management

• How can requirements, design, and code changes be controlled?
• How can interface changes be controlled?
• Is there traceability for requirements, design and code?
• Is there a tool to help control versions and builds?
• Are parameters established for regression testing?
• Are baselines established for tools, change log, and modules?
• Does the CM plan include staff, schedule, response, resources, tools, and facilities
• Does the library system store work products and prevent unauthorized change?
• Does the document change request process include check in/out, review and regular testing?
• Is there a document Change Control Board and a change proposal process?
• Is there a change log that tracks open/closed change requests?

S3.3.6 Peer Reviews Management

• Are design, code, and test case peer reviews conducted?
• Who and how many people attend?
• Are documented procedures and checklists used?
• Are the peer reviews included in the Software Development Plan and are they published?
• Are statistics compiled on the type, severity, and location of errors?
• Are statistics compiled on the time to prepare, review, and correct elected errors?
• How are errors tracked to closure?
• Does SQA audit peer review activities?

S3.3.7 Training

• How are CM and Quality Assurance leaders trained?
• Are moderators and developers included in peer reviews?
• Do program managers participate in software estimation and peer reviews?
• Do software supervisors participate in QA, CM, estimation and peer reviews?
• Do software developers participate in peer reviews, software development process and tools?
• Do training resources include money, facilities, tools and schedules?
• Is there a corporate training policy supported by a training manual?
• Are program training needs identified and planned?
• Are job functions mapped to training?
• Do training records include people and courses?

S-28

Appendix S: Software Source Selection GSAM Version 3.0

S3.3.8 Standards Management

• Do standards include coding, unit development folders, and man-machine interface standards?
• Do standards include generic SDP, a QA plan and a CM plan?
• How are standards enforced?
• How and when are standards updated?
• What is the assigned response for updating standards and policy?

S-29

Appendix S: Software Source Selection GSAM Version 3.0

S4.0 Tab 4: Sample Paragraphs for RFP Inclusion

S4.1 Software Quality Requirement

Software quality requirements will be specified for the program. The development of these requirements
shall be the responsibility of the program office. The program office will work together with the end-user
of the system to generate requirements based on an analysis of the system requirements, life expectancy,
development costs and user concerns. Example user concerns to consider are performance (e.g. reliability,
usability and efficiency), design architecture (e.g. maintainability and correctness) and re-engineering (e.g.
reusability, interoperability and portability). Software quality requirements will be specified and documented
within the baselined Software Requirements Specification (SRS). A hierarchical quality model of quality
factors, criteria and metrics will be used to predict software quality. Factors representing the user’s concerns
will be decomposed (using relevant standards and guidebooks) into software oriented characteristics.
Measures of these characteristics (i.e. metrics) will also be defined. The specified model will apply to all
software development phases and products. Quality progress will be reported and reviewed at each major
program milestone. All open and closed software quality problems will be tracked and reported. The
achievement of software quality requirements will be demonstrated, using industry accepted measures of
operational quality (e.g. reliability = mean-time-to-failure), during integration testing. Failures will be
categorized according to an Government approved some severity standard.

S4.2 Software Testing Requirement

In addition to functional testing of the software to assure compliance with requirements, the software will
be tested such that 100% of the software branches (i.e., decision to decision statements) are exercised prior
to release in the field. Reasons for not achieving 100% execution coverage must be formally documented
in the Software Test Report.

Software tools (i.e., test coverage analyzers) to automate the branch testing process are available. Intrusive
analyzers insert software code into the software under development to capture and record the execution
coverage and are appropriate for non-real-time software developments. If a software product under
development must operate in real-time, if it is highly memory constrained, or if the software units are very
large, non-intrusive analyzers should be used. Non-intrusive analyzers use a separate hardware processor
to capture and record this same execution coverage information.

S4.3 Software Life Cycle Development and Support
Environment Requirement

An automated computer-based software life cycle development and support environment will be used by
the contractor. Development of the environment’s requirements shall be the responsibility of the program
office. The environment should provide the following capabilities: 1) specification of the life cycle
software development process and the monitoring/enforcement of that process, 2) integration of Computer-
aided Software Engineering (CASE) and other tools supporting the various interphase activities of the life
cycle, and 3) interphase support including program management, configuration management and baselining,
document/specification generation, traceability and change impact analysis.

S-30

Appendix S: Software Source Selection GSAM Version 3.0

S4.4 Software Life Cycle Development Technology
Scalability Requirement

An automated, computer-based software life cycle development and support environment will be used by
the contractor. Development of the environment’s requirements shall be the responsibility of the program
office. The ability of the environment’s hardware/software complex (including each of its associated CASE
tools) to adequately and efficiently support the breadth of software under development (i.e., scalability to
the size of the problem) will be a primary consideration.
Reusable Software Requirement

As part of the SDP, reuse software engineering and planning shall be addressed. The SDP shall contain a
WBS that includes the establishment and implementation of a reuse program. Reuse shall be an integral
part of software development planning, review, audit and reporting. As part of the contractor’s SEE, a
Software Reuse Library shall be established and maintained after appropriate review and approval by the
Government.

S-31

Appendix S: Software Source Selection GSAM Version 3.0

S5.0 Tab 5: Source Selection for Software
Supportability

S5.1 Instructions to Offerors (Section L)

In addition to specifying proposal form and content, the Instructions to Offerors should require submission
of a Software Development Plan and Software Quality Program Plan as part of the proposal. The SDP will
include the offeror’s software development and management concepts, procedures, and metrics for controlling
and assessing progress during the development process.

S5.2 Supportability Issues

The following supportability issues must be covered in the Instructions to Offerors:

• The methodology used to perform software sizing and cost estimating and the approach to be followed
during software development

• The rationale used for computer resource timing and sizing estimates and description of how spare I/O
utilization (channels or data rates), CPU throughput utilization, memory utilization requirements will
be met;

• A description of any teaming and subcontractor arrangements;
• The skill levels required for computer resources development and their availability within the corporate

structure;
• The method to be used for risk control;
• Any planned use of firmware;
• Any plans for reusing or modifying existing software;
• A clear definition of all assumptions used during proposal preparation;
• Plans for the development of prototype software;
• Plans and procedures for generating and using software metrics.
• A disclosure statement of defect removal efficiency. This should include their definition of defects and

what defects are included in the metric and the method of calculating the metric.

S5.3 Additional MIL-STD-498 Considerations

• The offeror should address the manner in which they will comply with their Requirements for Software
Standards, how this will be achieved and how such compliance will be measured. The offeror should
describe proposed software development methodologies to be incorporated in any resultant contract.

• The offeror should document the manner in which compliance with Category and Priority Classifications
for Problem Reporting, will be achieved and describe the problem reporting system to be used in any
resultant contract.

S-32

Appendix S: Software Source Selection GSAM Version 3.0

• The offeror’s proposal to the items above should be part of the technical volume of the proposal and not
be required as part of the contract.

• The offeror should document the manner in which compliance with Evaluation Criteria will be achieved
in the software development effort if the offeror is awarded the contract. These include: internal
consistency; understandability; traceability to indicated documents; consistency with indicated
documents; appropriateness of analysis, design, and coding techniques used; appropriateness of allocation
of sizing and timing resources; adequacy of test coverage of requirements.

NOTE: The offeror may propose, subject to government approval, additional criteria or
alternate definitions for any of the criteria.

• The offeror shall also provide examples of software documentation (e.g., software specifications, source
code listings, software test reports) prepared on other software development efforts (the Government’s
source selection team can then evaluate the supportability of the proposed documentation.) The offeror
should describe the process, techniques, methodologies, and metrics to be used and define acceptable
(i.e., pass) criteria (minimum, range, or maximum) for each proposed evaluation criteria test environment
(STE) (including tools therein) (see definitions below) proposed to develop software for the system.
The offeror should also describe the environment proposed to be delivered to (assuming the contract
requires such delivery) or to be used by the Government to support the system’s software. [The offeror
should be required to submit metrics on this issue to help government evaluators determine the quality
of the environment proposed for delivery to the Government.]

• Offeror should document the factory software engineering environment (SEE), including tools therein.
The plans should address how the offeror will evolve the factory environment into the supporting
environment. This should not include the concept of developing a separate support environment. The
evolution should include the constant updating and refining of the factory environment to meet all
needs of the supporters and then be transitioned to the supporting/maintaining organization.

• The plans should also describe how the offeror will install the support environment at the supporting/
maintaining organization, load the environment with all program software/data and hardware (e.g.,
operational software/data, all development/ test tools, hardware configurations, master engineering
data repository, and administrative practices to be used for software support) and use the environment
as the only source of information/tools to support the initial operational test and evaluation (IOT&E),
as well as initial block changes to the system (while under interim contractor support).

• The plans should describe any differences in tools between the factory environment and that envisioned
for the software support activity and plans to ensure that tools differences will not adversely impact the
supportability of the software.

NOTE: If too much documentation is required for submission to the Government, it
may exceed page count restrictions.

• The offeror should document the approach to be used in evaluating the quality of software and software
development processes; i.e., how the offeror will comply with proposed evaluation criteria during the
period of the contract. In addition, the offeror shall identify, explain (with rationale), and provide pass
(as in pass/fail) criteria for each process and product metric used. This document shall contain a step-
by-step sequence of quality-related activities to include the data collection process, scoring algorithms,
reporting, and corrective action.

S-33

Appendix S: Software Source Selection GSAM Version 3.0

S5.4 Additional AFSCP/AFLCP 800-45, Software
Risk Abatement, Considerations

The offeror should document the approach to be used in managing risk in developing software and integrating
it in the system. The offeror should be required to quantify performance, support, cost, and schedule risk
factors (this should be part of the offeror’s Software Development Plan).

S5.5 Sample Section L

The following information is useful for developing Instructions to Offerors (ITO) (as related to software
supportability concerns):

1. Submit Volume XXX and completed questionnaires from A Method for Assessing the Software
Engineering Capability two weeks prior to submission of Volumes XXX.

2. Volume I. TECHNICAL
Volume I shall describe the complete proposed Reliability and Maintainability Plan and engineering programs
and shall not exceed xxx pages. Volume I shall be divided into two books, marked and placed in separate
three-ring or spiral binders. Each book shall be arranged as described below.

2.2. Volume I, Book II. Engineering Program and Design
Book II shall detail the proposed engineering program. As a minimum, the following information
shall be included.
2.2.1. Describe the overall engineering development and design program including major activities

and an integrated schedule.
2.2.1.1. Identify the overall engineering development schedule and specific integration program

activities such as design requirements analysis, testing, software development, support
equipment development, and management processes for controlling the development effort.

2.2.1.2. Provide an overall technical description of the total program. Identify significant
benefits of design features proposed including commonality considerations among
subsystems (including support equipment, maintenance trainers, and aircrew training
devices), between aircraft types, and between aircraft mission design series. Include, as a
minimum:
2.2.1.2.1. Software design, development, and integration efforts for each subsystem. Include

the top-level description of each computer software configuration item (CSCI), identify
and justify the computer languages used, and estimate the size of each CSCI. Identify
if the CSCI currently exists, will be modified, or will be developed.

2.2.1.2.2. Describe the overall built-in-test (BIT) approach for each subsystem and how it
will test subsystem and subsystem-to-aircraft interfaces.

2.2.1.3. Define the draft subsystem specification and development plan for the major
subsystems. The specifications shall be sufficiently detailed, as a minimum, to include
descriptions of:
2.2.1.3.1. Growth potential of each LRU with respect to the number of circuit card

assembly (CCA) expansion slots available and the type of functional enhancements
(such as additional memory, processor, or input/output CCAs).

S-34

Appendix S: Software Source Selection GSAM Version 3.0

2.2.1.3.2. Significant components at the SRU level, such as embedded computers and
memory devices. Identify and justify the intended processors to be used, estimated
lines of code, throughput, memory, and growth capacity requirements.

2.2.1.3.3. Identify the significant benefits of design features proposed including
commonality considerations among CCAs or SRUs.

2.2.1.4. Within the draft subsystem specification and development plan for the xxx subsystem,
provide additional detailed descriptions of the following:
2.2.1.4.1. Identify commercial software to be used. Describe the level of documentation

available, to be developed, and how the Government will support the commercial
software.

2.2.1.4.2. Describe how the XXX subsystem software development and design approach
will allow modification of display page formats or information, incorporate additional
pages, provide for growth in number of display units and display avionics management
units.

2.2.2. Describe relevant engineering development experience of the technical personnel proposed
for this program. Include specific information on planned contribution to this program for
each person identified. Be specific about team members with experience on at least two programs
of similar scope, and where similar engineering tasks were accomplished.

2.2.4. Describe engineering development facilities (laboratories), staffing, and equipment planned
for use on this program. Identify the respective availability of each resource and plans to
acquire resources not currently available.

2.2.5. Define the preliminary support equipment (SE) program. Describe the overall program for
designing, developing, and testing the proposed support equipment for the XXX system.
2.2.5.1. Describe how the support equipment selection and development processes integrate

with the BIT software development effort and maintenance procedures development.
 2.2.5.2. Describe test program sets (TPSs) to be used with both existing and newly developed

test stands. Include a description of the TPS hardware and software requirements and
identify compatible automated test equipment (ATE).

2.2.6. Describe the overall software development and management program.
2.2.6.1. Describe the software development approach, analysis methods, and integrated schedule

for completing the software configuration items.
2.2.6.2. Define all software development tools that will be used including such applications as

compilers, assemblers, debuggers, editors, linkers, loaders, and configuration management
programs. Define the computer and operating systems on which each software tool will be
used. Describe how these tools will be made available to the Government.

2.2.6.3. Describe relevant software development experience of the technical and management
personnel proposed for this program. Include specific information on planned contribution
to this program for each person identified. Be specific about certifications held by inspection
personnel.

2.2.6.4. Describe software development facilities, staffing, and equipment planned for use on
this program. Identify the respective availability of each resource and plans to acquire
resources not currently available.

2.2.6.5. Describe how your software development program will support the independent
validation and verification (IV&V) effort. Describe the data and documentation which
shall be provided as part of the IV&V effort. Describe how IV&V personnel will be
accommodated.

2.2.6.6. Each offeror may be visited by a government software assessment team (SWAT) as
part of a site survey to assess software engineering capabilities. The survey will be conducted
using A Method for Assessing the Software Engineering Capability, provided as an
attachment to this RFP. Complete the questionnaire below to prepare for the SWAT survey.

S-35

Appendix S: Software Source Selection GSAM Version 3.0

2.2.6.6.1. Provide a completed software assessment program Form 01 (programs profile
summary) and Form 02 (answers to the software assessment questionnaire) for six on-
going software development programs (representative of all phases of software
development) and the proposed (program name) software development efforts. The
type of information required is indicated on the forms provided and shall be used to
prepare responses (attachment following this section of the RFP). Provide the completed
forms to the program contracting officer (PCO) separately from the proposal (address
listed in paragraph XXX). The forms shall be delivered in accordance with the letter
from the PCO coordinating the dates for the SWAT survey at each contractor’s facility.

2.2.6.6.2. Each offeror will be notified by separate letter from the PCO to coordinate the
SWAT survey visit. The team will conduct interviews with software program leaders,
quality personnel, system integrators (software testing), and configuration management
personnel to discuss the answers provided on the forms and assess software engineering
capabilities. Additional documentation will be requested to validate responses to the
questionnaires. Documentation may include, but not limited to, cost estimating
worksheets, unit development folders, software development procedures, organizational
charts, software quality audit reports, and software change requests.

2.2.7. Describe the overall test and evaluation (T&E) program.
2.2.7.1. Describe all computer models, test stands, and hot mock- ups needed to ensure accurate

integration and interface requirements analysis and design verification. Include the basic
concept of operation for each test stand and hot mock-up. Provide a description of your
modeling tools for structural and stress analysis. Identify the availability of each resource
and plans to acquire resources not currently available.

2.2.7.2 Describe the integration of software development and management activities with
detailed test and evaluation activities.

2.2.7.3 Describe test and evaluation facilities, staffing, and equipment planned for use on this
program. Describe capability to provide supply support and maintenance to the T&E level
of flight testing. Identify the respective availability of each resource and plans to acquire
resources not currently available.

3. REFERENCES
a. Department of Defense

(1) Directives/Instructions
(2) Standards
[The following standards should only be cited in accordance with DoDD 5000.1 and DoD
5000.2-R]

(a) MIL-STD-498, Software Development and Documentation
(b) DoD-STD-1467 (AR), Software Support Environment
(c) MIL-HDBK-347, Mission-Critical Computer Resources Software Support
(d) DoD-STD-1703, NSA/CSS Software Product Standards Manual
(3) Other
(a) Defense Systems Management College (DSMC), Mission Critical Computer Resources

Management Guide
b. Air Force
c. Other
[The following references provide additional guidance, and should come from industry first, then (if

applicable) government sources. Again, refer to the 5000 series for guidance.]
(1) AFOTEC Pamphlet 99-102, Volume 3, Software Supportability Evaluation Guide (Contact

AFOTEC/SAS)
(2) AFOTEC Pamphlet 99-102, Volume 5, Software Support Resources Evaluation Guide,

S-36

Appendix S: Software Source Selection GSAM Version 3.0

(3) AFSCP/AFLCP 800-45, Acquisition Management Software Risk Abatement (Contact HQ
AFMC/EN)

(4) AFMCP 800-51, Software Development Capability Assessment (Contact HQ AFMC/EN)
(5) ASC Pamphlet 63-103, Software Development Capability Capacity Review (Contact ASC/EN)
(6) CMU/SEI-94-TR-06, Software Capability Evaluation (SCE), Version 2.0, Method Description

(Contact Software Engineering Institute at Pittsburgh PA)
(7) RADC-TR-85-37, Specification of Software Quality Attributes, Volumes I-III,

4. DEFINITIONS
a. Software supportability: characteristics of software and computer support resources that affect the

ability of software support activities to correct errors, add system capabilities, delete features, and
modify software to be compatible with hardware changes. It should be noted that as the Air Force
moves toward truly open systems, the need to modify software to be compatible with hardware
changes should no longer exist.
(1) Organization: Software possesses the characteristic of organization when the documentation

is logically partitioned into sets of volumes and document development conventions have been
followed. It also measures how easily specific information is located within the documentation.
Another factor is how well the documents have been divided along functional lines. A
hierarchical partitioning of the system’s documentation of less detail to descriptions of more
detail should reflect the partitioning of software.

(2) Descriptiveness: Software documentation possesses the characteristic of descriptiveness when
it contains information about its intent, assumptions, inputs, processing, outputs, components,
and revision status. Documentation should have a descriptive format and contain useful
explanations of the software program design.

(3) Traceability: Software documentation possesses the characteristic of traceability when
information about all program elements, and their implementation, can be traced between all
levels of lesser and greater detail (up and down in the system hierarchy). Program elements
consist of, but are not limited to, data flow, control flow, algorithms, variables, and constants.
Software may be well written and well described but still lack a clearly defined trail between
top level requirements and detailed implementation. The software maintainer must be able to
trace any particular element from higher levels of program description down to executable
code, and from executable code to higher levels of program description. Traceability should
also be evident from requirements through the design to the tests which verify the design.

(4) Modularity: Software possesses the characteristic of modularity when the software design is
based on a logical partitioning/grouping of software and its parts/logically related abstractions
and based on minimized module/unit interdependence. Software that is the easiest to understand
and change is composed on independent modules. The fewer and simpler the connections
between modules, the easier it is to understand each module without reference to other modules.
Reducing connections between modules also minimizes the paths along which errors can
propagate into other modules of the system. Modularity also implies that a module consists of
only a few easily recognizable functions which are closely related with a minimal number of
links to other modules.

(5) Consistency: Software possesses the characteristic of consistency when products correlate
and contain uniform notation, termination, and symbology. The use of standards and conventions
in documentation, flow chart construction and certain conventions in input/output processing,
module interfacing, naming of modules/variables, etc., are typical indicators of consistency.
This characteristic permits for the software maintainer to concentrate on understanding the
true complexities of an algorithm, data structure, etc.

S-37

Appendix S: Software Source Selection GSAM Version 3.0

(6) Simplicity: Software possesses the characteristic of simplicity when it reflects the use of
singularity concepts and fundamental structures in organization, language, and implementation
techniques. The use of high order language as opposed to an assembly language makes a
program relatively simpler to understand because there are fewer discriminations that have to
be made. The number of operators, operands, nested control structures, nested data structures,
executable statements, statement labels, decision parameters, etc., will determine to a great
extent how simple or complex the source code is.

(7) Expandability: Software possesses the characteristic of expandability when a physical change
to information, computational functions, data storage, or execution time can be easily
accomplished once the nature of what is to be changed is understood. The design should allow
for flexible timing, reasonable storage margin, parameterized constants, and indentured
numbering scheme for source listings that easily accommodate changes.

(8) Testability: Software possesses the characteristic of testability when it contains aids which
enhance testing. The documentation should describe how well the program has been designed
to include test aids (instruments), while the source listings should illustrate how the code is
implemented to allow for testing. The software should be designed and implemented so
testability is either embedded within the program or can be easily inserted into the program or
is available through a combination of these capabilities.
(a) Testability provides information on the logical build of functions or processes of the

designed/developed software from the development phase of its individual computer
software units (CSUs), into its integration phase of CSUs into computer software components
(CSCs), and CSCs into computer software configuration items (CSCIs).

(b) Testability includes the testing of security software requirements for compartmented, and/
or multilevel security modes of operation.

(c) Testability reflects the “as-designed” requirements of the software as they are developed
into the “as-built” capabilities of the final software product.

(9) Convention: Software possesses the characteristic of convention when the software products
correlate and contain uniform notation, terminology, and symbology. The use of standards in
documentation, flow chart, or program design language construction and certain conventions
in input/output processing, error processing, module interfacing, naming of modules/variables,
etc., are typical reflections of convention.

(10) Design: Software possesses the characteristic of design when programs are formed using a
structured method consisting of functional parts which are interrelated, yet independent of one
another.
(b) NOTE: Software requirements traceability is inherent in software supportability; that is,

all requirements should be traceable through the documentation to the appropriate test
procedure and area of code for each specific requirement.

(11) Reusability: Software created during the development process that posses the potential for
reuse within the same program or other programs.

b. Other Software Supportability Characteristics
(1) Portability: Software possesses the characteristic of portability when it is relatively easy to

rehost software from one hardware platform to another hardware platform. This characteristic
will require initial software development to consider future rewriting for adaptation to new
hardware platforms.

(2) Machine Independence: Software possesses the characteristic of machine independence when
it can be run on any hardware platform without needing to be modified to do so.

(3) External documentability: Software possesses the characteristic of external documentability
when documentation (e.g., hierarchy charts, flow control charts, compilation sequence, data
flow diagrams, and general explanations of what and how the software is used) matches the as-
built software exactly.

S-38

Appendix S: Software Source Selection GSAM Version 3.0

(4) Coupling: Minimum degree of interaction between CSUs.
(5) Cohesion: Maximum degree of interaction within a CSU.
(6) Structured: One entry and exit per CSU.
(7) Standardization of Naming Conventions: Use of uniform notations for naming data elements.
(8) Parameterization: A measure of the use of a minimum of unnamed constants.
(9) Style: The appropriateness and use of standard conventions to aid in visual presentation of

structures (e.g., numbering scheme, indentation of structures, blank lines between procedures
and function definitions, and other factors which affect the readability of the software.

(10) Documentation: Availability, completeness, and correctness.
(11) Complexity: Degree to which module flow can be traced (typically measured using a McCabe’s

value).

S5.5.1 Proposal Evaluation Supportability Criteria

NOTE: Evaluation criteria will cover all requirements within the request for proposal
(RFP), including computer resources development and management activities and the
offeror’s software management plans contained in the SDP and other applicable
documents. The key to achieving supportability is by defining contractual processes,
performance requirements, and metrics to which the contractor will commit and adhere
during software development. These are important evaluation factors and must be
included in the RFP.

• Availability of software, documentation, and rights necessary to meet life cycle needs.
• The compatibility of the proposed design with the support concept in the CRLCMP.
• For systems where software changes will be frequent and are critical to overall mission capability,

quantitative criteria should be established to ensure the design is modifiable and proposed support
resources and methods are adequate. The offeror should describe how to identify and reestablish a
previous software configuration.

• When processing of sensitive or classified information is involved, ensure computer security is an
evaluation criterion.

• Correctness and reliability (or their supporting criteria of traceability, completeness, error tolerance,
accuracy, and simplicity) should be measured, over the entire life cycle, on every program.

S5.5.2 Other Evaluation Criteria

Other evaluation criteria should include:

• Throughput and memory capability of the proposed computer;
• Future vendor support for commercially supplied items such as tape drives, disk drives, and controllers;
• Computer resources interfaces to the rest of the system architecture and human operators;
• Adequacy of the operating system or software executive;
• Availability, currency, and usage of software development plans;
• Organic supportability of computer hardware and software;
• Offeror’s software development plan and software development standards and procedures;
• Offeror’s software development capability and capacity.
• Defect-removal efficiency (e.g., rate of 95 % or higher is acceptable).

S-39

Appendix S: Software Source Selection GSAM Version 3.0

CAUTION: defect-removal efficiency can be manipulated. Changing the definition of a
defect from a development defect to a production defect can affect the metric.

S5.5.3 Source Selection Evaluation Considerations

MIL-HDBK-347 is geared to DoDD 5000 series documents and should be used in conjunction with top
level software support guidance provided government-directed documents, which you should follow
throughout the period of the contract to ensure a supportable and supported system is fielded. Not only
should the attached factors be included in the Sections L and M of the RFP and the offeror’s proposal, but
they should also be incorporated as requirements in the Statement of Work. Much of the issues addressed
in the following can be addressed in the offeror’s SDP, therefore the Instruction for Proposal Preparation
should require the offeror to submit a draft SDP for the system being acquired.

• CMU/SEI-94-TR-06 (This assessment is normally conducted by the offeror with SEI assistance before
source selection occurs.) The Instructions for Proposal Preparation may inform the offerors that only
those proposals from offerors who have received a Level 3 rating or higher will be evaluated.)

• AFMC Pamphlet 63-103 (Use of the tool requires a competent government team and a significant
amount of time to complete, but it provides the program office an estimate of the level of risk that can
be expected in the software development process using each offeror.)

NOTE: A SQM proficiency audit or SEI audit may also provide the desired assessment
results.

Use of these tools will produce ratings in the following areas which should be reported to the source
selection authority: program management, planning and execution, configuration management, quality
assurance, quality measurement, training, process focus, and overall.

S5.5.4 DoD-STD-1467(AR), Software Support Environment,
Considerations

Contractually specifying the exact SEE prior to initial development is not a good approach to acquisition.
Instead, the offeror should specify the top-level requirements for the SEE, and the detailed implementation
of this environment should be allowed to evolve.

• The offeror should identify any proposed software or documentation with limited or restricted rights.
The offeror should identify any licensing agreements that apply to the software engineering environment
or software test environment to be delivered to the Government. The offeror should describe how in-
house personnel or a third party contractor can accomplish software support within constraints imposed
by the rights and/or licensing agreements.

NOTE: Although not realistic to obtain in an offeror’s response to a proposal, it is also
desirable to know what data rights restrictions/licensing arrangements apply to the SEE/
STE to be used by the offeror (or proposed subcontractors) and how those restrictions/
arrangements will apply to the SEE/STE delivered to the Government.

S-40

Appendix S: Software Source Selection GSAM Version 3.0

• If the government’s SOW requires the offeror to use the government’s designated life cycle software
support environment (LCSSE), have the offeror describe how the resources of the government’s LCSSE
will be used.

• The offeror should respond to the government’s desire that the offeror’s environment, identified
in the proposal, shall be used in the subsequent contract performance, and that the offeror agrees
to notify the Government of any changes required in the environment, with rationale given for
the changes throughout the period of the contract.

• Have the offeror describe how all delivered products, both mission and support (e.g., products
used in the factory development environment), will be integrated in and perform with the
government designated LCSSE.

• Have the offeror identify the proposed sources for all software to be delivered in the SEE/STE.
• The offeror shall describe how the designated LCSSE might be used by the Government or the

government’s designee to evaluate, generate, install, integrate, test, modify, and operate the
formally delivered software.

S5.5.5 AFOTEC Pamphlet 99-102, Volume 3, Software
Maintainability Evaluation Guide, Considerations

• Have the offeror document the approach to ensure supportable software (i.e., the software has
supportability characteristics), using the definitions in paragraph 4 of the basic document.

• Have the offeror provide samples of software documentation from a program of similar scope and
effort and use evaluation procedures of this pamphlet to assess its supportability. Ask the offeror to
identify any changes made since that software was produced which might be relevant to the current
effort.

CAUTION: When this approach is used, you run the risk of not treating all offerors
equality since some may not have a viable documentation base to be evaluated. Also, the
evaluation of the documentation may not include the Government influence in the
decisions and direction that led to the particular software and software documentation
that was produced in the previous effort.

S5.5.6 Additional Considerations

• Have the offeror describe how the software development effort and costs will be visible to assure the
effort is on track. The offeror’s description of development/cost tracking should include a detailed
explanation on the use of software work packages. The offeror should also be required to describe how
the quality of software will be measured and maintained during the development process and over the
life cycle.

• Have the offeror describe ways they will keep COTS items in their latest configuration and upward
compatible to changes after delivery of the system without affecting system performance. The offeror
should also address contingency plans for support of COTS products in the event the COTS vendor
drops support or goes out of business. Also have the offeror describe how licenses and titles for COTS
items will be transferred to the LCSSE.

S-41

Appendix S: Software Source Selection GSAM Version 3.0

NOTE: Decisions to upgrade configurations must be a joint decision between the
Government and contractor, with the Government having ultimate control.

• Have the offeror describe how software functionality will be allocated, traced, and its quality measured
between mission and system software computer software configuration items (CSCIs). Recognizing
that specific design details are not set in concrete at the time of source selection, this information
should describe what intrinsic system services (i.e., services contained in system software) will be
needed and what the planned COTS utilization will provide these systems. By extension, the offeror
can describe in general terms what non-system service functions (i.e., functions contained in mission
software) will also be needed.

• Have the offeror describe procedures for performing independent verification and validation (IV&V)
(if required in the contract) and ensuring the IV&V agent access to software and associated
documentation. Also, have the offeror describe how duplication of effort between the IV&V agent and
SQM agent will be avoided.

• Have the offeror describe how they will minimize/eliminate use of different type/manufacturers for
processors used in the system, unless those different types would make use of existing workstations/
server resources at government operational and support locations.

NOTE: Limiting processor types is a specification issue, not a source selection issue.
Source selection is not used to impose requirements.

• Have the offeror describe how compliance will be achieved with the requirement to deliver or provide
government access to all software documentation (deliverable and non-deliverable) on electronic media
or in digital format (i.e., paperless, computer-aided acquisition logistics systems (CALS) compliant).
Include in “Software Documentation” software quality measurement data, including raw data, score
sheets, tiered scores, problem trouble reports, and corrective actions.

NOTE: The Government should specify what form of electronic media is acceptable and
have the offeror describe how compliance with that form will be accomplished.

• Have the offeror describe how software will be loaded into storage media. The offeror should document
how and where software will be uploaded into the equipment (e.g., at what maintenance level (on/off-
equipment), and with or without requiring removal of processors from the equipment) and describe the
memory technology proposed (e.g., programmable read only memory (PROM), ultraviolet PROM
(UVPROM), electrically erasable PROM (EEPROM)). Additionally, the offeror should provide the
rationale behind the decisions made to determine the support concepts/maintenance levels.

NOTE: It is inappropriate to require the offeror to identify the memory technology
planned for use.

• Have the offeror describe how specific critical design requirements (e.g., spare memory, timing,
standardization of processors within system, etc.) will be met.

S-42

Appendix S: Software Source Selection GSAM Version 3.0

S5.5.7 Software Language Considerations

Have the offeror describe how they plan to comply with DoD 5000.2-R and DoDD 3405.1 software
development language requirements. If they can not comply with these software development language
requirements, the offeror must provide a rationale based on life cycle (and not just developmental) cost
evaluation.

S5.5.8 AFSSI 5100, The Air Force Computer Security
(COMPUSEC) Program, Considerations

• Trusted Computing Base (TCB). Have the offeror describe how they will address each of the evaluation
criteria set forth in DoD-STD 5200.28, DoD Trusted Computing System Evaluation Criteria, for the
appropriate trusted computing base, depending on the sensitivity of the data and the clearances of the
users.

• Risk Management. Have the offeror describe how they will address risk management requirements,
including risk analysis, security test and evaluation, and certification for facilities, software development
center processors, and embedded software used or developed under the contract. Systems must be
accredited by the Defense Audit Agency before they are placed in use.

Have the offeror describe how all the automated computer security provisions (identification and
authentication, audit trails, and file protection and control) will be met.

S5.5.9 MIL-STD-498 (or Industry Equivalent) Documentation
Requirements Considerations

The offeror should address adequate completion of the appropriate documents listed (by DID title) in
paragraph 6.2 of MIL-STD-498 (or industry equivalent), and describe how documentation adequacy will
be evaluated.

S5.5.10 AFOTEC Pamphlet 99-102, Volume 5, Software Support
Resources Evaluation, Considerations

• The offeror should describe their approach to addressing the software support environment (i.e., software
support concept

• Software support resources should address the required personnel, support systems, and facilities required
for supporting software during its life cycle.

S-43

Appendix S: Software Source Selection GSAM Version 3.0

S5.5.11 Other Supportability Source Selection Considerations

• Require that the offeror states conditions for software licensing. Specifically addressing the ability of
the Government to process under a single site license with the right to copy for large quantity systems
(e.g., Z-248 personal computers).

• All commercial-off-the-shelf software obtained for general purpose information systems processing
equipment is required to be approved through the computer systems requirement board (CSRB) for
management information systems.

• The offeror should provide data for applicable software, indicating any software attained under public
domain libraries.

• The offeror should describe how contractor proprietary rights to proposed software will be minimized.
While it may be difficult to control rights to commercial off the shelf or third part software, in-house
developed software should be the property of the Government and be delivered as part of the life cycle
software support environment.

• The offeror should describe the approach for transitioning the software process, products, and
documentation to the supporting activity.

• The offeror should describe the approach for preparation, including training, of software support activity
personnel for accomplishing the software support mission.

• The offeror should program PDSS personnel, facility, and equipment costs up front and include these
in calculating system life cycle costs. Facility costs should include location, site preparation, construction,
and installation.

• The offeror should make recommendations as to the optimum support concept (contractor only,
Government only, or contractor/ Government mix) for each proposed computer software configuration
item, and justify the recommendation based on operational requirements and life cycle costs.

• Have the offeror describe how the system/software engineering environment will meet all trusted database
and multilevel security requirements.

• Have the offeror describe the level and sources of training (skills) required for support of each of the
delivered software products.

• Have the offeror describe how the software will be implemented without serious impact to the operating
system (if applicable).

• Have the offeror describe how the developed software will fulfill requirements and yet meet RFP
interface requirements.

• Have the offeror describe how impacts of the newly developed software on other operating systems
will be assessed.

• Have the offeror describe the strategy for reuse of existing and newly developed software.
• Have the offeror describe plans for software disaster storage and recovery.

S-44

Appendix S: Software Source Selection GSAM Version 3.0

S6.0 Tab 6: Lessons-Learned in the GSA Trailboss
Course

George Coulbourn
Boeing
Barry Ingram
EDS

S6.1 Background

In 1988, the GSA introduced a two week course known as Trail Boss. The program was designed to train
Government personnel in the conduct of information technology (IT) acquisitions. The original goal was
to train approximately 300 people. After 10 classes this goal was met; however the demand continued, and
in 1995, with the advent of class number 20, over 600 people have received the training. Beginning with
class number 3, industry participation was requested through the auspices of ITAA, the Information
Technology Association of America. The authors were privileged to conduct most of the industry sessions
during this period. Many other members of ITAA participated in various presentations over this time
period. The materials prepared for that purpose have evolved and have been used in numerous presentations
by members of ITAA and by others. Most presentations have occurred in an interactive setting, such that
problems and impediments could be openly discussed and analyzed. As a result of these experiences,
Government and industry have learned many lessons. The purpose of this paper is to capture the more
pertinent lessons in hopes that by their promulgation, both Government and Industry will benefit.

S6.2 Industry Trail Boss Presentation Approach

Fundamentally, the ITAA presentation is about mutual understanding and human and corporate behavior.
We discuss processes and problems from the perspective of an independent systems integrator. We present
a detailed description of how we make our procurement bid decisions. We describe the acquisition process
from our perspective and discuss our objectives and concerns at each stage. In addition, the perspective of
the subcontractor is presented and actual cases are discussed to provide real examples. We encourage and
usually obtain interaction with the audience. Depending upon the audience and the time available, various
topical issues may be addressed. Finally, lessons-learned by us are presented in the form of recommendations
for consideration by acquisition teams, and the input of the participants is taken by the industry presenters
for a better understanding of the Government’s issues.

S6.2.1 Lessons-Learned

Following is a list of lessons-learned by the authors. They are a result of more than one hundred presentations,
made together and separately, on the subject of IT acquisitions over the past five years. An appropriate
disclaimer regarding the selection criteria, completeness, and presentation is hereby made: these lessons
are presented in a format that could be presented as recommendations to a Government team delegated the
responsibility of acquiring a large IT system. Some observations are controversial. All pass the authors’
tests of being legal, achievable (albeit difficult) and mutually beneficial to Government and industry. No
attempt is made to prioritize them.

S-45

Appendix S: Software Source Selection GSAM Version 3.0

S6.2.1.1 Obtain Top Management Support Before Proceeding

IT system acquisitions are difficult endeavors, at best, and impossible at worst. The process must conform
to a host of laws, regulations, and policies that govern procurements in general, and then conform as well to
another set devised exclusively for IT procurements. Occasionally, pressures from within the agency, from
others in Government, or from industry can present obstacles that the acquisition team cannot overcome.
Experience has shown that on almost all large acquisitions, there are times when success requires a tough
decision by a senior executive.

The larger the procurement, the more players involved, and the longer the duration, the greater the potential
for problems requiring executive action. When programs within agencies compete for funding and other
resources, or when challenges to scope or other requirements arise, executive involvement is sometimes
necessary. Furthermore, in a large, complex procurement, there simply are times when the authority to
direct, countermand, or waive certain actions is essential to success.

Executive support should be obtained upfront. Obtaining executive participation and “ownership” should
be an integral part of the acquisition strategy. The acquisition team should find an executive sponsor (or
sponsors) and periodically review their acquisition strategy, milestones and risks. Care should be taken to
highlight the major threats to success. The range of responses that might be required should be discussed
to ensure that executive support accepts the exposure. Properly done, senior management is informed and
ready to act when required. Finally, the Trail Boss program can help. Obtaining a “Trail Boss” designation
from GSA requires a higher level of agency executive involvement than might otherwise be customary.

S6.2.1.2 Consider a Congressional Support Strategy

Good programs can die without Congressional support. The authors have seen this occur many times in the
past with reduced Federal budgets and close scrutiny of all programs. It is important to maintain high
visibility of programs to ensure continued life. This support must be consistent and must last throughout
the acquisition and program phases. It is important, therefore, that a good Congressional support strategy
be developed and maintained. This may take the form of frequent briefings of schedule, funding issues,
program threats, technology requirements, and mission objectives to Congressional staff. Reviews of the
potential savings and advantages of the program can be given to highlight the program’s importance.
Executive level support from Agency management is vital in sustaining Congressional support. In fact, it’s
their job.

S6.2.1.3 Involve Your End Users Meaningfully and Continually

The need to ensure end user involvement is so obvious that it might not warrant discussion except that,
obvious or not, some acquisition teams fail to obtain it. Program success demands that the system be
accepted by end-users and that, by their use, the system performance objectives are achieved.

It is not particularly difficult, in principal, to obtain end-user involvement. The most difficult steps are the
first ones: identification of a representative sample of the end-user community and obtaining their
commitment to support the acquisition. If these two steps are done properly, the probability of success is
enhanced considerably. If not, the risk that the system may not perform as expected, or not be accepted by
the end-users may be high. Roles for the end-user representatives include the following:

S-46

Appendix S: Software Source Selection GSAM Version 3.0

• Help define the system requirements,
• Assist in prioritizing requirements,
• Assist in defining “mandatory” and “desired” features,
• Ensure that the requirements are captured in the text of the RFP,
• Help mediate conflicting requirements within the user community,
• Continually validate their decisions within the user community,
• Help determine whether to incorporate changes in mission, policy or technology into the process,
• Participate in risk assessment and mitigation decisions,
• Concur with any changes made either to requirements or policy during the process,
• Provide the end-user perspective during interfaces with the bidders, especially during any demonstrations,

and
• Help prepare the user community for the changes that the system will bring.

To perform these functions, end-user representatives should serve on the acquisition team and play a
meaningful role in the evaluation and selection process. The challenge for the acquisition team is to ensure
that the end-user representatives remain a representative sample of the end-user community throughout the
process.

S6.2.1.4 Market to Your Vendors Pre-RFP

Vendors need to be brought into the acquisition process as soon as a need is established and while the
requirements are being developed. By getting industry involved prior to issuance of the RFP, they can offer
technological and business advice without jeopardizing the procurement, since this is prior to any formal
documents being formulated and communications being restricted. In addition, new technologies and
capabilities not previously known or understood can be considered as possible alternatives.

While the contracting community is competing against each other for your business, Government, in turn,
is “competing” for the attention of qualified bidders. Since contractors’ resources and bid and proposal
funds are limited, enticing qualified bidders to consider the program is critical to the successful
accomplishment of the acquisition. This time period provides a unique opportunity for both industry and
Government to look at possible alternatives and solutions in an open, noncontentious environment.

S6.2.1.5 Develop a Plan to Use the RFC or DRFP Effectively

The objective of the Request for Comments (RFC) or Draft RFP (DRFP) process is to gather information to
prepare an RFP which best reflects the real requirements and fulfills the needs of the end-user, and to
prepare the vendor community for the coming competition. Therefore, development of a plan to utilize
these vehicles most effectively is essential. Some of the specific goals of the plan should be the following:

• Improve the overall requirements definition,
• Include all anticipated sections of the RFP for a more complete review,
• Minimize questions and surprises after the RFP is issued,
• Minimize ambiguities in the RFP,
• Minimize delays and changes,
• Get recommendations on improving the RFP, and
• Attract qualified bidders.

S-47

Appendix S: Software Source Selection GSAM Version 3.0

Changes and improvements in the solicitation made at this early stage of the procurement process contribute
to a much smoother process later on. Just as in a software development program, time spent on the front
end of the effort to completely define and document the requirements and scope of the program results in
lower overall costs and time expenditures. Conversely, the cost and time required to revise the designs and
requirements after the RFP release are very high, both to Government and Industry. Changes later in the
program may require bidders to adjust teaming arrangements, re-engineer solution designs, and even reverse
previously positive bid decisions.

S6.2.1.6 Use Experienced Qualifiers

It is to the Government’s advantage to get only qualified bidders. This is especially important on large
contracts with high mission risk. Therefore, developing and requiring certain levels of experience or proven
capabilities is a valid means for qualifying prospective contractors. This may take several forms:

• Past team experience on contracts or programs of similar scope and magnitude,
• Proven team capability in a particular technology,
• Proven software development capability,
• Documented software engineering maturity,
• Corporate size to absorb and compensate for risk inherent in the program,
• Adequate numbers of qualified staff with pertinent experience on the team,
• Proven program management experience,
• Capability to provide global support, and
• Capability to run a Live Test and Demonstration.

While these may be seen by some as limiting to competition, they are important criteria in the selection of
any qualified team to ensure success. They do not prohibit smaller contractors from bidding, since they
have the opportunity to become players on larger teams. In fact, this teaming may provide them access into
some new areas. Furthermore, by clearly stating the qualifications expected of bidders, vendors can better
gauge the appropriateness of preparing a bid and subsequent protests may be avoided. However, the
Government should also be sure that any “qualifying” requirements are actually needed and provide a real
advantage to the program. We have found that non-value-added requirements may eventually get removed
from the final list of mandatory requirements and that they may have only added cost without benefit.

S6.2.1.7 Use Functional (Performance) Specifications

Historically, many sets of procurement specifications have been “prescriptive,” meaning that RFPs ask for
specific products or products with specific hardware capabilities: typically a commodity type of product,
for example a video display device with a 1024 X 768 pixel resolution. Another form of the prescriptive
requirement is to prescribe exactly how you want a service performed, rather than the end result of the
service. While this may be the preferred method to acquire commodity products, it is very constraining
when the procurement is for large or complex systems. Also, when the procurement duration is lengthy,
prescribed products may become outmoded or may be overtaken technically by superior offerings. In these
cases, vendors may be unnecessarily limited in selecting products or attributes for their solutions.

The Government is usually best served by providing “functional” specifications which describe the
requirement or need, and ask for a solution from industry, without specifying the actual methods, products,
or technologies to be utilized. With this freedom, industry has the opportunity to offer new ideas and is not

S-48

Appendix S: Software Source Selection GSAM Version 3.0

constrained by a particular technology. We realize that asking for functional requirements may make the
evaluation more difficult, but the reward of a better, more current, or more effective solution may justify the
increased effort.

S6.2.1.8 Challenge Complexity and Non-Value-Added Reviews and Approvals

Most enterprises knowingly and unknowingly support non-valued-added activities. In industry today,
considerable effort is being expended in eliminating work that does not add value as “perceived by the
customer.” Internal administrative work is important when it enhances the quality of the product. It keeps
decision makers and supporters informed, but most such work does not meet the value-added test. Worse,
it adds expense and diverts talent from other tasks, and worst of all, it increases the duration of the process.

Reducing non-value-added work requires that the acquisition team challenge the culture of their organization.
The challenges are to written and unwritten policy. Experience has shown that the challenges can usually
best be made at the start of the acquisition process, when the team is laying out its schedule, milestones, and
developing its rules.

An approach that has met with some success is to define the acquisition approach such that reviews and
approvals are combined, conducted in process, or eliminated altogether. The ability to do this is considerably
enhanced if senior executive support has been obtained, and is facilitated if the executive has ‘bough- in” to
the concept.

S6.2.1.9 Distribute Risk Equitably

Contractors devote substantial time to risk analysis regardless of whether the RFP explicitly calls for such
analyses. The reason is that all risk that must be borne by the contractor must be identified and planned for
to ensure that an realistic business case is developed. Contractors must either price or mitigate all elements
of risk. The RFP is the basis for the risk analysis since it furnishes the bidder with the Government’s
apportionment of risk. During the acquisition phase, risk analysis and pricing by bidders is a business
decision to which the Government is a party.

Every risk that the Government lays off on the contractor (that the contractor accepts) will increase the
price from a responsible bidder. Hence, the Government itself should analyze each element of risk to
determine, first, whether it can be managed by the Government; and then, whether it is more cost effective
for the Government to assume the risk or pay for the contractor to do so. Even in instances where the
Government cannot manage an element of risk, it may be less costly for the Government to assume it
anyway if uncertainty will cause the bidder to assign a high cost to the risk element. Indeed, in the extreme
case where neither the Government nor the contractor can manage an element of risk, the Government
should always assume it; otherwise, the Government pays a premium for a service that cannot be performed
and risks contract disputes. A lesson learned and relearned is that attempts by buyers in all areas of society
to lay off unreasonable risk on their contractors backfire. Invariably, when difficulties occur, cooperation
erodes, the contractor looks for a means of escape, the mission suffers and both sides lose.

Time spent by the Government, especially during the draft RFP stage, in understanding the potential bidders’
perspectives concerning risk may be the most useful effort of all. Only by talking with potential bidders
can the Government expect to understand how the bidders assess the risk. And, it is the bidder’s assessment
that matters at this point.

S-49

Appendix S: Software Source Selection GSAM Version 3.0

S6.2.1.10 Really Work Hard on Internal and External RFP Integration

Internal integration means assembling an RFP in which the Sections (especially Sections C, H, L, M and
the Technical Specifications) are consistent with each other. This is difficult to do because of policies, and
sometimes law and regulation, that mandate inclusion of contract clauses unrelated to user and system
performance requirements. It is also difficult when agencies prepare prescriptive specifications (i.e.
specifications that prescribe elements or products, rather than performance requirements).

It is difficult to overemphasize the importance of this point. Ambiguity is the acquisition team’s enemy.
Ambiguity allows different interpretations by bidders, and bidders are generally entitled to the minimum
interpretation. Ambiguity can make performance evaluations and tests difficult or impossible. It can
precipitate delay when amendments are required for correction.

Because the various RFP sections are typically assembled by different teams, integration among the sections
is a separate activity that must be planned before the sections are prepared, and completed afterwards. The
planning starts with the recognition of the need and the complexity of the task. Care must be given to the
preparation of guidelines and standards for RFP section writers. Interim reviews are important. Independent
reviews can also help. Electronic tools for RFP decomposition or “shred” (employed routinely) by bidders
can assist in expediting the task of comparing families of requirements. All of the above takes time and
time should be allowed in the schedule.

External integration means assembling an RFP that is consistent with the overall acquisition strategy, the
mission of the system, the mission of the agency and realities in the agency’s internal and external
environments. It is also concerned with establishing the kind of relationship desired between the agency
and their contractor. The apportionment of risk between agency and contractor is critical to the contractor’s
behavior. Hence the contract type, evaluation criteria and methodology, mechanisms for change and
technology refreshment, performance measures, and penalties, if any, must be dealt with consistently.

S6.2.1.11 Publish Detailed Evaluation Criteria and Methodology

There are two powerful reasons for publishing full and complete evaluation criteria and for doing so as
early as possible (draft RFP stage): first, to enable bidders to know what is really important to the buyer;
and second, to enable the agency to avoid protests.

Why would an agency not want its bidders to know how it will decide from among its offers? Detailed
evaluation criteria allow bidders to design their solutions in accordance with what really matters. Denying
bidders the detailed information forces them to guess (and they will guess!). Accordingly, the process may
favor bidders who guess more accurately, although they may have no more real knowledge of the importance
of the criteria. Likewise, clearly stating the relative importance of detailed evaluation criteria will also
ensure that the most important requirements are adequately addressed in the solutions offered.

Perhaps, the most effective approach to avoiding protests is to furnish detailed evaluation criteria, follow
the criteria meticulously, and debrief bidders in detail in accordance with the published and practiced
criteria. When bidders understand why they lost (and hence, why the successful bidder won), and believe
that the decision was made fairly and in accordance with the evaluation criteria, the principal reasons for
protest are neutralized. Published, detailed evaluation criteria allow the agency to accomplish this. However,
it is necessary that the agency plan for this process from the start. In other words, the agency must recognize
that the evaluation process has two products: the selection and the debriefings of the unsuccessful bidders.

S-50

Appendix S: Software Source Selection GSAM Version 3.0

S6.2.1.12 Ensure that the Evaluation Methodology and Criteria both
ALLOW and REQUIRE You to Select the Best Vendor

Obviously, the evaluation criteria, along with the technical specifications in the RFP, drive the solutions
proposed. Therefore, it is incumbent upon the Government to evaluate the proposal in accordance with the
methodologies and criteria stated in the RFP. Any deviation from these procedures, without good explanation
and reason, will invite questions and invariably, protests. This may suggest that adequate thought was not
put into the evaluation process, or worse yet, favoritism is being shown to another bidder.

It is just as important that the evaluation methodologies and criteria enable the selection of the proposal and
bidder that best meets the Government’s requirements for the benefit of the program. Any criteria that
force a selection other than this need to be removed. Along this line, it is important that only the necessary
requirements are specifically stated in the RFP. Extraneous requirements or standards that provide no real
added-value to the procurement or add unnecessary complexity should be avoided.

Detailed evaluation criteria are also a valuable defensive tool for the acquisition team in maintaining stability
in the event circumstances change. It is not unusual in a lengthy acquisition, for missions, technologies, or
people to change such that pressure mounts to change the acquisition strategy without changing the RFP. In
such instances, the evaluation criteria can become a welcome constraint for the evaluation team, requiring
them to stay the course.

S6.2.1.13 Tell your Bidders Everything

It is axiomatic that the more that bidders know about a customer’s requirements, selection criteria and the
environment in which the system will operate, the more closely they can design a system to met those
requirements. Agencies penalize themselves when they withhold information that might materially affect
design decisions made by a bidder. Bidders need to know not only the agency’s best estimates of performance
requirements, but also how those requirements relate to each order to be able to conduct meaningful trade
studies during the design process. Trade studies involve not only technical designs, but management system
operations and cost as well.

If information is not available, bidders will develop their own estimates. This can significantly increase the
risk of wasted effort on the part of both bidders and the agency and increase the probability for protest.
Most information that is denied bidders results from internal agency policy rather than law or regulation.
For example, there is legal prohibition against providing bidders with cost data so that they can “design-to-
cost,” a common commercial practice. When this is done, most bidders will try to maximize their offering
within the anticipated available funding, or bid somewhat less than the available funds to provide an attractive
price. The advantages of “designing-to-cost” are many; solutions that meet yearly budget allowances with
implementation plans in step with Government needs; more bidders within the “competitive range” from a
cost standpoint; and, in many instances, innovative proposals offered which meet the requirements at
substantially reduced costs.

Many mechanisms are available for information exchange, even after RFP release. Agencies need only to
be careful that no bidder receives information not made available to all. In fact, the more information that
is released to the entire bidding community, the better the quality and quantity of solutions that can be
offered and the closer they should respond to the real needs. In addition, as more information is made
available, there is less opportunity for unscrupulous individuals to attempt to provide or gain undeserved
advantage. Prior to RFP release, and especially in the early stages of planning for an acquisition, agency
and prospective bidders benefit from open exchange of information.

S-51

Appendix S: Software Source Selection GSAM Version 3.0

S6.2.1.14 Don’t Drop the “Curtain” Until RFP Release

IT system acquisition is a lengthy and complicated process; in many instances, unnecessarily so. However,
until fundamental changes are made, bidders and agencies will have to live with it. The key is not to make
the system any more complicated or difficult than it already is.

There may or may not be a single root cause for the difficulty and complexity of IT system acquisitions, but
one thing is clear: the very long duration of the process exacerbates all potential problems. It is the long
duration that allows product cycles to render agency requirements definition and bidder solutions obsolete.
The long duration provides time for agency needs, missions, and environments to change, thereby invalidating
requirements. Over time, people and policy change. Yet communication is cut off, sometimes for more
than a year before the agency selection process is completed.

Agencies that make their people available for information exchange with prospective bidders as long as
legally allowed will benefit most. Unfortunately, some agencies cut off communication well in advance of
RFP release; some before release of their draft RFP. This penalizes both bidders and the agency. And, it is
unnecessary.

S6.2.1.15 Communicate with Your Vendors Frequently After the “Curtain”
Drops

After the RFP is released, and sometimes even after the RFC is issued, the Government severely restricts
communications with the vendors, and then usually only in written form and through the contracting officer.
This is understood, although not appreciated, by the bidders as a way to prevent inappropriate discussions
and prevent advantages to some bidders. This pattern of communication is reflected in Figure S-1 and
compared with the communications in the commercial environment.

Figure S-1. Level of Communications — Federal versus Commercial

S-52

Appendix S: Software Source Selection GSAM Version 3.0

Notice how, in the commercial arena, communication actually increases as the program progresses. However,
it is also important to keep communications open in the Federal procurement process with the entire bidding
community after the “curtain” drops. It is essential that bidders feel that the program is moving, is under
control, and is being pursued with as much enthusiasm as possible by both the program shop and the
contracting office. One of the best indicators of progress is frequent communications about the status of the
program, questions and answers, and accurate milestones and event dates.

As the bidding community reviews the programs they are bidding, those with poor communications may be
dropped, simply because the contractors feel they are not as critical to the Government as they are to the
bidders. Internal struggles within bidders’ organizations for continuing funding to bid programs are common.
As programs drag on for months and even years, good communications of accurate information about
status is critical to preserving both the prime and subcontractor teams.

Finding ways of maintaining communications serves the Government in other ways. For example, in any
given acquisition there may be bidders who are incumbents or are otherwise serving the customer through
other contract vehicles. If other bidders do not have a presence in the customer’s business, they may be
(and certainly believe themselves to be) at a continuing, sometimes growing, disadvantage regarding access
to changes in the customer’s missions, problems, and preferences.

S6.2.1.16 Use LTDs Only to Reduce Unacceptable Risks and Uncertainty

Live Test Demonstrations (LTDs), or Operational Capability Demonstrations (OCDS) are expensive, time
consuming, and difficult for both the Government and the bidders. They are also essential in some
procurements. At times, they are necessary and at other times, they are superfluous. When large, complex
systems integration or development programs are to be undertaken, it may be necessary to require an LTD.
In these cases, it is important to be certain that the bidders’ solutions, their methodologies, and their
capabilities are closely examined in a real life scenario simulating the solution offered.

The capacity of a solution to perform at a given level may need to be tested, especially if the solution is
offering new state-of-the-art products or are proposing products to be used for the first time. It may also be
necessary to have the bidder demonstrate the corporate resources available to respond to unexpected events
and schedule and quantity changes. Therefore, an LTD is a way of legitimately evaluating and screening
bidders’ capabilities to perform.

Some LTD’s may not be necessary or offer increased evaluation knowledge. This scenario is most often the
case when a procurement asks for an LTD for simple commercial-off-the-shelf (COTS) products. In this
case, the technical specifications may be so well advertised and known to the IT industry for these products
that the LTD delivers no added-value to the procurement or evaluation. It will, however, add substantial
costs to both Government and industry. In other, simpler words, require an LTD only when one is necessary
and can substantially reduce program risk.

S6.2.1.17 Be Certain that COTS and NDI Products Exist When You Call for
Them

The requirement for COTS and NDI products is a very cost-effective movement within Federal Government
procurements. Sometimes, however, the Government asks for products as COTS or NDI items that are not
currently available to the general market in this manner. This may be because of misunderstanding on the
part of the Government, overstatement on the part of vendors, the failure of vendors to offer these desired
products by the time the RFP is issued, or simply because they are not available.

S-53

Appendix S: Software Source Selection GSAM Version 3.0

As vendors demonstrate products or discuss capabilities and features, COTS may be an assumed status.
Many times these products are then specified in the RFP; and it may be impossible for the bidders to
provide these as COTS or NDI, although they are in the development labs or offered to specific markets. In
these cases, the bidders spend a considerable amount of time trying to get the products offered or responding
to the Government that the products can not be supplied. Likewise, the time and expense to the Government
in addressing or defending their understanding of the availability of these COTS or NDI products to the
bidders is considerable.

S6.2.1.18 Integrate the Debriefing Requirements Early into the Acquisition
Process

The acquisition process should produce two products: a selection and debriefing for the unsuccessful
bidders. The debriefing activity should have two objectives: to tell the unsuccessful bidders why they lost,
and to avoid a protest. To maximize the effectiveness of the debriefing activity, the acquisition team should
plan for it as an integral part of the acquisition process, beginning early.

Too often, an acquisition team prepares for the debriefing late in the evaluation process, when it is completed.
Preparation for a debriefing should begin in parallel with preparation for an award; that is, both should be
considered, and given equal weight, when the evaluation criteria are prepared for RFP Section M. Work by
the evaluation team should be captured as the evaluation process proceeds, for both the selection and the
debriefings.

The same level of diligence and the same considerations should go into selecting a bid as in debriefing one.
The criteria apply equally, the evaluation methodology is conducted equally, and the results are weighed
equally. The evaluation criteria are used both to make a selection and as the basis for the debriefing. (In
fact, if criteria other than those in Section M are used for either, a protest is invited.) The first and most
effective line of defense against a protest is for the agency to tell the unsuccessful bidders why they lost and
why the successful bidder won, in detail, against the published evaluation criteria. That objective is facilitated
by the approach outlined above.

S6.2.1.19 Cut to a Small Competitive Range When Possible

Preparing a large IT system proposal is expensive and requires often scarce resources. Most bidders begin
the process believing that their solutions will be competitive and expecting to be selected. Disappointment
at not being selected is natural. However, all bidders would prefer to be eliminated from the competition
immediately following the determination by the evaluation team that their proposal will not be selected.
Better to cut your losses and redirect your efforts than to waste another unit of a scarce resource.

The agency also benefits significantly from a cut in any procurement involving four or more bidders because
they, too, can save scarce resources, concentrate on the most qualified bidders, and shorten the evaluation
period. Unfortunately this process is not often chosen. Either the agency fears an immediate protest and
attendant disruption, or it is not prepared to make and defend a cut.

The best approach is to plan from the start to be able to cut to a competitive range in the event two conditions
are met: a sufficient number of bids are received, and rankings among the bids are sufficiently different.
The acquisition strategy should incorporate the plan. Bidders should be informed of the intent. Evaluation
criteria should be sufficiently detailed to support comprehensive debriefings. Senior management should
be informed and ready to support.

S-54

Appendix S: Software Source Selection GSAM Version 3.0

S6.2.1.20 Have Oral Presentations and Discussions

There are two major benefits in holding oral presentations and discussions. These are:

• Potential to better understand the offered proposals, and
• Opportunity to meet face-to-face.

It is often difficult to understand the full capability or advantages of a proposal by only reading the submitted
document. With a full oral briefing of the document and the solution, you have the opportunity to have
more in-depth discussions of the details of a solution and raise questions about specific areas, without
waiting for time-consuming written questions and answers. These presentations and discussions can be
followed with written exchanges to document the sessions.

Orals and discussions give you the opportunity to see your potential providers face-to-face before you
award a contract to them. You have the chance to see them in action, how well they interface with you, how
they respond to issues, how they may address problems after award, and how comfortable you are going to
feel with them. Granted, much of this is subjective, but since you will work with the winner for several
years, the process will be of value. It will give you the opportunity to meet the key players and some of the
executives responsible for the program from the bidders’ corporations. Further, if you combine the
presentations with site visits, you can view the corporate capabilities and the depth of personnel available
to be called upon to assist in your mission.

Oral presentations give the bidders an occasion to discuss their understanding of the important issues and
the mission of the program office. It may also be an opportunity for you to meet the entire bidding team, the
prime, and the major subcontractors and teaming partners, to investigate the strength of the entire team, and
to view their commitment to the program.

S6.2.1.21 Schedule Submission of the Cost Volume at Least 2 Weeks After the
Other Volumes — More if No BAFO

Bidders prepare their proposal sections and volumes at different paces. Commonly, they conduct trade
studies, make architecture decisions, and complete designs prior to proceeding with other steps. Sometimes
multiple iterations among options are required. Cost estimating necessarily follows solution definition.
Proposal teams lay out detailed schedules to manage the completion of design work, pricing and estimating,
and incorporation of the work into text and graphics.

Necessarily, completion of the cost estimates, supporting rationale, and the incorporation of these data into
the Cost Volume, must await the completion of all other portions of the work. Hence, bidders set interim
(internal) completion dates for non-cost elements to allow sufficient time to complete the Cost Volume.
Pressures to perfect the solution, sometimes incorporating late-arriving information (sometimes from the
agency) makes it difficult for the bidder to hold to their dates for completion of the non-cost volumes
sufficiently in advance of proposal due date to allow time for orderly assembly of the Cost Volume. Even
though this may be “the bidder’s problem,” if the agency can significantly mitigate the problem (and it can),
all parties benefit.

The agency that recognizes the reality of this problem serves itself by scheduling the submission of the Cost
Volume at least two weeks after the other volumes. Invariably, the product will be significantly better. It

S-55

Appendix S: Software Source Selection GSAM Version 3.0

will contain fewer errors and be easier to review. It may represent a lower price if the additional time
allows bidders more opportunity to negotiate prices with subcontractors based on the completed solution.

In the special case where an agency considers awarding on the basis of initial submittals, this approach is
especially important. It may even be the key to making the no-BAFO strategy work. The reason is that to
award without BAFO, the agency must forego the opportunity for discussions and revisions to proposals.
Hence, the more complete and accurate the initial (only) proposal, the better for the agency. Allowing even
greater time in this case warrants consideration. The best approach is to ask the bidders how much time
they feel is required, during the DRFP period, decide, and stick with that decision.

S6.2.1.22 Find a Way to Waive Cost or Pricing Data Requirements

What are the real requirements for cost or pricing data? The Federal Acquisition Streamlining Act (FASA)
amended the Truth in Negotiations Act (TRNA) to reduce the requirements for cost or pricing data. If a
specific exemption applies, the contracting officer no longer has the discretion whether to require the data.
The threshold for submission in civilian agencies has been raised to $500,000 and DoD’s temporary threshold
of $500,000 has been made permanent. Data requirements have also been relaxed under the rules for
acquisitions of commercial items.

S6.2.1.23 Critically Examine the Need for 3rd Level and Lower Detail in the
Cost Volume (the Lowest Value-Added Exercise of All)

There is typically more cost information required in a proposal submission than can be read or verified in
any reasonable amount of time. Bidders are asked to supply this information in both paper and electronic
form. Because of the detail desired, and the concern to know all the possible information about the costs,
there are instances where following the requirements stated in the RFP would result in 30,000-plus pages of
cost information. This volume of data could never be utilized. In addition to increasing the cost of the
proposal efforts and the Government’s cost to attempt to verify the data, the process adds measurably to the
procurement duration. Since we are developing information that will not be utilized, we are paying for a
non-value-added activity.

Finally, with greater detail, more errors are inevitable because of the increased complexity of cost element
reconciliation and the “time crunch” that occurs as the Cost Volume is assembled during the final days of
the process.

S6.2.1.24 Allow Enough Time for the Intense Activities

After “Lack of Communications,” the second most common complaint heard from bidders concerns time
extensions to proposal due dates. Bidders, in general, prefer for the agency to allow enough time for
proposal preparation, and then to stick to their schedule. The practice of allocating insufficient time for
proposal preparation, then granting an extension is highly disruptive to responsible bidders. Too many
acquisition teams employ a strategy of allowing insufficient time knowing that an extension will be
“necessary” and intend to grant one or more. Of course, bidders bear a large share of the blame because it
is frequently they who demand the extension. However, extensions punish the bidders who take the schedule
seriously and reward those who do not, and it is the agency who grants or refuses the request. The preferred
scenario would be to allow sufficient time for the preparation, and provide for no extensions, except when
a major, program-threatening flaw is detected. Just say “No!”

S-56

Appendix S: Software Source Selection GSAM Version 3.0

The problem is that a complex proposal can require four or more months for assembly, and agencies have
difficulties accepting such a lengthy period. The best approach is to ask bidders how much time they will
require as part of the DRFP process and allow a little more. Adherence to the schedule also requires
preparation and discipline on the part of the agency. The agency must avoid providing grounds for an
extension by avoiding RFP amendments. Easily said, of course, but it is frequently possible to avoid
material amendments if the DRFP process is conducted effectively. Effective DRFP processes can produce
well integrated RFP’s and no surprises for the bidder community.

Discussions with agency acquisition people consistently have shown a general lack of appreciation for the
complexity and amount of time required for BAFO preparation. They frequently do not understand why
four to six weeks or more are required. “You knew that Call For BAFO was imminent; why weren’t you
prepared?” Two conditions cause this situation. The first is that BAFO information is the most sensitive
data that a bidder will ever collect. The second is that until Call For BAFO actually is given, the date may
slide. Furthermore, even if the bidders are prepared, the process still requires considerable time.

The bidder’s BAFO assembly process involves the incorporation of any changes required or allowed into
the proposal and the repricing of the proposal. Repricing requires revised estimates by the prime bidder
and solicitation of estimates and quotes from suppliers, frequently multi-tier. Estimates and quotes are
revisited to negotiate the most effective distribution of risk and to obtain the most competitive overall life
cycle price. Multitier corporate approvals may be required and several iterations may be necessary to
obtain the final price.

BAFO prices represent the best proposal that the bidder can assemble. Because of the lengthy acquisition
cycle, original proposal details can change materially. In a highly competitive environment, details of
competitors’ solutions cannot be protected for extended periods because of the mobility of suppliers and
the number of different relationships formed and dissolved as bidders form other teams on other competitions,
and people change assignments. Accordingly, bidders avoid collecting final pricing data prematurely.

S6.2.1.25 Never, Never, Never Slide the Schedule

When this statement is made in discussions with acquisition teams, the reaction is usually strong and
emotional. However, when case studies of procurements (some very complex), that were completed on
reasonable schedules without slides are discussed, certain patterns emerge. No one can guarantee a process
for adhering to an IT acquisition schedule, however one deceptively simple observation can be made: “The
way to stay on schedule is to never let it slide.”

The recipe for success contains ingredients of varying difficulty to obtain. First, the schedule must be
reasonable. The portions requiring bidder participation (especially proposal and BAFO preparation) should
be established in consultation with prospective bidders. The DRFP period is optimal for establishing these
dates. Analogously, time periods for internal acquisition team work elements must be negotiated carefully.
The schedule should be published and emphasized frequently and emphatically. Top management support
should be pre-arranged and should be prepared to overrule or waive challenges and back the acquisition
team. Cutoff dates for internal and bidder interfaces should be set and enforced. Most importantly, no
substantive amendments should be issued; they invite schedule slides, and for legitimate reasons.

How can an acquisition team conduct a procurement without issuing substantive amendments? By developing
an RFP that is internally and externally well integrated and that, by effective use of the DRFP, contains no
surprises for the bidder community. Hence, one that requires no substantive amendments. Finally, when an

S-57

Appendix S: Software Source Selection GSAM Version 3.0

acquisition team overcomes serious threats to its schedule a few times, everyone else (including the bidders)
begins to take the schedule seriously. No one wants to be the cause of compromising it (and bidders can’t
afford to take a chance).

S6.2.1.26 Carefully Analyze, Map, and Monitor All of the Stakeholders

The Federal IT acquisition process contrasts sharply with commercial processes in several ways. The most
dramatic is the lengthy duration. Next, is probably the large number of players on the Government side.
For various reasons, some having to do with protecting the public trust, authority is dispersed and shared
among a number of players. Identifying the distribution of authority and understanding people’s objectives
and needs is critical to success in any endeavor, and certainly so in an IT acquisition.

All organizations have both formal and informal structures. An IT acquisition has, at a minimum, its
leader, technical support, contract management, the end-user community, and senior management. In addition,
other agencies and elements of the Executive Branch, Congress, associations, and individuals may be directly
or indirectly affected by the procurement.

Some of these people have formal roles and are easily identified, others are not. Various forces build and
subside during the annual political cycles as budgets and missions are scrutinized. Temporary coalitions
arise and fade. People, missions, and external pressures change during a lengthy acquisition. Any large
successful endeavor requires strategies to deal with all of these factors. Strategies must be sufficiently
robust and agile to recognize and address threats and react appropriately. Deliberate mapping and analysis
of the entire community of stakeholders are essential to success.

S6.2.1.27 Challenge the Unproductive Things that Your Culture Requires

Most are NOT requirements of the FAR (“Most of the provisions of Federal Acquisition Streamlining Act
(FASA) were not prohibited by the FAR”)

Notwithstanding changes to laws and regulations, both Government and industry recognize that cultural
changes must take place in parallel. Many people advocate that the Government lead this change. It must
accompany the regulatory changes for procurement reform to succeed. OFPP issued new guidelines to
encourage Government contracting officers to use personal choice, business judgment, and plain common
sense. In one specific instance, OFPP reversed a long-standing belief in the acquisition community that
anything not specifically addressed in the Federal Acquisition Regulation (FAR) is prohibited. The new
focus is on what is in the best interests of the Government. Items to watch for (that may be considered
nonproductive) include requiring standards that are not applicable, requiring documentation that will not
be used or will be superfluous, and requiring too finely-detailed cost information.

S6.2.1.28 Objectively Evaluate and Share Acquisition and Program Successes

IT system acquisition is so complex that when the successful bidder is finally awarded the contract and
given their notice to proceed, a great feeling of accomplishment pervades. Regrettably, a successful
acquisition does not assure that a successful system will be fielded. Similarly, a troubled procurement does
not doom the system being acquired to failure.

S-58

Appendix S: Software Source Selection GSAM Version 3.0

Curiously, in the Federal Government community, and in dramatic contrast to private industry, far more
attention and scrutiny are typically given to the conduct of the acquisition than to the subsequent performance
of the system itself. It is relatively rare for the successes, failures, and lessons-learned after award to be
addressed, unless the system provider encounters major difficulties in fielding the system. One reason for
this is that it may be several years after award before the results of new systems and processes can be
evaluated. Another, of course, is that favorable news does not “capture the headlines.” Indeed, several
Government and Industry attempts to analyze whether acquisitions substantially met agency missions
requirements in recent years have met with mixed success.

This culture is harmful to all. If it could be changed such that successful acquisitions and successful
systems were dissected, analyzed, and reported, valuable information should result. For maximum
effectiveness and credibility, such analyses probably must be conducted by Government personnel (as
opposed to industry) who were not directly involved in the acquisition or system development processes.
One approach might be to require agencies to prepare a formal report of the acquisition as a final step in the
process and establish a “clearing house” or library of lessons-learned.

S6.3 Conclusion

As indicated earlier, the above “lessons-learned” were derived from the preparation and conduct of interactive
presentations made by the authors and other to more than 1,000 government middle and upper managers
during the past 5 years. Accordingly they are the “intellectual property” of us all. Many of these practices
are now routinely followed by some agencies. Others are under consideration or under trial. Given the
great diversity among agencies, there are some government managers who challenge whether some of these
practices are allowable. However, we firmly believe that none of the above require changes to anything
other than internal agency policy.

We also firmly believe that all of the above practices pass the test of being beneficial to both government
and industry. Each item is worthy of consideration by itself, and taken as a whole they aggregate to a partial
set of best practices given the current state of the art of IT acquisition management. As we continue to
interact, there will be many more good ideas debated among us. The authors hereby solicit any comments
in any form (criticism, corrections, additions and the like) from any interested person.

S-59

Appendix S: Software Source Selection GSAM Version 3.0

S7.0 Tab 7: Contracting for Success

Jerome S. Gabig, Jr.
Venable, Baetjer, Howard & Civiletti

S7.1 Abstract

Senator Cohen’s scathing report, “COMPUTER CHAOS: Billions Wasted Buying Federal Systems,” alludes
to “inevitable problems with software development” that cause cost overruns and schedule slippages. Cost
overruns and schedule slippages need not be “inevitable.” This presentation focuses on two critical success
factors that enable the government to greatly increase the probability of a successful software development
contract. The first critical success factor is equitably allocating the risks between the parties. The second
critical success factor is structuring the evaluation criteria to maximize the probability of selecting the best
qualified offeror.

S7.1.1 Overview

Where an agency must use a vendor to perform a software project, there are two critical success factors
regarding the contracting process that greatly increase the probability of a successful software development
effort. The first critical success factor is to structure the contract to allocate equitably the various risks
between the parties based on which party is best able to manage the risk. The second critical success factor
is to structure the evaluation criteria to maximize the probability of selecting the best qualified offeror.

S7.2 The Importance of “The Written Word”

A congenial relationship between the contractor and the government is almost indispensable to the successful
completion of a software development effort. One might think that a congenial relationship would diminish
the importance of the “written word.” Instead, by minimizing the probability of misunderstandings, a well-
written contract is a major contributor to a congenial relationship between the parties. As recognized by
the Software Technology Support Center, “once the initial contractor enthusiasm is over, the written
word...has the most influence on contractor actions.” Experience has shown that when “the written word”
is unambiguous as to the duties and responsibilities of the parties, the animosity that arises from quibbling
over performance obligations usually can be avoided.

S7.3 Structuring The Contract to Best Allocate
Risks

DoD has consistently recognized the need to structure contracts to allocate risks in an equitable and sensible
manner:

“The contacting approach selected for each acquisition phase must permit an equitable and
sensible allocation of risk between Government and industry.” [DoD Directive. 5000.1, Feb. 23,
1991, at C.3.]

S-60

Appendix S: Software Source Selection GSAM Version 3.0

Risks essentially fall within three categories: cost, schedule, and performance. Each of these three categories
of risk deserves a separate discussion.

S7.3.1 Cost Risks

The foremost way of allocating cost risks is through the selection of the type of contract. For instance, FAR
§ 16.103(b) states that a firm-fixed price contract “shall be used when the risk involved is minimal or can be
predicted with an acceptable degree of certainty.” Although rarely followed by contracting officers, the
FAR also admonishes that the contract type generally should be negotiated with the offerors:

“Selecting the contract type is generally a matter for negotiation and requires the exercise of
sound judgment. * * * The objective is to negotiate a contract type and price (or estimated cost
and fee) that will result in reasonable contractor risk.” [FAR §16.103(a)]

The reasonableness of the cost risk to the contractor is a factor of how accurately the contractor can estimate
the cost to perform the work. The highly recognized work of Barry Boehm, as shown in Figure S-2, reveals
the increasing degree of accuracy for estimating costs as a software development project proceeds through
the phases of the waterfall model. Superimposed under the x-axis of Figure S-2 is the linear progression of
contract types in the sequence in which they represent decreasing risk to the contractor. The superimposed
x-axis should not categorically dictate the contract type for any particular phase of a software development
project. Nevertheless, Figure S-2 correctly suggests that as the relative accuracy of the cost estimate increases,
it is appropriate to select a contract type that correspondingly places increased cost risks on the contractor.

Figure S-2

Relative Cost Range

Prog. Direction Sys. Rqmts. Spec. S/W Rqmts. Spec. Prel. Dsgn. Spec. Detail Dsgn. Spec. Accept. Software

1

2

3

4

cost
reimbursement

CPIF CPAF Fixed Price (Decreasing Risk)

Milestones

0

S-61

Appendix S: Software Source Selection GSAM Version 3.0

S7.3.2 The Premature Use Of A Fixed Price Contract Invites Failure

Within the government, there has been a long-standing aversion to cost-reimbursement contracts because
of a lingering suspicion that contractors are not motivated to work efficiency. Another suspicion has been
that a contractor is less likely to assign its best software engineers to a cost-reimbursement contract. As a
norm, fixed price contracts for complex software development contracts are not conducive to the iterative
nature of the process. The following excerpt expresses a user’s perception of the anticipated “give and
take” necessary to refine the software requirements specification:

“Actually, the software specification review is an iterative process with the iterations consisting
of the contractor submitting a draft of the spec, the technical monitor reviewing and recommend-
ing changes to the draft, the contractor making some changes and resubmitting a revised draft.
The iterations continue until the program manager feels that the software requirements specifi-
cation establishes the allocated baseline for its CSCI.”

Yet, on a fixed price contract, the contractor is apt to regard anything beyond the second iteration as
unwelcomed meddling by the user’s technical staff. Such behavior by the government’s technical
representatives may result in the contractor submitting claims. A fixed price contract that is inundated with
valid claims typically does a poor job of shifting cost risks to the contractor.

S7.3.2.1 The Premature Use Of Fixed Price Contracts Favors Vendors With
Immature Processes

A major difference between a vendor with mature processes and a vendor with immature processes is the
consistent capability to accurately estimate the costs to perform a software development project. Figure S-
3 graphically depicts the relative accuracy of a cost estimate by a SEI Level 1 vendor in contrast to a cost
estimate by a SCE Level 3 vendor.

Figure S-3

Level 1

Level 3

Costs

Costs

Target

Target

P
r
o
b
a
b
i
l
i
t
y

P
r
o
b
a
b
i
l
i
t
y

S-62

Appendix S: Software Source Selection GSAM Version 3.0

As shown in Figure S-3, the SEI Level 1 offeror is much more likely to be quantumly incorrect in its
estimate than the SEI Level 2 offeror. Moreover, the probability is that the SEI Level 1 offeror will
underestimate the cost of the project.

Routinely, where the SEI Level 1 vendor overestimates a project, its proposal is at a competitive disadvantage
and rarely receives the award. Conversely, where the SEI Level 1 vendor underestimates a project, its
proposal gains a competitive advantage and frequently wins the award. The net result is that, over a period
of time, the Level 1 vendor’s portfolio of contracts predominately consists of fixed price contracts that are
experiencing significant overruns. Anecdotal evidence strongly supports that once a Level 1 offeror begins
to lose money on a fixed price contract, the likelihood that the software will be completed to the satisfaction
of the agency is greatly diminished.

Unlike most SEI Level 1 vendors, SEI Level 3 vendors have invested heavily into process improvements.
Consequently, in terms of reduced overhead, the Level 1 offeror enjoys a conspicuous price advantage. In
light of this price advantage, vendors with Level 3 and higher rated processes are reluctant to spend their
bid and proposal money on fixed price acquisitions unless the evaluation criteria is structured to favorably
consider their superior capabilities and processes. Unwittingly, the government sometimes deters highly
competent vendors from submitting a proposal by improvidently selecting the contract type or not astutely
drafting the evaluation criteria. (See generally, the discussion below which essentially states that selecting
a highly competent vendor is one of the two critical success factors to a software development project
meeting the cost, schedule and performance requirements.) Plain and simple, discouraging the best qualified
offerors to submit proposals greatly decreases the probability of a successful software development effort.

S7.3.3 Performance Risks

Cost risks, performance risks, and schedule risks are generally interdependent notwithstanding that they
are usually addressed separately in risk mitigation plans. The interrelationship between cost and performance
risks is exemplified by the following observation of the Court of Claims:

“[C]ontractors are businessmen, and in the business of bidding on Government contracts they
are usually pressed for time and are consciously seeking to underbid a number of competitors.
Consequently, they estimate only on those costs which they feel the contract terms will permit the
Government to insist upon in the way of performance.”

This observation is particularly applicable to software development contracts. It is a common attribute of
the software development process that the preponderance of the requirement must be decomposed before a
comprehensive specification can be drafted. Without a thorough specification to uniformly bind all offerors
to a common baseline of performance, the competitive pressure to underbid competitors motivates offerors
to only bid what the government can “insist upon by way of performance.” Once the contract is awarded,
the tact the vendor took to win the contract usually necessitates that the contractor contest the allocation of
performance risks in each instance where the specification is not abundantly clear. Hence, it is not until late
in the software development cycle that the government can effectively shift the risk of nonperformance
onto the contractor.

An environment where a vendor frequently contests what the government perceives as a contractual obligation
is not only disruptive to the smooth progression of work, but also it can be inimical to the much needed
congenial relationship between the parties. The following is an extract of a decision of the Armed Services

S-63

Appendix S: Software Source Selection GSAM Version 3.0

Board of Contracts Appeal which exemplifies the debilitating bickering that can arise where a fixed price
contract is used without a detailed specification:

“The lesson-learned is abundantly clear but frequently overlooked. Before the government
selects a fixed price contract ostensibly to place the cost risks on a vendor, the government
should scrupulously examine the specification to assure that the performance risks are unequivo-
cally passed to the vendor.”

A fixed price contract only encourages a contractor to perform the bare minimum since anything more must
be paid from potential profits. The incentive to perform only the bare minimum is especially strong where
the contractor begins to lose money on the venture. Accordingly, a fixed-price contract does not necessarily
motivate the contractor to make the refinements that exceed the bare minimum. An example would be
where the contractor is obligated to prepare the software requirements specification. Any money saved
using a fixed-price contract might be a false savings since a substandard specification can be ruinously
expensive to correct later in the software development process where, for lack of diligence, previously
undiscerned requirements are discovered. Another example would be late in the software development
cycle where the software satisfies the functionality of the software requirements specification but the software
needs some minor enhancements to be user-friendly. Such enhancements are less likely to be made voluntarily
where there is a fixed price contract.

S7.3.4 Changes Can Impact The Previous Allocation Of Performance
Risk

An endemic problem with large software development projects has been excessive changes. Generally, the
causes of excessive changes are either a substandard requirements analysis or requirements that are too
dynamic to be effectively “frozen” into a specification. A landmark GAO report documented why changes
frequently are not recognized as contributing to performance risk:

· “Changes requested after projects have started, which seem trivial to the customers, have
often required major rework and have resulted in delays and increased costs.

· Changes are not usually as thoroughly researched as original design concepts and some-
times have unforeseen effects on other parts of the system.

· Effective use of contract phasing can be destroyed by constantly making changes to work
that was competed and approved in earlier phases.”

Additionally, because software is generally perceived as pliable, the users frequently do not appreciate the
cost impact of seemingly minor changes. The National Research Council has observed:

“Late discovery that some required functions intended to be implemented in hardware cannot
practically be so implemented and are shifted to software. This shift might not occur save for
the prevalent optimistic view of the pliability of software. In truth, software is not pliable in
large, complex systems; a small change in software function can ripple through many interfaces
amounting to a major redesign effort, particularly if the added function was not anticipated
during the decomposition of CPCIs and modules.”

With regard to the cost risks, it is a fundament rule of government contracts that the contractor is entitled to
compensation for the “unanticipated and extra out-of-pocket expenses it incurred in performing the contract

S-64

Appendix S: Software Source Selection GSAM Version 3.0

as a result of the changes.” It is not so widely recognized that changes can sometimes impact the previous
allocation of performance risks. Specifically, where the government has crafted the contract to place the
performance risks on the contractor, changes that require a contractor to perform in a manner different from
what the contractor originally intended can transfer the performance risks from the changes to the government.

S7.3.5 Performance Risk Regarding Architecture

Within the past several years, there has been increased recognition that fundamentally flawed architectures
are one of the leading causes of fatality among large software development contracts. Where the architecture
is fundamentally flawed, the consequences are catastrophic — often the entire project is either abandoned
or restarted. A technique to reduce the risk of a flawed architecture is to require offerors to submit a
preliminary software architecture in their technical proposals.

The risk of a fundamentally flawed architecture is particularly high for unprecedented projects. In those
instances, a proven technique for the government to reduce performance risks is to award parallel development
contracts with two different vendors who propose dissimilar architectures. Typically, sometime between
the preliminary design review and the critical design review, the agency exercises a “down-select” decision
to proceed with only one of the two contracts. When the decision is made is usually a factor of how
apprehensive the government is about the design, the criticality of the software in terms of the agency’s
mission, and the availability of money to continue funding two contractors. The down-select decision is
normally exercised in the form of an option to the contract of the selectee.

In addition to the obvious advantage of not having to select an architecture until it has been analyzed in
detail, the use of parallel development contracts offers another benefit to the government. Experience has
shown that when contractors recognize that they are in competition for the privilege of retaining the project
for its life cycle, the vendors are significantly more conscientious about the quality of their work. The
competing vendors are also more likely to assign their best software engineers to the project. Ironically,
despite the substantial advantages to parallel development contacts, they are rarely used within DoD for
large software development projects. The most frequent reason for not using parallel development contracts
is failure of the agency to budget adequate money. In retrospect, the failure to make the investment in
parallel development contracts for the software architecture has often been regretted.

S7.3.6 The More Participatory The Government Is In The Design,
The More Difficult It Is to Shift Performance Risks to The
Contractor

The general rule is that the party that has responsibility for the design of a system is accountable if the
design results in the failure of the system. Not surprisingly, this rule causes the government to have a
preference for performance specifications. A problem arises where the government uses a performance
specification but insists upon a highly participatory role in the design of the system. This situation can
place the contractor in a dilemma because the government can thwart a contractor from proceeding by
failing to approve a review. Although the government can use reviews to “hold the design in hostage,” the
government has cleverly defined the term “approval” to distance itself from sanctioning the design.

Research has not disclosed any cases involving software development contracts where the government’s
participation in the design has caused the government to assume some of the responsibility for the performance
risk. There are other decisions, however, which establish this principle of law. For example, the NASA

S-65

Appendix S: Software Source Selection GSAM Version 3.0

Board of Contracts Appeal rejected an attempt to hold a contractor completely liable for design flaws that
hampered the construction of a scientific facility. Specifically, the NASA Board stated:

“In our opinion, this theory completely ignores the elaborate Government organizational
structure for both design and construction of facilities, the review and approval requirements
built into the contract, the pervasive role of the JSC project engineer who also served as the
Contracting Officer’s representative.’

Similarly, the Armed Services Board of Contracts Appeal was unwilling to hold Boeing responsible for the
cost of redesigning a fuel-drainage system for the KC-135A aircraft where the government expressed safety
concerns after the critical design review.

“[T]he Government was anything but passive in monitoring and approving appellants Prelimi-
nary Design as it pertained to the drainage. * * * The highly structured dialogue between the
Government and appellant generated by the Critical Design Review defined the more detailed
Part II Development Specification.”

In light of the above precedent, when planning its acquisition strategy, the government should first ascertain
if it intends to play a pro-active role in the design before the government agrees to pay a premium ostensibly
to place the performance risk on the contractor. For example, the government should first ascertain if it
intends to rely heavily on a Federally Funded Research and Development Center (FFRDC) as an assertive
systems engineer or if it intends to rely heavily on a pervasive IV&V contractor. In essence, the highly
participatory role of a FFRDC or an IV&V may impede the government from placing the performance risks
on the contractor. Stated differently, if the government wishes to shift the performance risk to the contractor,
the contracting officer should assure that the government’s technical representatives are merely reviewers
of the contractor’s work rather than participating in the design of the software.

S7.3.7 Schedule Risks

According to Doctor Fredrick Brooks, “more software projects have gone awry for lack of calendar time
than for all other causes combined.” Before probing into the reasons why schedules often doom software
development projects, it is important to appreciate the interrelationship between cost, performance and
schedule risks. With regard to schedule impacting costs, there is a clear correlation between the number of
people on a project and their productivity. In essence, there are efficiencies to be gained when a dedicated
but small workforce methodically develop software over a lengthy period of time. The schedule can be
expedited, to some degree, by adding additional software engineers. The following table of a hypothetical
project is indicative of the dependent relationship between cost and schedule:

SCHEDULE
(Months)

SOFTWARE
ENGINEERS

STAFF
MONTHS

COSTS

9 30 270 $4,500,000

12 20 240 $4,500,000

15 14 210 $4,000,000

18 10 180 $3,750,000

Table S-1

S-66

Appendix S: Software Source Selection GSAM Version 3.0

The correlation between schedule and performance risks is that, in attempting to meet an unrealistic schedule,
contractors often expedite the process in a matter that is harmful to quality. Frequently, the resulting
product is too defective to perform as required. That GAO has repeatedly observed that unrealistic schedules
increase performance risk:

“Technical problems result from the need to meet deadlines — programs are often designed and
written hastily, and are tested and documented inadequately or not at all. Thus quality is
sacrificed to urgency. Documentation — material prepared to explain a computer program — is
often deferred until after the program is running and sometimes is never completed. When
programs are later modified or converted, the work is usually done by someone other than the
originator. If documentation is missing, incomplete, or obsolete, a great deal of the original
development work often must be repeated.”

As shown above, the schedule can force quality to be sacrificed for urgency. When quality is sacrificed,
often the software is degraded or rendered unusable.

In the past, many DoD software projects succumbed to unrealistic schedule that were generated under the
euphemism of being “success oriented.” In 1994, the Air Force published an excellent handbook which
acknowledged that unrealistic schedules had a debilitating effect on software development projects. The
handbook explains why “success-oriented schedules are seldom successfully achieved.” The handbook
also provides some useful guidance on what it calls “schedule-plus contracts.” In essence, these contracts
are structured to use award fees or incentive fees to motivate a contractor to be realistic in bidding schedules.
Equally as important, “schedule-plus contracts” are not as likely to cause the contractor to “sacrifice
quality to urgency.”

S7.3.8 The Evaluation Criteria Should Be Structured to Maximize
the Probability of Selecting a Highly Competent Vendor

One expert has observed that “the competency of the contractor is the single most important ingredient in
the recipe for successful contract performance.” For software development contracts, it is axiomatic that
the greater the competence of the software development contractor, the greater the probability that the
software development project will be successful. Consequently, it behooves the government to structure
the evaluation criteria to maximize the probability of selecting a highly competent vendor.

In his book, The Decline And Fall Of The American Programmer, Edward Yourdon summarizes the startling
results of some careful studies which reveal that there can be an enormous variation between the capabilities
of software engineers. Equally as surprising, there is no simple means to readily distinguish between the
top quartile and the bottom quartile of software engineers:

“When a programmer is good,
He is very, very good,
But when he is bad,
He is horrid.”

This conclusion was based on the results of a programming exercise given to a group of 12 experienced
programmers. Careful records were kept to see how long the programmers took to finish various phases of
the programming job, and what results they produced. The outcome was staggering: the best person in the

S-67

Appendix S: Software Source Selection GSAM Version 3.0

group finished coding and debugging the exercise 28 times faster than the worst person, and the best
program was approximately 10 times more efficient (in terms of memory and CPU cycles) that the worst.
Equally important was the discovery that the actual performance of the programmers had no significant
correlation with years of programming experience or scores on standard programming aptitude tests.

In the same way that there are an enormous variations among the capabilities of software engineers, so too
there are enormous variations among the capabilities of software development vendors. Moreover, just as
there is no simple way to readily discern which software engineers are in the top quartile, so too there is no
simple way to readily discern which software development vendors are in the top quartile. The following
discussion is to provide guidance on how the government can distinguish the relative competence of software
development vendors.

S7.4 Software Engineering Institute’s Software
Capability Evaluations

The SEI’s Software Capability Evaluations (SCEs) enable a contracting activity to appraise the maturity
level of the offerors. Since ample guidance can be obtained from the SEI on SCEs, this paper will not
explain the intricacies of how SCEs are conducted. Suffice it to say that SCEs are expensive and burdensome
for both the offerors and the government. As a rule of thumb, a SCE is appropriate where the cost of the
software development is expected to exceed ten million dollars or where more than 50,000 lines of code are
expected. An exception to the rule might be appropriate where there is a critical need for the software or
where human life would be in jeopardy if the software failed.

There are various ways in which a SCE could be considered by the source selection authority. One technique
is to make the SCE an affirmative responsibility criteria. For example, the evaluation criteria could state:
“To be eligible for award, an offeror must attain, through a Software Capability Evaluation, Maturity Level
3 or higher.” Before using such an evaluation criteria, the procuring activity should recognize that a high
standard such as Level 3 might be challenged by a protest. Under the Competition In Contracting Act,
agencies must achieve “full and open competition.” The Federal Acquisition Regulation defines this term
to mean that “all responsible sources are permitted to compete.” To have the protest denied, the agency
must show that its minimum requirement is for a Level 3 offeror. Since Level 3 represents less than 10% of
the vendors in the software development industry, the agency should have a convincing reason why a Level
2 vendor is not a responsible source. Rather than take the risk that the GAO or GSBCA would disagree
with the agency’s justification to exclude lower level offerors, contracting activities should consider other
approaches which are easier to reconcile with the Competition in Contracting Act.

Another technique is to establish the rating which the offeror obtains during the SCE as a separate evaluation
criteria. Hence, using the above scenario, a Level 2 offeror is not automatically excluded form consideration.
Instead, with regard to that evaluation factor, a Level 2 offeror is placed at a competitive disadvantage in
relationship to a Level 3 offeror. To have a significant impact on the source selection decision, the evaluation
criteria involving the SCEs should be placed relatively high in the relative order of importance among the
other evaluation criteria.

A third possibility is to make the SCE a “general consideration.” A general consideration is factor that
permeates the other evaluation criteria. The most widely used general consideration is past performance.
There is a logical correlation between an SCE and past performance. Each is a reliable indicator of future
success. This logical correlation evinces that an SCE is highly suitable to be a general consideration. The

S-68

Appendix S: Software Source Selection GSAM Version 3.0

disadvantage of using an SCE as a general consideration is that it does not afford the SCE the dignity it
deserves in playing a pivotal role in the selection of the awardee. Stated differently, a SCE deserves more
visibility since the maturity of a vendor’s processes is perhaps the paramount indicator of whether the
vendor will be able to successfully develop the software. Moreover, if a source selection authority
inadvertently relies directly on the SCE in making a selection rather than factoring the SCE into his assessment
of the established evaluation criteria, a disappointed offeror might be able to protest successfully.

As stated in the prior paragraphs, there are various ways in which an agency can consider an SCE in making
its source selection decision. The method that the agency intends to use should be identified in Section M
of the RFP. The Comptroller General will sustain a protest where the offerors have not been advised of the
relative order of importance of the evaluation criteria:

“It is fundamental that offerors must be advised of the basis upon which their proposals will be
evaluated. A solicitation that does not set forth a common basis for evaluating offers, which
ensures that all firms are on notice of the factors for award and can compete on an equal basis,
is materially defective.”

In summary, it is imperative that Section M of the solicitation clearly state how the agency will use the SCE
as part of the evaluation process.

S7.4.1 Past Performance

A vendor who has had a consistent history of successfully performing software development efforts is more
likely to successfully perform on future software development efforts than a rival vendor who has had a
checked history. Unlike a SCE, which only validates that a vendor has the necessary processes, past
performance is a strong indicator of whether the vendor has the fortitude to “make it happen.”

In recent years, the federal government has become more adamant about relying on past performance in
awarding contracts. In a policy letter dated January 11, 1993, the Office of Federal Procurement Policy
(OFPP) mandated that past performance be an evaluation factor for all competitively negotiated contracts
that were expected to exceed $100,000. The letter also directed the larger agencies to create databases on
vendors’ past performance. Additionally, in 1994, the OFPP Director obtained pledges from fourteen
agencies that they would weigh past performance equally with the other nonmonetary evaluation criteria.

Agencies are afforded considerable discretion in making judgments on past performance. For example, an
Air Force procurement of training devices for the F-15 and F-16 aircraft rated an offeror as high risk. The
offeror had received more poor performance evaluations than favorable evaluations on previous contracts.
The offeror protested to the GAO. In denying the protest, the GAO concluded that the Air Force’s risk
assessment was reasonable. Additionally, sometimes an offeror seeks to contest a poor rating that it received
on another contract. A disappointed offeror has little recourse when it wishes to dispute an unfavorable
evaluation. The fact that a disappointed offeror disagrees with an agency’s evaluation of its past performance
does not invalidate the agency’s conclusion.

S-69

Appendix S: Software Source Selection GSAM Version 3.0

S7.4.2 Previous Experience

Like past performance, previous experience is a credible indicator of the likelihood that an offeror can
successfully perform. For instance, if a Level 1 vendor struggled to complete a previous software project,
that vendor still might be preferable to other Level 1 offerors for a comparable project merely because the
vendor probably learned many lessons which will benefit it on a subsequent project.

Ideally, the government desires a vendor with both previous experience and an excellent record of past
performance. The source selection official faces a more difficult decision where the first offeror has had
comparable previous experience but also has had a checked record of past performance. A second offeror
lacks previous experience in the domain involving the specification but does have a laudatory past
performance record. There is no textbook answer as to which offeror should be selected. The government
should, however, anticipate such a quandary and draft its evaluation criteria to accurate forewarn offerors
which evaluation criteria is more important.

Previous experience is sometimes expressed as a definitive responsibility criteria. Although definitive
responsibility criteria are apt to be protested by vendors who are excluded from competing, the GAO will
uphold the agency’s decision if it is reasonable. For example, the GAO upheld the decision of the Air Force
to exclude an offeror who lacked personnel that were experienced in maintaining a land mobile radio
system. The following extract from the decision reveals the GAO’s willingness to defer to the agency on
definitive responsibility criteria involving previous experience:

“Given the agency’s explanation . . . that the equipment involved here is used by those units at
the base responsible for human safety and the safeguarding of information relating to national
security, we have no basis for objecting to the imposition of the experience requirements. Spe-
cifically, we see nothing improper in the agency’s taking steps to insure that the personnel
maintaining the specialized equipment are particularly well-qualified to do so, and the experi-
ence requirements seem to us to be reasonably aimed at achieving this end.”

Although the GAO is deferential to an agency’s determination of the requisite experience an offeror should
have, the GAO will sustain a protest if the agency’s position is unreasonable. For instance, in acquiring
software support for a shipboard command and control system, the Navy required “detailed knowledge of
the JOTS II Plus program.” An offeror who had a detailed knowledge of an earlier version of the software
was excluded from the competition. The GAO sustained the protest of the excluded offeror. Sometimes an
agency errs on the side of caution when establishing its minimum experience requirements. The agency
later determines that, although a proposal that does not comply fully with the solicitation, the proposal is
capable of meeting the agency’s requirements. If the agency seeks to award to an offeror who does not meet
the minimum experience requirements of the solicitation, the award can be successfully protested. In those
circumstances, the correct action for the agency is to reduce the minimum experience requirements by
amending the solicitation and then seeking a new BAFO.

S7.5 Sample Problems

According to Gabig’s Premise, “best brochuremanship — not best value — frequently wins government
contracts.” Not surprisingly, many sophisticated vendors use professional proposal writers to respond to
RFPs. The net result is that the quality of the contractor’s proposal may not be indicative of the quality of
the technical staffs that will ultimately perform the work. A useful technique to minimize the impact of

S-70

Appendix S: Software Source Selection GSAM Version 3.0

Gabig’s Premise is to use sample problems. One possibility is to identify as sample problems a few modules
that are suitable candidates for rapid prototyping. Another possibility would be to draft the sample problem
to address some difficult interfaces that are anticipated during the performance of the contract.

It is not uncommon for a disappointed offeror to protest that its poor score on the sample problems should
have been brought to its attention and that it should have given an opportunity to revise its answer. To
protect itself again such protests, the agency should draft the solicitation to emphasize that the purpose of
the sample problem is to test the offeror’s understanding of the problem as well to test the offeror’s technical
competency. Under those circumstances, as shown by the following quote from a GAO decision, the
protest is likely to be denied:

“It is also apparent that the Air Force wanted to gauge the offerors’ independent management
and technical abilities and expertise to propose, on their own, solutions to a variety of complex
engineering tasks. While the pointing out of deficiencies in the proposed solutions might well
have produced improvements in the offerors’ approaches, what was to be evaluated here was not
how well an offeror could improve the problem areas, but rather how well an offeror could
independently size up a problem and come up with a viable, efficient solution.”

Consistent with the theme that sample problems are a test, they should be given letter grades — A,B,C,D, or
F. A pass/fail grading scheme is vulnerable to being struck down as being inconsistent with the nature of
negotiated procurements.

S7.6 Avoiding “Buying-In”

FAR § 3.501-1 defines buying-in as submitting an offer below anticipated costs, expecting to: (a) increase
the contract amount after award (e.g., through unnecessary or excessively priced change orders); or (b)
receive follow-on contracts at artificially high prices to recover losses incurred on the buy-in contract.
Software development contracts are especially vulnerable to “buying-in.” In addition to having a high
incidence of changes, the opportunity for follow-on maintenance contracts at artificially high prices is
particularly great.

Many vendors are unaware that the FAR does not prohibit “buy-in.” Instead, the FAR only admonishes the
contracting officer to “take appropriate action to ensure buying-in losses are not recovered by the contractor.”
For a cost-reimbursement contract, the best way to protect against buy-in is to use a vigorous cost realism
analysis. The FAR recognizes that for “cost-reimbursement contracts the cost proposal should not be
controlling, since advance estimates of cost may not be valid indicators of final costs.” Consequently, an
agency is granted considerable leeway to reach an independent evaluation of what it will cost the offeror to
complete the project.

An excellent example of an agency asserting its prerogative to adjust a cost proposal for cost realism
occurred during an Air Force procurement for software development to support the Joint Space Intelligence
Center in Cheyenne Mountain. The Air Force made a $29 million cost realism adjustment to a $69.7
million proposal from McDonnell Douglas Electronics Systems Company. A subsequent protest by
McDonnell Douglas was denied by the GAO.

If the contract is fixed price, the best way for an agency to protect against a buy-in is to use a best value
procurement. A best value procurement provides the agency with greater flexibility to make tradeoff

S-71

Appendix S: Software Source Selection GSAM Version 3.0

decisions. Moreover, the cases involving best value have upheld an agency’s decision to spend considerably
higher sums of money to achieve superior technical performance.

For a complex software development project, it is not enough that the contracting officer merely comply
with his obligation under the FAR to guard against the contractor being able to recover its losses. Buying-
in usually results in an antagonistic relationship between the parties since the contractor typically is looking
for a way to “get well.” Conversely, the government obligated to resist the contractor’s attempts to “get
well.” In light of the fact that a congenial relationship is almost indispensable to the successful completion
of the project, it is in the government’s interest to avoid awarding to an offeror who is buying-in if it is at all
possible.

Notwithstanding the techniques mentioned above, often the evaluation criteria greatly constrain a source
selection official’s flexibility to avoid awarding the contract to an offeror who is buying-in. Although
rarely explained to the source selection official, there are two other factors which may be considered despite
the factors not being expressed in Section M. The first factor is that an agency may infer that the risk of
poor performance increases where a contractor is forced to perform a contract with little or no profit. This
observation is consistent with the FAR. FAR § 15.901(b) recognizes that profits “stimulate efficient contract
performance.” Inferentially, a lack of profit suggests that the contractor is not stimulated to perform the
contract efficiently. The second factor is to assume that the contractor will be forced to pay its workforce
low compensation. The source selection official may assume that the low compensation will impacting the
offeror’s ability to recruit and retain highly quality software engineers. The anticipated difficulty for the
offeror to recruit and retain a high quality workforce is justification to increase the agency’s assessment of
the risk of nonperformance.

S-72

Appendix S: Software Source Selection GSAM Version 3.0

S7.7 About the Author

Jerome Gabig, Jr. is Of Counsel in the Washington, D.C. office of Venable, Baetjer, Howard & Civiletti
where he specializes in government software development contracts. Through a variety of assignments as
an Air Force officer, he gained considerable experience in contracting for software development:

1990-92 Deputy Staff Judge Advocate, Electronic Systems Center (Air Force Materiel Command),
Hanscom AFB, MA

1990-87 Director of Contract Law, Armament Division (Air Force Systems Command), Eglin AFB, FL
1987-83 Staff Judge Advocate, Air Force Computer Acquisition Center (Air Force Communications

Command), Hanscom AFB, MA
1983-80 Director of Telecommunications & Acquisition Law, Air Force Communications Command,

Scott AFB, IL

Mr. Gabig is the course director for Federal Publications’ program on software development contracts.
Additionally, he is the author of Federal Publications’ text entitled Government Contracting For Software
Development. Mr. Gabig has graduated from West Point (engineering), Harvard University (management
& administration), and the University of California (law). He has instructed at George Washington University,
the Army JAG School, the Air Force JAG School, the Defense Systems Management College, the DoD
Computer Institute, and the Naval Post Graduate Institute. He performed extensive research and analysis to
support the Section 800 Panel. Mr. Gabig founded the Information Systems Committee of the American
Bar Association’s Public Contract Law Section which he currently serves as Vice-Chair. He is a National
Contract Management Fellow and recipient of the Delaney Award for 1993. His numerous publications
have appeared in The Harvard Journal of Law & Public Policy, The Public Contract Law Journal, The
National Contract Management Journal, Program Manager, Contract Management, and The Computer
Lawyer.

Jerome S. Gabig, Jr.
Venable, Baetjer, Howard & Civiletti
Suite 1000
1201 New York Avenue, N.W.
Washington, D.C. 20005
Voice: 202-962-4953
Fax: 202-962-8300
Internet: JGabig@Venable.com

Part 4: Management-Related Appendices GSAM Version 3.0

Appendix T

Automated
Information Systems
(AIS) Operational
Requirements
Documents (ORDs)
Recommendations

T-2

Appendix T: AIS ORD Recommendations GSAM Version 3.0

Content
T.1 AIS ORDs Recommendations.. T-3
T.2 Requirements Correlation Matrix ... T-30

T-3

Appendix T: AIS ORD Recommendations GSAM Version 3.0

T.1 AIS ORDs Recommendations

NOTE: For AIS, the ORD represents a formatted statement addressing the operational
effectiveness and suitability performance requirements and parameters for an identified
AIS. The following guidance for AIS applies. [Always use the verb “shall” in a statement
that indicates an operational requirement.]

1. General Description of Operational Capability. The general description of operational capability
pertains to the mission area as it relates to the proposed AIS, and anticipated operational and support
concepts for program and logistics support planning.
a. Mission Area. The mission area pertains to associating the need with the major planning objective

found in the Defense Planning Guidance document. Address the following information in this
paragraph.
µµ Identify the major program planning objective or Defense Planning Guidance section addressed

by the need.
µµ Reference DoD or Military Department long range investment plans, where applicable.
µµ Identify for top-down directed needs who and what drove the requirement.

b. Mission Area Need. Mission area need pertains to identifying and describing the required assigned
tasks for achieving mission needs to support the national strategy. Managers plan, organize, direct,
and control the performance of assigned tasks to achieve mission objectives. To perform these
management processes, managers require information to make decisions that ultimately direct the
effective use of personnel and resources to support the national strategy. Managers use management
information systems (MIS) — automated, semi-automated, or manual information systems — as a
means of generating information that managers need. The effectiveness of an MIS to achieve
assigned tasks depends largely on the capability of the MIS to provide quality information in a
timely, usable, and reliable manner. Address the following information in this paragraph.
µµ Identify the overall MIS mission need (objective) and operational task(s).
µµ Describe the deficiency(ies) to meeting the MIS mission need and operational task(s).
µµ Comment on the timing for achieving the mission need relative to other needs in the mission

area.
µµ Comment on the priority of the need relative to other needs in the mission area.

(1) Planning Task Needs. Planning task needs pertain to setting goals and defining policies,
procedures, and programs to achieve mission objectives. The three types of planning
activities include strategic planning, tactical planning, and forecasting. Strategic planning
tasks involve determining organization objectives and formulating long term organizational
policy to meet mission needs. Tactical planning tasks involve the allocation of total resources
of the organization to meet mission needs. Forecasting tasks involve determining or
predicting possible outcomes of proposed strategic and tactical plans. Planning describes
and explores the external operational environment with regard to the mission of the
organization. Address the following information in this paragraph.
µµ Identify the planning tasks performed by managers to support the mission need.
µµ Describe current MIS deficiency(ies) to perform effectively planning assigned tasks.
µµ Define MIS requirement(s) to perform effectively planning assigned tasks.

T-4

Appendix T: AIS ORD Recommendations GSAM Version 3.0

(2) Organizing Task Needs. Organizing task needs pertain to grouping activities to be
performed as well as establishing organizational forms and relationships to meet mission
needs. The two types of organization activities include personnel organization and resource
organization. Personnel organization tasks involve the selection and training of organization
personnel, and the allocation of duties and workloads to personnel in a logical manner to
meet mission needs. Resource organization tasks involve the use of logical methods to
categorize and arrange necessary resources to meet mission needs. Organizing describes
and explores the internal operations of the organization with regard to the mission of the
organization and the external operational environment. Address the following information
in this paragraph.
µµ Identify the organizing tasks performed by managers to support the mission need.
µµ Describe current MIS deficiency(ies) to perform effectively organizing tasks.
µµ Define MIS requirement(s) to perform effectively organizing assigned tasks.

(3) Directing Task Needs. Directing task needs pertain to leading, guiding, and motivating
people in the organization through information facilitation and flow of knowledge to achieve
mission needs. The three types of directing activities include leadership, communication,
and coordination. Leadership directing tasks involve the ability to provide effective guidance
that motivates personnel to meet mission needs. Communication directing tasks involve
the psychology, language structure, and physical communication paths used to convey
information to meet mission needs. Coordination directing tasks involve the integration of
specific departments or divisions within the organization to meet mission needs. Directing
communicates decisions for executing the internal operations of the organization with regard
to the mission of the organization and the external operational environment. Address the
following information in this paragraph.
µµ Identify the directing tasks performed by managers to support the mission need.
µµ Describe current MIS deficiency(ies) to perform effectively directing tasks.
µµ Define MIS requirement(s) to perform effectively directing assigned tasks.

(4) Controlling Task Needs. Controlling task needs pertain to monitoring, measuring, and
modifying (where necessary) policy, procedures, and programs to achieve mission needs.
The three types of controlling activities include monitoring activities, measuring planned
performance, and modifying activities. Monitored activities controlling tasks involve the
supervising of actual activities to meet mission needs. Measuring planned performance
controlling tasks involve the comparison of planned performance with actual performance
to meet mission needs. Modified activities controlling tasks involve the alteration of actual
activities to meet mission needs. Controlling ensures the internal operations of the
organization support the mission of the organization in the external operational environment.
Address the following information in this paragraph.
µµ Identify the controlling tasks performed by managers to support the mission need.
µµ Describe current MIS deficiency(ies) to perform effectively controlling tasks.
µµ Define MIS requirement(s) to perform effectively controlling assigned tasks.

c. Joint Potential and Multinational Applicability. Joint potential and multinational applicability
pertains to AIS capability for joint Service or multinational use. Address the following information
in this paragraph.
µµ Identify any joint Service or multinational applications for the AIS.

2. Threat. The threat pertains to identifying and describing the encountered threat environment for
achieving mission needs to support the national strategy. In the threat environment, MIS not only can
engage threats, but also are vulnerable to threats.

T-5

Appendix T: AIS ORD Recommendations GSAM Version 3.0

a. Threat Engagement. Threat engagement pertains to the threat environment that must be countered
to achieve mission needs. Most MIS are not designed to encounter threats. Normally, this
subparagraph would be addressed as “not applicable.” If an MIS counters threats, address the
following information in this paragraph
µµ State the Defense Intelligence Agency (DIA)-validated threat encountered by MIS.
µµ Discuss the projected threat environment to be countered by MIS.
µµ Discuss the shortfalls of existing MIS capabilities or systems in meeting these threats.

b. Threat Vulnerability. Threat vulnerability pertains to the threat environment that endangers an
MIS survivability. Most MIS are susceptible to a variety of threats which cover accidental and
deliberate threats. These threats engage information of the MIS. Address the following information
in this paragraph.
µµ Discuss the threat of accidental modification, destruction, or disclosure of information used

for decision making by managers.
µµ Discuss the threat of deliberate modification, destruction, or disclosure of information used for

decision making by managers.
3. Shortcomings of Existing Systems. Shortcomings of existing systems pertain to the shortfalls of the

status quo system and considered non material alternatives for achieving mission needs to support the
national strategy. These options include the status quo, modifying doctrine, modifying operational
concepts, modifying tactics, modifying the organization, and modifying training.
a. Status Quo. The status quo pertains to the MIS (automated, semi-automated, or manual information

system) currently employed by the organization to manage information to support mission needs.
Address the following information in this paragraph.
µµ Discuss the results of the mission need considerations.
µµ Identify the status quo with regard to MIS.
µµ Describe why the status quo with regard to MIS was judged to be inadequate.

b. Modify Doctrine Option. The modify doctrine option pertains to changing current US or Allied
doctrine to achieve mission needs. Address the following information in this paragraph.
µµ Identify any changes in US or allied doctrine considered as a non material alternative solution

to meet the mission need.
µµ Describe why such changes in doctrine were judged as inadequate to meet the mission need.

c. Modify Operational Concept Option. The modify operational concept option pertains to changing
the current MIS operational concepts or maintenance concepts to achieve mission needs. Address
the following information in this paragraph.
µµ Identify any changes in operational concepts considered as a non material alternative solution

to meet the mission need.
µµ Describe why such changes in operational concepts were judged as inadequate to meet the

mission need.
d. Modify Tactics Option. The modify tactics option pertains to changing current tactics to achieve

mission needs. Address the following information in this paragraph.
µµ Identify any changes in tactics considered as a non material alternative solution to meet the

mission need.
µµ Describe why changes in tactics were judged inadequate to meet the mission need.

T-6

Appendix T: AIS ORD Recommendations GSAM Version 3.0

e. Modify Organization Option. The modify organization option pertains to changing current
organizational structure to achieve mission needs. Address the following information in this
paragraph.
µµ Identify any changes in organizational structure considered as a non material alternative solution

to meet the mission need.
µµ Describe why such changes in organizational structure were judged as inadequate to meet the

mission need.
f. Modify Training Option. The modify training option pertains to changing current training methods

to achieve mission needs. Address the following information in this paragraph.
µµ Identify any changes in training considered as a non material alternative solution to meet the

mission need.
µµ Describe why such changes in training methods were judged as inadequate to meet the mission

need.
4. Capabilities Required. Capabilities required pertain to the operational effectiveness and operational

suitability performance of the AIS to achieve mission needs. AIS required capabilities address the
critical operational issues (COIs), measures of effectiveness (MOEs), measures of performance (MOPs),
and thresholds and/or objectives. COIs represent key operational effectiveness and suitability issues
— as deemed by the user — that must be examined during operational test to determine the system’s
capability to meet mission needs. MOEs represent quantitative measurements of a system’s degree of
performance for specific operational/assigned tasks. MOPs represent quantitative and qualitative
measurements of system capabilities and characteristics to perform assigned tasks to achieve mission
needs. Threshold values represent the minimum acceptable operational requirements. Objective values
represent the desired, beneficial increase operational requirement. Address the following information
in this paragraph, replacing terms underlined with appropriate system terminology.
µµ State the following: “These capabilities address the required operational effectiveness and

operational suitability performance capabilities and characteristics of the AIS to meet mission
need(s).”

a. System Performance. System performance pertains to the operational effectiveness COIs, MOEs,
MOPs, and thresholds/objectives with regard to assigned task scenarios. Address the following
information in this paragraph, replacing terms underlined with appropriate system terminology.
µµ State the following: “Figure T-1 diagrams the macro-managerial tasks both sequentially and

concurrently. System performance addresses the operational effectiveness critical operational
issues (COIs), measures of effectiveness (MOEs), measures of performance (MOPs), and
associated thresholds/ objectives with regard to assigned task scenarios.”

µµ Diagram sequentially and concurrently in a PERT flow chart those macro-managerial tasks
that the AIS will support.

TASK 1 TASK 6 TASK 8TASK 3

TASK 2

TASK 4

TASK 5

TASK 7

Figure T-1. Macro-Managerial Task Flow Chart

T-7

Appendix T: AIS ORD Recommendations GSAM Version 3.0

(1) Effectiveness COIs. Operational effectiveness represents the overall degree of mission
accomplishment of a system when used by representative personnel in the environment planned
for employment of the system considering organization, doctrine, tactics, survivability,
vulnerability, and threat. The term “mission” refers to the task, together with the purpose, that
clearly indicates the action to be taken and the reason therefore. In common usage, especially
when applied to lower military units, the mission is a duty assigned to an individual or unit; a
task. Within this context, MIS operational effectiveness evaluation focuses on examining the
operational concept (assigned tasks) performed by users using the MIS to meet mission needs
that accomplish operational task(s). As the OT&E test article, the AIS represents a system
designed to provide managers useful information in a necessary time frame to make decisions.
As a tool for management, an AIS must enable users to perform assigned tasks (planning,
organizing, directing, and controlling actions) to manage effectively the assets (personnel and
resources) necessary to accomplish the operational tasks of the organization in support of some
operational objective and strategy.
µµ State the following: “The operational effectiveness COIs are derived from the type of task

scenarios the user must perform with the AIS to meet mission needs.”

As subparagraphs to this paragraph heading, effectiveness COIs are written in one of two
ways. The first method focuses on the functional operation areas (i.e., logistics support,
transportation, Intelligence, weather, etc..) to manage the missions. Semantically, this type
of effectiveness COI specifies the AIS; the functional operation area of the organization
employing the AIS; the operational locations for employing the AIS; the operational task
(management); and the mission being managed. To address this type of COI, the functional
area assigned tasks (plan, organize, direct, and control) become the focus of the evaluation.
Address the following information in this paragraph, replacing terms underlined with the
appropriate system terminology.

µµ State the following: “Figure T-2 diagrams the functional area managerial tasks both
sequentially and concurrently. The following subparagraphs address the functional
operation area scenarios required to answer the COI: Do AIS capabilities support functional
operational area decision makers at operating locations to manage the mission.”

µµ Diagram sequentially and concurrently in a PERT flow chart those functional area tasks
that the AIS will support.

Figure T-2. Functional Area Task Flow Chart

TASK F1 TASK F6 TASK F8TASK F3

TASK F2

TASK F4

TASK F5

TASK F7

T-8

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ Specify the following for each functional operation area task scenario subparagraph:
« In “bold” face, the assigned task to be performed.
« Who performs the assigned task (user types, functional area, etc.).
« What do users do to perform the assigned task (major steps, subtasks, etc.).
« When do users begin/conclude the assigned task (input event, output event, etc.).
« Where do users perform the assigned task (location, managerial level, etc.).
« Why do users require an AIS to perform the assigned task effectively.
« How often do users perform the assigned task (frequency, workload, etc.).
« Effectiveness (task success rate) threshold and objective requirements.
« Performance (information value attributes) threshold and objective requirements.
« Associated rationale for quantified thresholds and objectives metrics.
« The AIS acquisition increment(s) whose capabilities address the assigned task.

The second method focuses on the assigned task areas (plan, organize, direct, and
control) to manage the mission. Semantically, effectiveness COIs specify the AIS, the
organization employing the AIS, the operational locations for employing the AIS, the
assigned task (plan, organize, direct, and control), and the mission being managed. As
described in the subsequent paragraphs, four assigned task area COIs exist and they
collectively enable the accomplishment of the operational task (management).

(a) Planning Task Scenarios. Planning task scenarios pertain to those assigned tasks that are
concerned with setting goals and defining policies, procedures, and programs to achieve
mission needs. The planning task scenarios address the principle COI: “Do AIS capabilities
support organization decision makers at operational locations to plan the mission.” The
“planning the mission” assigned tasks associated with this COI address the required
functional users and their assigned tasks to plan for the use of their forces and resources to
support the operational objectives of the organization. The planning task MOEs cover
information value. Users specify whether planning tasks warrant a COI. Address the
following information in this paragraph, replacing terms underlined with system terminology.
µµ State the following: “Figure T-3 diagrams the planning managerial tasks both

sequentially and concurrently. The following subparagraphs address the planning
task scenarios required to answer the COI: Do AIS capabilities support organization
decision makers at operating locations to plan the mission.”

µµ Diagram sequentially and concurrently in a PERT flow chart those planning managerial
tasks that the AIS will support.

TASK P1 TASK P6 TASK P8TASK P3

TASK P2

TASK P4

TASK P5

TASK P7

Figure T-3. Planning Task Flow Chart

T-9

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ Specify the following for each functional operation area task scenario subparagraph:
« In “bold” face, the assigned task to be performed.
« Who performs the assigned task (user types, functional area, etc.).
« What do users do to perform the assigned task (major steps, subtasks, etc.).
« When do users begin/conclude the assigned task (input event, output event, etc.).
« Where do users perform the assigned task (location, managerial level, etc.).
« Why do users require an AIS to perform the assigned task effectively.
« How often do users perform the assigned task (frequency, workload, etc.).
« Effectiveness (task success rate) threshold and objective requirements.
« Performance (information value attributes) threshold and objective requirements.
« Associated rationale for quantified thresholds and objectives metrics.
« The AIS acquisition increment(s) whose capabilities address the assigned task.

(b) Organizing Task Scenarios. Organizing task scenarios pertain to those assigned tasks
that are concerned with grouping activities to be performed as well as establishing
organizational forms and relationships to meet mission needs. The following organizing
tasks address the COI: “Do AIS capabilities support organization decision makers at
operational locations to organize the mission.” The “organizing the mission” assigned
tasks associated with this COI address the required functional users and their assigned
tasks to organize for the use of their forces and resources to support the operational objectives
of the organization. Its organizing task MOPs cover information value. Users specify
whether organizing tasks warrant a COI. Address the following information in this
paragraph, replacing terms underlined with system terminology.
µµ State the following: “Figure T-4 diagrams the organizing managerial tasks both

sequentially and concurrently. The following subparagraphs address the organizing
task scenarios required to answer the COI: Do AIS capabilities support organization
decision makers at operating locations to organize the mission.”

µµ Diagram sequentially and concurrently in a PERT flow chart those organizing
managerial tasks that the AIS will support.

TASK O1 TASK O6 TASK O8TASK O3

TASK O2

TASK O4

TASK O5

TASK O7

Figure T-4. Organizing Task Flow Chart

µµ Specify the following for each functional operation area task scenario subparagraph:
« In “bold” face, the assigned task to be performed.
« Who performs the assigned task (user types, functional area, etc.).
« What do users do to perform the assigned task (major steps, subtasks, etc.).
« When do users begin/conclude the assigned task (input event, output event, etc.).
« Where do users perform the assigned task (location, managerial level, etc.).

T-10

Appendix T: AIS ORD Recommendations GSAM Version 3.0

« Why do users require an AIS to perform the assigned task effectively.
« How often do users perform the assigned task (frequency, workload, etc.).
« Effectiveness (task success rate) threshold and objective requirements.
« Performance (information value attributes) threshold and objective requirements.
« Associated rationale for quantified thresholds and objectives metrics.
« The AIS acquisition increment(s) whose capabilities address the assigned task.

(c) Directing Task Scenarios. Directing task scenarios pertain to those assigned tasks that
are concerned with leading, guiding, and motivating people in the organization through
information facilitation and flow of knowledge to achieve mission needs. The directing
task scenarios address the principle COI: “Do AIS capabilities support organization decision
makers at operational locations to direct the mission.” The “directing the mission” assigned
tasks associated with this COI address the required functional users and their assigned
tasks to direct the use of their forces and resources to support the operational objectives of
the organization. The directing task MOPs cover information value. Users specify whether
directing tasks warrant a COI. Address the following information in this paragraph, replacing
terms underlined with system terminology.
µµ State the following: “Figure T-5 diagrams the directing managerial tasks both

sequentially and concurrently. The following subparagraphs address the directing
task scenarios required to answer the COI: Do AIS capabilities support organization
decision makers at operating locations to direct the mission.”

µµ Diagram sequentially and concurrently in a PERT flow chart those directing managerial
tasks that the AIS will support.

TASK D1 TASK D6 TASK D8TASK D3

TASK D2

TASK D4

TASK D5

TASK D7

Figure T-5. Directing Task Flow Chart

µµ Specify the following for each functional operation area task scenario subparagraph:
« In “bold” face, the assigned task to be performed.
« Who performs the assigned task (user types, functional area, etc.).
« What do users do to perform the assigned task (major steps, subtasks, etc.).
« When do users begin/conclude the assigned task (input event, output event, etc.).
« Where do users perform the assigned task (location, managerial level, etc.).
« Why do users require an AIS to perform the assigned task effectively.
« How often do users perform the assigned task (frequency, workload, etc.).
« Effectiveness (task success rate) threshold and objective requirements.
« Performance (information value attributes) threshold and objective requirements.
« Associated rationale for quantified thresholds and objectives metrics.
« The AIS acquisition increment(s) whose capabilities address the assigned task.

T-11

Appendix T: AIS ORD Recommendations GSAM Version 3.0

(d) Controlling Task Scenarios. Controlling task scenarios pertain to those assigned tasks
that are concerned with monitoring, measuring, and modifying (when necessary) policy,
procedures, and programs to meet mission needs. The following controlling tasks address
the COI: “Do AIS capabilities support organization decision makers at operational locations
to organize the mission.” The “controlling the mission” assigned tasks associated with
this COI address the required functional users and their assigned tasks to control the use of
their forces and resources to support the operational objectives of the organization. Its
controlling task MOPs cover information value. Users specify whether controlling tasks
warrant a COI. Address the following information in this paragraph, replacing terms
underlined with system terminology.
µµ State the following: “Figure T-6 diagrams the controlling managerial tasks both

sequentially and concurrently. The following subparagraphs address the controlling
task scenarios required to answer the COI: Do AIS capabilities support organization
decision makers at operating locations to control the mission.”

µµ Diagram sequentially and concurrently in a PERT flow chart those controlling
managerial tasks that the AIS will support.

TASK C1 TASK C6 TASK C8TASK C3

TASK C2

TASK C4

TASK C5

TASK C7

Figure T-6. Controlling Task Flow Chart

µµ Specify the following for each functional operation area task scenario subparagraph:
« In “bold” face, the assigned task to be performed.
« Who performs the assigned task (user types, functional area, etc.).
« What do users do to perform the assigned task (major steps, subtasks, etc.).
« When do users begin/conclude the assigned task (input event, output event, etc.).
« Where do users perform the assigned task (location, managerial level, etc.).
« Why do users require an AIS to perform the assigned task effectively.
« How often do users perform the assigned task (frequency, workload, etc.).
« Effectiveness (task success rate) threshold and objective requirements.
« Performance (information value attributes) threshold and objective requirements.
« Associated rationale for quantified thresholds and objectives metrics.
« The AIS acquisition increment(s) whose capabilities address the assigned task.

T-12

Appendix T: AIS ORD Recommendations GSAM Version 3.0

(2) Effectiveness Metrics — MOEs/MOPs. For an MIS, the operational task concerns the
management of the forces and resources of the organization to support operational objectives.
Using an AIS, managers perform assigned tasks (planning, organizing, directing, and controlling)
to manage their forces and resources effectively. The MOE evaluation criteria concentrates on
the outcomes from executing the operational or assigned tasks. For an MIS, the evaluation
criteria rests with the user-defined, assigned tasks effectiveness rates — the probability
(percentage) that decision makers (managers) can perform assigned tasks effectively, based on
the value of the information provided. After all, if the MIS/AIS provides inferior, untimely, or
unusable information, then the user capability to accomplish assigned tasks effectively to meet
mission needs diminishes. The performance measures (MOPs) for evaluating assigned task
information value address those capabilities (attributes) inherent to quality information. The
MOPs required for evaluating assigned task information value include task timeliness as well
as information accuracy, currency, completeness, relevancy, and format. These information
value attributes represent the plausible AIS causes for ineffective performance of assigned
tasks. These information value attributes apply to the effectiveness of any operational or assigned
task for MIS. Address the following information in this paragraph, replacing terms underlined
with the appropriate system terminology.
µµ State the following: “The operational effectiveness MOEs for the AIS address the

information value provided to perform the assigned tasks of the AIS. Information value
tasks measures the quality of information provided by the AIS to support organization
decision makers at operational locations to achieve the mission. Its evaluation criteria
represents the probability that decision makers using the AIS can perform the assigned
tasks effectively. The required task effectiveness rate are specified for each assigned task.
Effective assigned task performance is based on the following information value
characteristics: task timeliness, information accuracy, information currency, information
completeness, information relevancy, and information format.”

(a) Task Timeliness. Task timeliness pertains to the time required to execute assigned tasks
effectively. This operational performance characteristic applies to the effectiveness of any
assigned task. To operationally quantify task timeliness requirements, AIS users must
have specified up front the assigned task(s); the type of information required to perform
the assigned task(s); and the amount of time (minimum) required to accomplish the assigned
task effectively. Address the following information in this paragraph.
µµ State the following: “Task timeliness measures the amount of time required to execute

assigned tasks effectively. Evaluation criteria: The task performance time required to
enable effective task performance. Task timeliness evaluation criteria thresholds/
objectives are denoted for each assigned task either as a specific performance time
requirement or as user satisfaction with actual information timeliness, where
appropriate.”

(b) Information Accuracy. Information accuracy pertains to the correctness of information
in reflecting reality to execute assigned tasks effectively. This operational performance
characteristic applies to the effectiveness of any assigned task. To operationally quantify
information accuracy requirements, AIS users must have specified up front the assigned
task(s); the information required to perform the assigned task(s); and the degree of
information accuracy required to perform the assigned task effectively with regard to
correctness and precision. Address the following information in this paragraph.

T-13

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ State the following: “Information accuracy measures the correctness of information
in reflecting reality. Evaluation criteria: The percentage of presented information
over a specified time interval deemed correct to enable effective task performance.
Information accuracy evaluation criteria thresholds/objectives are denoted for each
assigned task, where appropriate.”

(c) Information Currency. Information currency pertains to the degree to which information
is up-to-date to execute assigned tasks effectively. This operational performance
characteristic applies to the effectiveness of any assigned task. To operationally quantify
information currency requirements, AIS users must have specified up front the assigned
task(s); the information required to perform the assigned task(s); and the degree of currency
of the information required to accomplish the assigned task effectively with regard to
response time and up-to-datedness. Address the following information in this paragraph.
µµ State the following: “Information currency measures the degree to which the

information is up-to-date. Evaluation criteria: The percentage of presented information
over a specified time interval deemed up-to-date or current to enable effective task
performance. Information currency evaluation criteria thresholds/objectives are
denoted for each assigned task, where appropriate.”

(d) Information Completeness. Information completeness pertains to the thoroughness of
sought information to execute assigned tasks effectively. This operational performance
characteristic applies to the effectiveness of any assigned task. To operationally quantify
information completeness requirements, AIS users must have specified up front the assigned
task(s); the type of information required to perform the assigned task(s); and the degree of
completeness (minimum level) required to accomplish the assigned task effectively with
regard to level of detail and exhaustiveness of information. Address the following
information in this paragraph.
µµ State the following: “Information completeness measures the thoroughness of sought

information. Evaluation criteria: The percentage of presented information over a
specified time interval deemed thorough enough to enable effective task performance.
Information completeness evaluation criteria thresholds/objectives are denoted for
each assigned task, where appropriate.”

(e) Information Relevancy. Information relevancy pertains to the essentialness of information
provided to the user to execute assigned tasks effectively. This operational performance
characteristic applies to the effectiveness of any assigned task. To operationally quantify
information relevancy requirements, AIS users must have specified up front the assigned
task(s); the type of information required to perform the assigned task(s); and the degree of
relevancy (minimum level) required to perform the assigned task effectively with regard to
level of redundancy and appropriateness of information. Address the following information
in this paragraph.
µµ State the following: “Information relevancy measures the essentialness of information

provided to the user. Evaluation criteria: The percentage of presented information
over a specified time interval deemed germane or essential to enable effective task
performance. Information relevancy evaluation criteria thresholds/objectives are
denoted for each assigned task, where appropriate.”

(f) Information Format. Information format pertains to the composition or layout of the
information to execute assigned tasks effectively. This operational performance
characteristic applies to the effectiveness of any assigned task. Address the following
information in this paragraph.

T-14

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ State the following: “Information format measures the adequacy of information
presentation required to support decision makers to execute assigned tasks effectively.
Evaluation criteria: The user satisfaction with information format required to enable
effective assigned task performance.”

b. Logistics and Readiness. Logistics and readiness pertains to the operational suitability COIs,
MOPs, and the thresholds/objectives with regard to suitability task scenarios. The operational
suitability COIs are derived from the operational life cycle states of the AIS to support the
achievement of mission needs. Address the following information in this paragraph, replacing
terms underlined with the appropriate system terminology.
µµ State the following: “Logistics and readiness addresses the operational suitability critical

operational issues (COIs), measures of performance (MOPs), and associated thresholds/
objectives for all task scenarios.”

(1) Suitability COIs. Operational suitability is the degree to which a system can be placed
satisfactorily in field use with consideration given to availability, compatibility, transportability,
interoperability, reliability, wartime usage rates, maintainability, safety, human factors, manpower
supportability, logistics supportability, natural environmental effects and impacts,
documentation, and training requirements. Within this context, AIS suitability evaluation focuses
on the life cycle of a system in its operational environment to support the performance of
assigned tasks. As the OT&E test article, the AIS represents a system made up of fixed and
possibly deployable nodes providing managers at various locations useful information in a
necessary time frame to make decisions. As the tool for management, the AIS must have
acceptable logistics support and readiness to support effective management of forces and
resources to accomplish the operational tasks of the organization in support of some operational
objective and strategy. Address the following information in this paragraph, replacing terms
underlined with the appropriate system terminology.
µµ State the following: “The operational suitability COIs are derived from the operational

life cycle states of the AIS for achieving mission needs.”
(a) AIS Readiness. Readiness is the ability of forces, units, systems, or equipment to deliver

required timely output with finite deployable resources. AIS readiness involves the
availability of AIS nodes (fixed or deployable) to support mission needs. Address the
following information in this paragraph, replacing terms underlined with the appropriate
system terminology.
µµ State the following: “Readiness answers the COI: Does AIS readiness support mission

requirements in the operational environment? It is addressed by the operational
availability, operational dependability, mean time between maintenance (logistics
reliability) and maintenance ratio performance measures.”

(b) AIS Logistic Support. Sustainability is the ability of forces, units, systems, or equipment
to maintain the necessary level and duration of operational activity to achieve operational
objectives. AIS sustainability involves the effective response of both fixed and deployable
portions of the system to support mission needs. The effectiveness of achieving sustainable
states with an AIS depends largely on system survivability, human supportability,
infrastructure supportability, and software. Address the following information in this
paragraph, replacing terms underlined with the appropriate system terminology.
µµ State the following: “Logistics Support answers the COI: Does AIS logistics support

sustain mission requirements in the operational environment? It is addressed by the
system survivability, human systems supportability, infrastructure supportability, and
software supportability performance measures.”

T-15

Appendix T: AIS ORD Recommendations GSAM Version 3.0

(2) Suitability Metrics — Measures of Suitability (MOSs)/MOPs. For MIS, two types of
suitability COIs exist — readiness and logistics supportability. The AIS suitability MOSs for
evaluating readiness concern operational availability, operational dependability, and preventative
maintenance requirements and for evaluating logistics support concern system survivability,
human supportability, infrastructure supportability, and software supportability.
µµ State the following: “The AIS suitability MOSs address operational availability (Ao),

operational dependability (Do), mean time between maintenance (MTBM), maintenance
ratio (MR), system survivability, human systems supportability, infrastructure supportability,
and software supportability.”

(a) Operational Availability (Ao). This MOS pertains to the probability that a system can be
placed in use for any specified assigned task, when required. This MOS answers the
question: Does the AIS operational availability furnish operational users with information
required to accomplish assigned tasks effectively? Ao includes both the inherent parameters
and logistics support effectiveness of the AIS that relate to all time the system might be
desired for use. Quantitative evaluation criteria (a ratio between 0 and 1) represents user
satisfaction with the operational availability (Ao) of the AIS to support the performance of
assigned tasks effectively. Qualitative evaluation criteria defines the inherent reliability
parameters, maintainability parameters, and logistics support effectiveness issues that
constitute an operational available AIS and associated subsystems. Address the following
information in this paragraph, replacing terms underlined with the appropriate system
terminology.
µµ State the following: “Ao, where: Ao = (MTBDE)/(MTBDE + MDT). Evaluation

criteria: percentage that the AIS Ao enables effective performance of the assigned
tasks.”

µµ Define the inherent reliability parameters, maintainability parameters, and logistics
support effectiveness issues that constitute an operationally available AIS and associated
subsystems.

µµ Define the type of operational mission failures, preventive maintenance, training,
maintenance and supply response, and actual on-equipment repairs that constitute
downing events for the AIS and associated subsystems.

µµ Define the type of system repair time, administrative delays, and logistics delays that
constitute downing time for the AIS and associated subsystems.

1. Mean Time Between Downing Events (MTBDE). This MOP pertains to the average
time between events which bring the system down. This MOP furnishes information
required to calculate operational availability. MTBDE includes operational mission
failures, preventative maintenance, training, maintenance and supply response,
administrative delays, and actual on-equipment repair. Quantifiable objective evaluation
criteria (average in hours) represents user satisfaction with the MTBDE of the AIS to
support the performance of assigned tasks effectively. Quantifiable subjective evaluation
criteria defines the type of operational mission failures, preventative maintenance,
training, maintenance and supply responses, administrative delays, and actual on-
equipment repair events that constitute downing events for the AIS and associated
subsystems. Address the following information in this paragraph, replacing terms
underlined with the appropriate system terminology.
µµ State, if appropriate, the following: “Mean Time Between Downing Events

(MTBDE), where: MTBDE = (Number of operating hours)/(Number of downing
events). Evaluation criteria: MTBDE that the AIS enables effective performance
of the assigned tasks.”

T-16

Appendix T: AIS ORD Recommendations GSAM Version 3.0

2. Mean Downtime (MDT). This MOP pertains to the average elapsed time, as the
result of a downing event, required to repair and restore the system to full operating
status. This MOP furnishes information required to calculate operational availability.
MDT results from system repairs, administrative delays, and logistics delays.
Quantifiable objective evaluation criteria (average in hours) represents user satisfaction
with the MDT of the AIS to support the performance of assigned tasks effectively.
Quantifiable subjective evaluation criteria defines the type of system repairs,
administrative delays, and logistics delays that constitute downing events for the AIS
and associated subsystems. Address the following information in this paragraph,
replacing terms underlined with the appropriate system terminology.
µµ State, if appropriate, the following: “Mean Down Time (MDT), where: MDT =

(Total down time in hours)/(Number of downing events). Evaluation criteria: MDT
that the AIS enables effective performance of the assigned tasks.”

(b) Operational Dependability (Do). This MOS pertains to the probability that a system can
be continuously used to execute a specific assigned task. This MOS answers the question:
Does the AIS dependability furnish users with information required to accomplish assigned
tasks effectively? Do includes both the inherent reliability parameters, maintainability
parameters, and logistics support effectiveness of the AIS that relate to all time the system
might be desired for use. Quantifiable objective evaluation criteria (a ratio between 0 and
1) represents user satisfaction with the operational dependability of the AIS to support the
performance of assigned tasks effectively. Quantifiable subjective evaluation criteria defines
inherent reliability parameters, maintainability parameters, and logistics support
effectiveness that constitute the type of downing events for the AIS and associated
subsystems. Address the following information in this paragraph, replacing terms underlined
with the appropriate system terminology.
µµ State the following: “Operational Dependability (Do), where: Do = (MTBOMF)/

(MTBOMF + MCMTOMF). Evaluation criteria: percentage that the AIS Do enables
effective performance of the assigned tasks.”

µµ Define the inherent reliability parameters, maintainability parameters, and logistics
support effectiveness issues that constitute an operationally dependable AIS and
associated subsystems.

µµ Define the type of inherent hardware, software and firmware failures, induced user
and maintainer failures, and could not duplicate failures that constitute operational
mission failures for the AIS and associated subsystems.

µµ Define the type of system repair time that constitute corrective maintenance time for
the AIS and associated subsystems.

1. Mean Time Between Operational Mission failures (MTBOMF). This MOP pertains
to the average time between failures or unacceptable degradation of essential system
functions. This MOP furnishes information required to calculate dependability.
Operational mission failures do not necessarily occur during a mission; they merely
must or could have mission impact. Quantifiable objective evaluation criteria (average
in hours) represents user satisfaction with the MTBOMF of the AIS to support the
performance of assigned tasks effectively. Quantifiable subjective evaluation criteria
defines the type of operational mission failures that constitute downing events for the
AIS and associated subsystems. Address the following information in this paragraph,
replacing terms underlined with the appropriate system terminology.

T-17

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ State, if appropriate, the following: “Mean Time Between Operational Mission
Failures (MTBOMF), where: MTBOMF = (Number of operating hours)/(Number
of operational mission failures). Evaluation criteria: MTBOMF that the AIS
enables effective performance of the assigned tasks.”

2. Mean Corrective Maintenance Time for Operational Mission Failures
(MCMTOMF). This MOP pertains to the average total elapsed time, as the result of
a critical failure, required to repair and restore a system to full operating status. This
MOP furnishes information required to calculate operational dependability. Quantifiable
objective evaluation criteria (average in hours) represents user satisfaction with the
MCMTOMF of the AIS to support the performance of assigned tasks effectively.
Quantifiable subjective evaluation criteria defines the type of operational mission
failures that constitute corrective maintenance time for the AIS and associated
subsystems. Address the following information in this paragraph, replacing terms
underlined with the appropriate system terminology.
µµ State, if appropriate, the following: “Mean Corrective Maintenance Time for

Operational Mission Failures (MCMTOMF), where: MCMTOMF = (Total
corrective maintenance time for operational mission failures)/(Number of
operational mission failures). Evaluation criteria: MCMTOMF that the AIS enables
effective performance of the assigned tasks.”

(c) Mean Time Between Maintenance (MTBM) MOS. This MOS pertains to logistics
reliability, the average elapsed time between on-equipment maintenance events consisting
of corrective maintenance actions (inherent, induced, and no-defect), and preventive
maintenance actions. This MOS answers the question: Does the AIS maintenance assure
that users can accomplish assigned tasks effectively? Quantifiable objective evaluation
criteria (average time in hours) represents user satisfaction with the time required for
maintenance of the AIS to support the performance of assigned tasks effectively.
Quantifiable subjective evaluation criteria defines the type of maintenance required for the
AIS and associated subsystems. Address the following information in this paragraph,
replacing terms underlined with the appropriate system terminology.
µµ State, if appropriate, the following: “Mean Time Between Maintenance (MTBM),

where: MTBM = (Total operating time)/(Total number of maintenance events).
Evaluation criteria: MTBM that the AIS enables effective performance of the assigned
tasks.”

µµ Define the type of test preparations, troubleshooting, remove and replacement of
components, repairs, adjustments, and functional checks that constitute unscheduled
maintenance events for the AIS and associated subsystems.

µµ Define the type of inspections, detections, or corrections on incipient failures before
they occur or before they develop into major defects that constitute scheduled
maintenance events for the AIS and associated subsystems.

1. Mean Time Between Unscheduled Maintenance (MTBUM) MOP. This MOP
pertains to the average elapsed time between on-equipment, corrective maintenance
actions (inherent, induced, and no-defect). This MOP answers the question: Does the
AIS corrective maintenance assure that users can accomplish assigned tasks effectively?
Quantifiable objective evaluation criteria (average time between unscheduled
maintenance) represents user satisfaction with the time required for corrective
maintenance of the AIS to support the performance of assigned tasks effectively.
Quantifiable subjective evaluation criteria defines the type of corrective maintenance
required for the AIS and associated subsystems. Address the following information in
this paragraph, replacing terms underlined with the appropriate system terminology.

T-18

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ State, if appropriate, the following: “Mean time between unscheduled
maintenance (MTBUM), where: MTBUM = (Total operating time)/(Number of
corrective maintenance events). Evaluation criteria: MTBUM that the AIS enables
effective performance of the assigned tasks.”

2. Mean Time Between Scheduled Maintenance (MTBSM) MOP. This MOP pertains
to the average elapsed time between the performance of scheduled or preventive or
scheduled maintenance events. This MOP answers the question: Does the AIS
scheduled maintenance assure that users can accomplish assigned tasks effectively?
Quantifiable objective evaluation criteria (average time between scheduled maintenance)
represents user satisfaction with the time required for preventative maintenance of the
AIS to support the performance of assigned tasks effectively. Quantifiable subjective
evaluation criteria defines the type of maintenance deemed preventive or unscheduled
for the AIS and associated subsystems. Address the following information in this
paragraph, replacing terms underlined with the appropriate system terminology.
µµ State, if appropriate, the following: “Mean time between scheduled maintenance

(MTBPM), where: MTBPM = (Total operating time)/(Number of preventative
maintenance events). Evaluation criteria: MTBPM that the AIS enables effective
performance of the assigned tasks.”

(d) Maintenance Ratio (MR) MOPs. This MOS pertains to the average maintenance work-
hours expended over the operational life of the system, covering corrective maintenance
actions (inherent, induced, and no-defect), and preventative maintenance actions. This
MOS answers the question: Does the AIS maintenance assure that users can accomplish
assigned tasks effectively? Quantifiable objective evaluation criteria denoting (the ratio or
percentage of time the system requires maintenance) represents user satisfaction with the
time required for maintenance of the AIS to support the performance of assigned tasks
effectively. Quantifiable subjective evaluation criteria defines the type of maintenance
(corrective and preventive) required for the AIS and associated subsystems. Address the
following information in this paragraph, replacing terms underlined with the appropriate
system terminology.
µµ State, if appropriate, the following: “Maintenance Ratio (MR), where: MR = (Total

corrective and preventive maintenance hours expended)/(Total system possessed time).
Evaluation criteria: MR that the AIS enables effective performance of the assigned
tasks.”

µµ Define the type of test preparations, troubleshooting, remove and replacement of
components, repairs, adjustments, and functional checks that constitute unscheduled
maintenance events and time for the AIS and associated subsystems.

µµ Define the type of inspections, detections, or corrections on incipient failures before
they occur or before they develop into major defects that constitute scheduled
maintenance events and time for the AIS and associated subsystems.

T-19

Appendix T: AIS ORD Recommendations GSAM Version 3.0

1. Mean Corrective Maintenance Time (MCMT) MOP. This MOP pertains to the
average elapsed time to correct malfunctions, including preparation for test,
troubleshooting, removal and replacement of components, repair, adjustment, functional
checks, et cetera. This MOP answers the question: Does the AIS corrective maintenance
assure that users can accomplish assigned tasks effectively? Quantifiable objective
evaluation criteria (average corrective maintenance time) represents user satisfaction
with the time required for corrective maintenance of the AIS to support the performance
of assigned tasks effectively. Quantifiable subjective evaluation criteria defines the
type of corrective maintenance required for the AIS and associated subsystems. Address
the following information in this paragraph, replacing terms underlined with the
appropriate system terminology.
µµ State, if appropriate, the following: “Mean corrective maintenance time (MCMT),

where: MCMT = (Total down time for corrective maintenance)/(Number of
corrective maintenance events). Evaluation criteria: MCMT that the AIS enables
effective performance of the assigned tasks.”

2. Mean Preventive Maintenance Time (MPMT) MOP. This MOP pertains to the
average elapsed time to prevent malfunctions, including inspections, detections, or
corrections of incipient failures either before they occur or before they develop into
major defects such as adjustments. This MOP answers the question: Does the AIS
preventive maintenance assure that users can accomplish assigned tasks effectively?
Quantifiable objective evaluation criteria (average preventive maintenance time)
represents user satisfaction with the time required for preventative maintenance of the
AIS to support the performance of assigned tasks effectively. Quantifiable subjective
evaluation criteria defines the type of maintenance deemed preventive or unscheduled
for the AIS and associated subsystems. Address the following information in this
paragraph, replacing terms underlined with the appropriate system terminology.

µµ State, if appropriate, the following: “Mean preventive maintenance time (MPMT),
where: MPMT = (Total down time for preventive maintenance)/(Number of corrective
maintenance events). Evaluation criteria: MPMT that the AIS enables effective
performance of the assigned tasks.”

(e) System Survivability MOS. System survivability MOS for an AIS address the
administrative and physical controls, communication controls, data integrity, and post-
processing controls capabilities of the AIS to support mission requirements. This MOS
and associated MOPs, thresholds, and objectives apply to all tasks unless otherwise noted.
Address the following information in this paragraph, replacing terms underlined with the
appropriate system terminology.
µµ State the following: “This MOS measures the adequacy of administrative and physical

controls, communication controls, data integrity, and post-processing controls
capabilities of the AIS to support mission requirements. Its evaluation criteria represents
the aggregate of such characteristics as administrative and physical controls,
communication controls, data integrity, and post-processing controls.”

1. Administrative and Physical Controls. Administrative and physical controls adequacy
pertains to the protection of data processing operations required to perform assigned
tasks effectively, and covers the use of guards, locks, badges, and software access
controls such as passwords and lockwords. This system survivability characteristic
applies to the suitability of any assigned task. Address the following information in
this paragraph, replacing terms underlined with the appropriate system terminology:

T-20

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ State the following: “Administrative and physical controls measures the protection
of data processing operations to meet mission needs. Evaluation criteria: User
satisfaction of planned administrative and physical controls, based on requirements
described in paragraph 6.e that address the AIS threat delineated in paragraphs 2,
2.a, and 2.b.”

2. Communication Controls. Communication controls adequacy pertains to complete
data transmission and receipt by authorized personnel, terminal, or computer recipients
required to perform assigned tasks effectively and covers the secure use of terminals,
networks, and connections. Address the following information in this paragraph,
replacing terms underlined with the appropriate system terminology:
µµ State the following: “Communication controls measures complete data

transmission and receipt by authorized personnel, terminal, or computer recipients
to meet mission needs. Evaluation criteria: User satisfaction of planned
communication controls, based on requirements described in paragraph 6.e that
address the AIS threat delineated in paragraphs 2, 2.a, and 2.b.”

3. Data Integrity. Data integrity adequacy pertains to the successful processing of data
required to perform assigned tasks effectively, and covers the prevention of security
violations that inhibit effective data processing. This system survivability characteristic
applies to the suitability of any assigned task. Address the following information in
this paragraph, replacing terms underlined with the appropriate system terminology:
µµ State the following: “Data integrity measures to the successful processing of

data to meet mission needs. Evaluation criteria: User satisfaction of planned
data integrity, based on requirements described in paragraph 6.e that address the
AIS threat delineated in paragraphs 2, 2.a, and 2.b.”

4. Post-processing Controls. Post-processing controls adequacy pertains to determining
(a) all transactions are processed once and only once, (b) transactions and processing
were complete, accurate, and authorized, (c) distribution of processing results was
made to only authorized recipients, (d) data and the required use of system resources
were recoverable, and (e) there is an ability to detect and isolate violations required to
perform assigned tasks effectively. Post-processing controls covers the validation of
compliance with predetermined systems requirements through post-operations analysis
of input, processing, and output information. This system survivability characteristic
applies to the suitability of any assigned task. Address the following information in
this paragraph, replacing terms underlined with the appropriate system terminology:
µµ State the following: “Post-processing controls measures the authorization of

transaction, processing, and recovery methods to meet mission needs. Evaluation
criteria: User satisfaction of planned Post-processing controls, based on
requirements described in paragraph 6.e that address the AIS threat delineated in
paragraphs 2, 2.a, and 2.b.”

(f) Human Supportability. The human supportability for an AIS address the adequacy of
manpower and personnel support, training and training support, technical data, human
factors engineering, and safety and health hazard capabilities of the AIS to support mission
requirements. This MOS and associated MOPs, thresholds, and objectives apply to all
tasks unless otherwise noted. Address the following information in this paragraph, replacing
terms underlined with the appropriate system terminology.

T-21

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ State the following: “This MOS measures the adequacy of manpower and
personnel support, training and training support, technical data, human factors
engineering, and safety and health hazard capabilities of the AIS to support mission
requirements. Its evaluation criteria represents the aggregate of such characteristics
as manpower and personnel support, training and training support, technical data,
human factors engineering, and safety and health hazard capabilities.”

1. Manpower and Personnel Support Adequacy. Manpower and personnel support
adequacy pertains to the utility of operations and maintenance personnel required to
execute assigned tasks effectively. This human supportability characteristic applies to
the suitability of executing any assigned task. Address the following information in
this paragraph, replacing terms underlined with the appropriate system terminology.
µµ State the following: “Manpower and personnel support adequacy measures the

utility of operations and maintenance personnel required to execute assigned tasks
effectively. Evaluation criteria: User satisfaction of planned manpower and
personnel support requirements, based on requirements described in paragraph
5.C.(1).”

2. Training and Training Support Adequacy. Training and training support adequacy
pertains to the utility of training and training support required to execute assigned
tasks effectively. This human supportability characteristic applies to the suitability of
executing any assigned task. Address the following information in this paragraph,
replacing terms underlined with the appropriate system terminology.
µµ State the following: “Training and training support adequacy measures the utility

of planned training and training support required to execute assigned tasks
effectively. Evaluation criteria: User satisfaction of planned training and training
support requirements, based on requirements described in paragraph 5.C.(2).”

3. Technical Data Adequacy. Technical data adequacy pertains to the utility of technical
data required to execute assigned tasks effectively. This human supportability
characteristic applies to the suitability of executing any assigned task. Address the
following information in this paragraph, replacing terms underlined with the appropriate
system terminology.
µµ State the following: “Technical data adequacy measures the utility of planned

technical data required to execute assigned tasks effectively. Evaluation criteria:
User satisfaction of planned technical data requirements, based on requirements
described in paragraph 5.C.(3).”

4. Human Factors Engineering Adequacy. Human factors engineering adequacy
pertains to the utility of implemented human factors engineering required to execute
assigned tasks effectively. This human supportability characteristic applies to the
suitability of executing any assigned task. Address the following information in this
paragraph, replacing terms underlined with the appropriate system terminology.
µµ State the following: “Human factors engineering adequacy measures the utility

of planned human factors engineering required to execute assigned tasks effectively.
Evaluation criteria: User satisfaction of planned human factors engineering
requirements, based on requirements described in paragraph 5.C.(4).”

5. Safety and Health Hazard Adequacy. Safety and health hazard adequacy pertains to
the utility of planned safety and health hazard considerations required to execute
assigned tasks effectively. This human supportability characteristic applies to the
suitability of executing any assigned task. Address the following information in this
paragraph, replacing terms underlined with the appropriate system terminology.

T-22

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ State the following: “Safety and health hazard adequacy measures the utility of
planned safety and health hazard conditions required to execute assigned tasks
effectively. Evaluation criteria: User satisfaction of planned safety and health
hazard condition requirements, based on requirements described in paragraph
5.C.(5).”

(g) Infrastructure Supportability. This infrastructure supportability MOP for an AIS address
the adequacy of transportation and basing, facility support, supply support, support
equipment, and software support capabilities of the AIS to support mission requirements.
This MOS and associated MOPs, thresholds, and objectives apply to all tasks unless
otherwise noted. Address the following information in this paragraph, replacing terms
underlined with the appropriate system terminology.
µµ State the following: “This MOS measures the adequacy of transportation and basing,

facility support, supply support, support equipment, and software support capabilities
of the AIS to support mission requirements. Its evaluation criteria represents the
aggregate of such characteristics as transportation and basing, facility support, supply
support, support equipment, and software support capabilities.”

1. Transportability and Basing Adequacy. Transportation and basing adequacy pertains
to the utility of planned transportation and basing required to execute assigned tasks
effectively. This infrastructure supportability characteristic applies to the suitability
of executing any assigned task. Address the following information in this paragraph,
replacing terms underlined with the appropriate system terminology.
µµ State the following: “Transportation and basing adequacy measures the utility

of planned transportation and basing required to execute assigned tasks effectively.
Evaluation criteria: User satisfaction of planned transportation and basing
requirements, based on requirements described in paragraph 6.B.”

2. Facility Support Adequacy. Facility support adequacy pertains to the utility of planned
facility support required to execute assigned tasks effectively. This infrastructure
supportability characteristic applies to the suitability of executing any assigned task.
Address the following information in this paragraph, replacing terms underlined with
the appropriate system terminology.
µµ State the following: “Facility support adequacy measures the utility of planned

facility support required to execute assigned tasks effectively. Evaluation criteria:
User satisfaction of planned facility support requirements, based on requirements
described in paragraph 5.E.(2).”

3. Supply Support Adequacy. Supply support adequacy pertains to the utility of planned
supply support required to execute assigned tasks effectively. This infrastructure
supportability characteristic applies to the suitability of executing any assigned task.
Address the following information in this paragraph, replacing terms underlined with
the appropriate system terminology.
µµ State the following: “Supply support adequacy measures the utility of planned

supply support required to execute assigned tasks effectively. Evaluation criteria:
User satisfaction of planned supply support requirements, based on requirements
described in paragraph 5.E.(1)”

4. Support Equipment Adequacy. Support equipment adequacy pertains to the utility
of planned support equipment required to execute assigned tasks effectively. This
infrastructure supportability characteristic applies to the suitability of executing any
assigned task. Address the following information in this paragraph, replacing terms
underlined with the appropriate system terminology.

T-23

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ State the following: “Support equipment adequacy measures the utility of planned
support equipment required to execute assigned tasks effectively. Evaluation
criteria: User satisfaction of planned support equipment requirements, based on
requirements described in paragraph 5.B.”

(h) Software Supportability. The software supportability MOS for an AIS address the
software maintainability, software maturity, and software support resource capabilities
of the AIS to support mission requirements. This MOS and associated MOPs, thresholds,
and objectives apply to all tasks unless otherwise noted. Address the following
information in this paragraph, replacing terms underlined with the appropriate system
terminology.
µµ State the following: “This MOS measures the adequacy of software

maintainability, software maturity, and software resource supportability capabilities
of the AIS to support mission requirements. Its evaluation criteria represents the
aggregate of such characteristics as software maturity, software maintainability,
and software resource supportability capabilities.”

1. Software Maturity Adequacy. Software maturity pertains to the progress of the
software development in its evolution to meet mission needs; and is determined by the
adequacy of software change rates, software change implementation rates, software
change closure rates, and software change severity. This software support characteristic
applies to the suitability of any assigned task. Address the following information in
this paragraph, replacing terms underlined with the appropriate system terminology.
µµ State the following: “Software maturity measures the progress of the software

development in its evolution to meet mission needs. Evaluation criteria: User
satisfaction with software maturity rates, based on based on requirements described
in paragraph 5.D.(1).”

2. Software Maintainability Adequacy. Software maintainability pertains to the
capability of the software to be maintained by operational users; and is determined by
the adequacy of documentation, organization, descriptiveness, and traceability; and
the adequacy of software source code modularity, consistency, simplicity, expandability,
testability, and traceability. This software support characteristic applies to the suitability
of any assigned task. Address the following information in this paragraph, replacing
terms underlined with the appropriate system terminology.
µµ State the following: “Software maintainability measures the capability of the

software to be maintained by operational users. Evaluation criteria: User
satisfaction with software maintainability, based on requirements described in
paragraph 5.D.(2).”

3. Software Support Resources Adequacy. Software support resources adequacy
pertains to the utility of planned software support required to execute assigned tasks
effectively. This software support characteristic applies to the suitability of executing
any assigned task. Address the following information in this paragraph, replacing
terms underlined with the appropriate system terminology.
µµ State the following: “Software support resource adequacy measures the utility of

planned software support required to execute assigned tasks effectively. Evaluation
criteria: User satisfaction of planned software support resource requirements,
based on requirements described in paragraph 5.D.(3).”

T-24

Appendix T: AIS ORD Recommendations GSAM Version 3.0

4. Software Life Cycle Support Adequacy. Software support resource adequacy pertains
to the utility of planned software life cycle support required to execute assigned tasks
effectively. This software support characteristic applies to the suitability of executing
any assigned task. Address the following information in this paragraph, replacing
terms underlined with the appropriate system terminology.
µµ State the following: “Software life cycle support adequacy measures the utility of

planned software life cycle support required to execute assigned tasks effectively.
Evaluation criteria: User satisfaction of planned software life cycle support
requirements, based on requirements described in paragraph 5.D.(4).”

c. Critical System Characteristics. Critical system characteristics pertain to those design features
that determine how well the proposed concept or system will perform in its intended environment.
Software engineering is the critical system characteristic for AIS operations. Software engineering
pertains to principles of software development intended to reduce development risk and improve
development disciplines under the evolutionary, incremental software acquisition process. Address
the following information in this paragraph.
µµ Outline the capability requirements by increments.
µµ Insert a table to matrix the capabilities of each software incremental development to the assigned

tasks described in paragraph 4.a.1 and its subparagraphs.
5. Integrated Logistics Support. Integrated logistics support pertains to a disciplined, unified, and iterative

approach to the management and technical activities necessary to integrate support considerations into
system and equipment design; develop support requirements that are related consistently to readiness
objectives, to design, and to each other; acquire the required support; and provide required support
during operational phase at minimum cost.
a. Maintenance Planning. Maintenance planning pertains to the process conducted to evolve and

establish maintenance concepts and requirements for the lifetime of the system. Address the
following information in this paragraph.
µµ Develop maintenance concepts using Repair Level Analysis (RLA) trade studies.
µµ Determine repairable, commercial NDI maintenance strategy.
µµ Describe the planning approach for contract versus organic repair.
µµ Describe the software maintenance concept.
(1) Organizational Maintenance Concept. Organization maintenance concept pertains to the

user organization as responsible for performing maintenance on its assigned equipment.
Organizational maintenance activities cover inspecting, servicing, lubricating, adjusting, and
replacing parts, minor assemblies, and subassemblies. Address the following information in
this paragraph.
µµ Identify the maintenance functional requirements and maintenance concept.
µµ Specify needed organic and interim contractor support.
µµ Outline maintenance tasks, support, documentation, and inter-service organic and contractor

mix workloads.
(2) Depot Maintenance Concept. Depot maintenance concept pertains to the organization —

DoD or contractor — responsible for supporting lower level maintenance by providing technical
assistance and performing that maintenance beyond their responsibility or capability, providing
stocks of serviceable equipment, or using more extensive facilities for repair than are available
in organizational-level maintenance activities. Depot maintenance activities cover major
overhaul or a complete rebuild of parts, assemblies, subassemblies, and end items to include
the manufacture of parts, modification, testing, and reclamation as required. Address the
following information in this paragraph.

T-25

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ Identify maintenance functional requirements and maintenance concept.
µµ Specify needed organic and interim contractor support.
µµ Outline baseline planning approach for contract, organic, inter-service repair mix, and

time phasing requirements.
b. Support Equipment. Support equipment pertains to all mobile and fixed equipment required to

support system operations and maintenance. Support equipment covers associated multi-use end
items; ground handling and maintenance equipment; tools, metrology and calibration equipment;
and test equipment. Address the following information in this paragraph.
µµ Identify needed standard, commercial NDI support equipment.
µµ Specify the desired test and fault isolation capabilities for automated test equipment in terms

of affordable and realistic probabilities.
µµ Describe the depot-level support equipment requirement to support the system throughout the

system life cycle.
c. Human Systems Integration. Human systems integration pertains to the consideration of

manpower, personnel, training, human factors engineering, safety, and health hazards as factors
towards readiness, force structure, affordability, and wartime operational objectives.
(1) Manpower and Personnel. Manpower and personnel pertain to the identification and

acquisition of military and civilian personnel with the skills and grades required to operate and
support the system over its lifetime at peacetime and wartime rates. Address the following
information in this paragraph.
µµ Specify thresholds and objectives for manpower (authorizations, specialty codes, skill level,

high drivers).
µµ Specify thresholds and objectives for personnel (aptitudes, knowledge, skills, specialty

code structure, high drivers) requirements.
(2) Training and Training Support. Training and training support pertains to the processes,

procedures, techniques, training devices, and equipment used to train civilian and active duty
and reserve military personnel to operate and support the system. Training curriculum covers
initial as well as continuation training for individuals and crews; new equipment training;
initial, formal, and on-the-job training; and logistics support planning for training equipment
and training device acquisitions and installations. Address the following information in this
paragraph.
µµ Specify thresholds and objectives for training (methods, training system concept, high

drivers) requirements.
µµ Identify operations and maintenance training concepts.
µµ Describe depot training requirements for maintenance, engineering, and software support

personnel.
µµ Do not document specific equipment to be purchased.

(3) Technical Data. Technical data pertains to scientific or technical information recorded in any
form or medium (e.g., hard copy, CD-ROM and video tapes) such as manuals, drawings, and
documentation of computer programs or related software. Address the following information
in this paragraph.
µµ Specify user-unique requirements for technical data (timeliness, validation and verification,

user participation, special style and format, update medium and distribution, and technical
orders) development.

(4) Human Factors Engineering. Human factors engineering pertain to the development of
effective person-machine interfaces and preclude system characteristics that require extensive
cognitive, physical, or sensory skills; require complex manpower or training intensive tasks; or
result in frequent or critical errors. Address the following information in this paragraph.

T-26

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ Specify thresholds and objectives for human factors engineering (methodologies, high
drivers) requirements.

µµ Highlight the human performance and human-in-loop issues as outlined in the IMPACTS
Program Plan.

µµ Describe the man-machine interface requirements for the AIS with regard to system
operations and system maintenance.

(5) Safety and Health Hazards. Safety and health hazards pertain to the application of scientific
and engineering principles towards identifying and reducing hazards associated with system
operation and support with the objective of designing the safest possible system consistent
with mission requirements and cost-effectiveness. Address the following information in this
paragraph.
µµ Specify thresholds and objectives for safety (lessons learned) and health hazards analysis

(lessons learned, high drivers) requirements.
d. Computer Resources. Computer resources pertain to the facilities, hardware, system software,

software development and support tools, documentation, and people needed to operate and support
computer systems. Address the following information in this paragraph.
µµ Describe the computer resource constraint (language, hardware, database, architecture, and

interoperability) requirements.
µµ Identify spare memory, throughput, and computer memory growth requirements.
(1) Software Maturity. Software maturity pertains to the progress of the software development

in its evolution to be reliable. Software reliability pertains to the probability that the software
will contribute to failure-free system performance for a specified period of time under specific
conditions. Address the following information in this paragraph.
µµ State software maturity requirements to include software change rates, software change

implementation rates, software change closure rates, and software change severity for pre-
and post-delivery of fielded software.

µµ Establish requirements with regard to patch-free software and number of mission critical
problems acceptable before operational use.

(2) Software Maintainability. Software maintainability pertains to those software and computer
support resource characteristics that affect the ability of software programmers/analysts to
change software. Software changes cover correcting errors, adding system capabilities, deleting
features from programs, and modifying software to be compatible with hardware changes.
Address the following information in this paragraph.
µµ Identify any automated tool requirements for software maintainability/trouble shooting.
µµ Describe software documentation requirements for software maintainability.
µµ Describe software source code requirements for software maintainability.
µµ Describe software implementation requirements for software maintainability.
µµ Describe software quality assurance standard requirements with regard to software design,

development, and delivery to assure future re-competability of software support for the life
of the software.

(3) Software Support Resources. Software support pertains to the utility of planned software
support resources to perform assigned tasks effectively. Software support resources covers
products, resources, and procedures that facilitate the support activities to establish the
operational baselines, to modify and install software, and to meet user requirements. Address
the following information in this paragraph.

T-27

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ Describe how products, resources, and procedures facilitate the support activities to establish
the software operational baselines.

µµ Describe how products, resources, and procedures facilitate the support activities to modify
and install software changes.

µµ Identify when the software support agency (SSA) must be functional (initial operational
capability (IOC) declaration, full operational capability (FOC) declaration, et cetera) to
provide for system updates, configuration control, and management of all computer programs
and data.

(4) Software Life Cycle Support. Software life cycle support pertains to the adequacy of the
software life cycle development processes as they affect the supportability of the developed
software. Software life cycle support covers project and configuration management, management
and technical personnel, support systems, and facilities support activities. Address the following
information in this paragraph.
µµ Describe project and configuration management requirements to support the software life

cycle.
µµ Describe managerial and technical personnel requirements to support the software life

cycle.
µµ Describe support system and facility requirements to support the software life cycle.

e. Other Logistics Considerations. Other logistics support pertains to supplies, facilities, and land.
(1) Supply Support. Supply support pertains to all management actions, procedures, and techniques

used to determine requirements to acquire, catalog, receive, store, transfer, issue, and dispose
of secondary items. Supply support covers provisions for initial and replenishment supply
support, and sustained logistics acquisition support for support and test equipment. Address
the following information in this paragraph.
µµ Identify the contractual approach for provisioning initial supply support to support mission

readiness.
µµ Describe the contractual and commercial-style inventory control management approach

for acquiring, distributing, and replenishing inventory spares and repair parts to support
mission sustainment.

µµ Establish the post production support (PPS) analysis requirement.
(2) Facilities and Land. facilities and land pertain to the permanent, semi-permanent, or temporary

real property assets required to support the system, including conducting studies to define
facilities or facility improvements, locations, space needs, utilities, environmental requirements,
real estate requirements, and equipment. Address the following information in this paragraph.
µµ Specify facility and shelter requirements that are external and additional to the procured

AIS.
µµ Describe facility-unique (e.g., hardening, electromagnetic pulse (EMP) protection,

environmental effects, power sources, and life cycle cost) requirements.
µµ Emphasize environmental protection procedures.

6. Infrastructure Support and Interoperability. Infrastructure support and interoperability pertain to
the compatibility of new system designs with the infrastructure that will support them, the identified
unique infrastructure requirements to support the system, and the proper planning required to put the
infrastructure support into place.
a. Command, Control, Communications, and Intelligence (C3I). C3I pertains to AIS-unique

intelligence information requirements as well as AIS integration into the C3I architecture forecast
to exist at the time the AIS is fielded. Address the following information in this paragraph.

T-28

Appendix T: AIS ORD Recommendations GSAM Version 3.0

µµ Describe the C3I constraints that may impact the mission needs.
µµ Define the desired C3I capability in the operational environment.

b. Transportation and Basing. Transportation and basing pertains to AIS deployability to/within
theater as well as required basing and associated facility infrastructures. Address the following
information in this paragraph.
µµ Describe the transportation and basing constraints that may impact satisfying the mission needs.
µµ Define the level of desired transportation and basing capability in the operational environment.
µµ Define for deployable facilities the setup and tear down time, manpower, and environmental

conditions thresholds and objectives for field operations.
c. Standardization, Interoperability, and Commonality. Standardization, interoperability, and

commonality pertain to the AIS joint use, procedural and technical interface, communications,
protocols, and standards requirements to assure AIS interoperability with other Service, joint Service,
and Allied systems. Address the following information in this paragraph.
µµ Describe the standardization, interoperability and commonality constraints that may impact

satisfying the mission needs.
µµ Define the level of desired standards, interoperable, and commonality capability in the

operational environment.
(1) Standardization and Commonality. Standardization pertains to the standard application

program interfaces (API) for each common operating environment (COE) functional area used
for information systems to operate effectively together. Commonality pertains to the common
operating environment for information systems to operate effectively together. Address the
following information in this paragraph.
µµ Define the COE.
µµ Describe the specific architecture for standard API to provide mission applications in the

COE.
µµ Describe the specific architecture for standard API to provide support applications in the

COE, to cover such function areas as:
« Administration Functions (network administration, system administration, database

administration, and security administration).
« Communication Functions (message processing, communications, correlation,

database management, and Mapping, Charting and Geodesy).
« Managerial Functions (database management, file management, executive manager,

alerts, and office automation,).
« Service Functions (on-line support, multimedia support, data interchange services,

network services, and distributed computing services).
(2) Interoperability. Interoperability pertains to the ability of systems, units, or forces to provide

services to or accept services from other systems, units, or forces and to use the services
exchanged so exchanged to operate effectively together. Address the following information in
this paragraph.
µµ Identify the all systems, units, or forces that the AIS acquisition must maintain

interoperability capabilities.
µµ Describe and correlate each identified AIS interoperability requirement with specific

operational and assigned task to meet the mission need.
d. Mapping, Charting, and Geodesy (MCG) Support. MCG pertains to any cartographic materials,

digital topographic data, and geodetic data needed for AIS employment. Address the following
information in this paragraph.
µµ Describe the MCG constraints that may impact satisfying the mission needs.
µµ Define the level of desired MCG capability in the operational environment.

T-29

Appendix T: AIS ORD Recommendations GSAM Version 3.0

e. Environment Support. Environment support pertains to physical factors, operational locations,
electronics, and advanced technologies, as well as behavioral factors, personnel perceptions,
emotions, and cultural aspects that the mission of AIS is expected to be performed. For managers,
the MIS operational environment (whether automated or manual) concerns a communicative process
where data are accumulated, processed, stored, and transmitted to appropriate personnel within the
organization for the purpose of making decisions to support organizational objectives and needs.
Address the following information in this paragraph.
µµ Describe the impact of the operational environment in which the mission needs are expected to

be performed.
µµ Define the level of desired mission capability in the operational environment.
µµ Describe the AIS system survivability issues in the operational environment with regard to:
« Administrative and physical controls.
« Communication controls.
« Data integrity.
« Post-processing controls.

7. Force Structure. Force structure pertains to the number of AIS systems, subsystems, spares, and
training units required to achieve mission needs. Address the following information in this paragraph.
µµ Estimate the number of AIS systems, subsystems (nodes), spares and training units required.
µµ Identify the type and number of hardware platforms that will employ the systems and subsystems

under development and procured to meet mission needs.
8. Schedule Considerations. Schedule considerations pertain to the acquisition milestone timetable for

procuring the AIS. Address the following information in this paragraph.
µµ Define the acquisition actions required for the AIS to attain initial operational capability (IOC) and

full operational capability (FOC) declaration.
µµ Highlight the AIS operational capability (number of operational systems, operational and support

personnel, facilities, and organization and depot maintenance support elements) necessary to declare
IOC and FOC.

µµ Highlight the level of performance (operational effectiveness and operational suitability key
parameters thresholds) necessary to declare IOC and FOC.

µµ Specify the projected AIS availability time frame objective and the impact of not meeting the
window time frame for IOC declaration.

µµ Define the required action and desired suspense dates (e.g., RAA date, projected trial period dates,
required support capability dates) for attaining IOC.

T-30

Appendix T: AIS ORD Recommendations GSAM Version 3.0

T.2 Requirements Correlation Matrix

A requirements correlation matrix (RCM) is a three-part summary attachment to the ORD, addressed in
three parts: Part 1: The Requirements Correlation Matrix; Part 2: Supporting Rationale for System
Characteristics and Capabilities Sheet; and Part 3: Rationale and Needs/Requirements Change Sheet.

RCM Part 1: The Requirements Correlation Matrix (RCM). RCM Part 1 pertains to summarizing in
matrix form those system capabilities, characteristics, objectives, thresholds, and key parameters germane
to the operational effectiveness and operational suitability of the acquired automated information system
(AIS). Assigned tasks are the ORD-derived measures of effectiveness (task effectiveness rate) needed for
an MIS to accomplish its military objectives, missions, or tasks. System capabilities are ORD-derived
measures of performance (such as information accuracy, currency, timeliness, etc.) needed for an AIS to
accomplish military objectives, missions, or tasks. System characteristics are ORD-derived design features
(weight, size, shape, etc.) needed for a system to accomplish approved military objectives, missions, or
tasks. A threshold is a minimum acceptable operational value for a system capability or characteristic
below which the utility of the AIS becomes questionable. An objective is an optimal operational value
equal to or greater than a corresponding threshold value. Key parameters are capabilities and characteristics
so significant that failure to meet the their threshold is cause for the concept or system selection to be
reevaluated or the program to be reassessed or terminated. Address the following information in this
paragraph, replacing terms underlined with the appropriate system terminology.
µµ State at the top of the page the following:

REQUIREMENTS CORRELATION MATRIX
PART I AS OF DATE: .”
µµ Construct the RCM (Tables T-1 and T-2) template.
µµ State the critical operational issue (COI) — effectiveness or suitability.
µµ Denote for each operational effectiveness COI the following:
« Specify in the “System Capabilities and Characteristics” column each assigned task associated

with the COI, and each information value performance metric associated with the assigned task
(reference figure T-2).

« Specify in the “Thresholds” column the minimum acceptable task effectiveness rate for each
assigned task, and associated objective criteria for the assigned task information value
performance metrics.

« Specify in the “Objectives” column the optimal task effectiveness rate for each assigned task,
and associated objective criteria for the assigned task information value performance metrics.

« Place an “*,” where appropriate, by those assigned tasks and associated information value
performance metrics in whose threshold(s) denote key parameters to the AIS operational
effectiveness.

µ Denote for each operational effectiveness COI the following:
« Specify in the “System Capabilities and Characteristics” column those standard suitability

performance metrics (reference figure T-3).
« Specify in the “Thresholds” column the minimum acceptable performance criteria for each

suitability performance metric, where appropriate.
« Specify in the “Objectives” column the optimal performance criteria for each suitability

performance metric, where appropriate.
« Place an “*,” where appropriate, by those suitability performance metrics whose threshold(s)

denote key parameters to the AIS operational suitability.

T-31

Appendix T: AIS ORD Recommendations GSAM Version 3.0

Table T-1. Illustrations of Assigned Tasks

PLANNING ASSIGNED TASK ILLUSTRATIONS

Create training standards and requirements. Forecast logistics support resource requirements.

Design training documentation and courseware. Formulate recommended instructional sequences.

Determine aeromedical evacuation needs. Plan capacity, orders and production requirements.

Develop CBI, CAI, IVD, and CDC training plans. Project training resource cost estimates.

ORGANIZING ASSIGNED TASK ILLUSTRATIONS

Allocate training resource availability and reserves. Maintain time and attendance records.

Categorize aircraft aircrews, parts and equipment. Organize shop floor assignments.

Classify training instructors, resources, and courses. Schedule theater and until level airlift missions.

Inventory product requisitions and acquisitions. Select maintenance crew shifts for wartime surge.

DIRECTING ASSIGNED TASK ILLUSTRATIONS

Administer CBI, CAI, and IVD training. Instruct personnel on ground safety procedures.

Communicate airlift mission status to theater CINC. Lead en route air traffic to recovery destination.

Coordinate resources for generating airlift sorties. Report budget and general ledger accounts.

Direct inbound and outbound airlift missions. Train personnel on aerospace ground equipment.

CONTROLLING ASSIGNED TASK ILLUSTRATIONS

Control cost receipts and expenditures. Modify scheduled events for airlift missions.

Evaluate student performance. Monitor launch, en route, and recovery missions.

Inspect inventories stock, parts, and equipment. Regulate student performance, status, and awards.

Measure training course effectiveness. Track inbound and outbound air traffic.

NOTE: AIS assigned tasks are performed by “people” using computer systems called AISs. To write an
assigned task:
• Begin by selecting an appropriate task-action verb.
• Conclude by operationally stating the task that the personnel must perform to meet mission needs.

When writing the assigned task, assume that the assigned task can be performed (though
ineffectively) without the use of an AIS.

T-32

Appendix T: AIS ORD Recommendations GSAM Version 3.0

Table T-2. AIS Operational Effectiveness RCM

RCM Part 2: Supporting Rationale for System Characteristics and Capabilities Sheet. RCM Part 2
pertains to the reasoning for assigning thresholds values (minimum acceptable operational values) to specific
system capabilities and characteristics. Address the following information in this paragraph, replacing
terms underlined with the appropriate system terminology.
µµ State at the top of the page the following:

REQUIREMENTS CORRELATION MATRIX
PART II AS OF DATE: .”
µµ Specify the following for each system capability/characteristic having designated threshold values.
« The parameter number (Parameter X) and the associated system capability/characteristic in

“bold” type.
« The specific studies, analyses, threat assessments, modeling, or other reference sources including

military judgment that justify and substantiate each system characteristic threshold.

RCM Part 3: Rationale and Needs/Requirements Change Sheet. RCM Part 3 pertains to the reasoning
for changes in system characteristics, performance, and supporting parameters. Address the following
information in this paragraph, replacing terms underlined with the appropriate system terminology.
µµ State at the top of the page the following:

OPERATIONAL
EFFECTIVENESS ORD I ORD II ORD III

System Capabilities &
Characteristics

Thresh-
holds

Objec-
tives

Thresh-
holds

Objec-
tives

Thresh-
holds

Objec-
tives

Critical Operational Issue X. ______________________________________

1. Task (Effectiveness Rate)
1. Task Timeliness MOP.
2. Accuracy MOP.
3. Currency MOP.
4. Completeness MOP.
5. Relevancy MOP.
6. Format MOP.

TBD
TBD
TBD
TBD
TBD
TBD
TBD

XX%
XX
XX
XX
XX
XX
XX

XX%
XX
XX
XX
XX
XX
XX

XX%
XX
XX
XX
XX
XX
XX

XX%
XX
XX
XX
XX
XX
XX

XX%
XX
XX
XX
XX
XX
XX

2. Task (Effectiveness Rate)
1. Task Timeliness MOP.
2. Accuracy MOP.
3. Currency MOP.
4. Completeness MOP.
5. Relevancy MOP.
6. Format MOP.

TBD
TBD
TBD
TBD
TBD
TBD
TBD

XX%
XX
XX
XX
XX
XX
XX

XX%
XX
XX
XX
XX
XX
XX

XX%
XX
XX
XX
XX
XX
XX

XX%
XX
XX
XX
XX
XX
XX

XX%
XX
XX
XX
XX
XX
XX

:
:

:
:

:
:

:
:

:
:

:
:

:
:

T-33

Appendix T: AIS ORD Recommendations GSAM Version 3.0

REQUIREMENTS CORRELATION MATRIX
PART III AS OF DATE: .”

µµ Specify the following for each system capability/characteristic changed in response to changes in
needs/requirements.
« The parameter number (Parameter X) and the associated system capability/characteristic in

“bold” type.
« The report title, document number, get-well date, and schedule showing the rational for changes

in system characteristics, performance, and supporting parameters.

OPERATIONAL SUITABILITY
ORD I ORD II ORD III

System Capabilities &
Characteristics

Thresh-
holds

Objec-
tives

Thresh-
holds

Objec-
tives

Thresh-
holds

Objec-
tives

Critical Operational Issue Y. Does AIS readiness support mission requirements in the
operational environment?

1. Operational Availability (Ao).
a. Mean Time Between Downing

Events (MTBDE).
b. Mean Downtime (MDT).

TBD

TBD

TBD

XX%

XX

XX

XX%

XX

XX

XX%

XX

XX

XX%

XX

XX

XX%

XX

XX

2. Operational Dependability (Do).
a. Mean Time Between

Operational Mission Failures
(MTBOMF).

b. Mean Corrective Maintenance
Time for Operational Mission
Failures (MCMTOMF).

TBD

TBD

TBD

XX%

XX

XX

XX%

XX

XX

XX%

XX

XX

XX%

XX

XX

XX%

XX

XX

3. Mean Time Between
Maintenance (MTBM).

a. Mean Time Between
Unscheduled Maintenance
(MTBUM).

b. Mean Corrective Between
Scheduled Maintenance
(MTBSM).

TBD

TBD

TBD

XX%

XX

XX

XX%

XX

XX

XX%

XX

XX

XX%

XX

XX

XX%

XX

XX

4. Maintenance Ratio (MR).
a. Mean Corrective Maintenance

Time (MCMT).
b. Mean Preventive

Maintenance Time (MPMT).

TBD
TBD

TBD

XX%
XX

XX

XX%
XX

XX

XX%
XX

XX

XX%
XX

XX

XX%
XX

XX

Table T-3. AIS Operational Suitability

T-34

Appendix T: AIS ORD Recommendations GSAM Version 3.0

OPERATIONAL SUITABILITY
ORD I ORD II ORD III

System Capabilities &
Characteristics

Thresh-
holds

Objec-
tives

Thresh-
holds

Objec-
tives

Thresh-
holds

Objec-
tives

Critical Operational Issue Z. Does AIS readiness support mission requirements in the
operational environment?

5. Systems Survivability.
a. Administration and Physical

Controls.
b. Communication Controls.
c. Data Integrity.
d. Post-processing Controls.

TBD
TBD

TBD

TBD
TBD

XX%
XX

XX

XX
XX

XX%
XX

XX

XX
XX

XX%
XX

XX

XX
XX

XX%
XX

XX

XX
XX

XX%
XX

XX

XX
XX

6. Human Support.
a. Manpower & Personnel

support.
b. Training & Training Support
c. Technical Data Support.
d. Human Factors Engineering

Support.
e. Safety & Health Hazard

Conditions.

TBD
TBD

TBD

TBD

TBD

TBD

XX%
XX

XX

XX

XX

XX

XX%
XX

XX

XX

XX

XX

XX%
XX

XX

XX

XX

XX

XX%
XX

XX

XX

XX

XX

XX%
XX

XX

XX

XX

XX

7. Infrastructure Support.
a. Transportation & Basing

Support.
b. Facilities Support.
c. Supply Support.
d. Support Equipment.

TBD
TBD

TBD
TBD
TBD

XX%
XX

XX
XX
XX

XX%
XX

XX
XX
XX

XX%
XX

XX
XX
XX

XX%
XX

XX
XX
XX

XX%
XX

XX
XX
XX

8. Software Support.
a. Maturity.
b. Maintainability.
c. Resource Support.
d. Life Cycle Support.

TBD
TBD
TBD
TBD
TBD

XX%
XX
XX
XX
XX

TBD
TBD
TBD
TBD
TBD

XX%
XX
XX
XX
XX

TBD
TBD
TBD
TBD
TBD

XX%
XX
XX
XX
XX

Table T-3. AIS Operation Suitability RCM (cont.)

Part 4: Management-Related Appendices GSAM Version 3.0

Appendix U

Improving Software
Economics in the
Aerospace &
Defense Industry

U-2

Appendix U: Improving Software Economics GSAM Version 3.0

Content

U.1 Editor’s Note ...U-3
U.2 Introduction ...U-3
U.3 Software Engineering in the Aerospace and Defense Industry..............U-4

U.3.1 Re-engineering the Software Development ProcessU-4
U.3.2 The Elements of an Object-Oriented Software ProcessU-5
U.3.3 Relative Maturity of the Aerospace and Defense Software Practices ..U-6
U.3.4 The Defense Software Acquisition Process..U-8
U.3.5 Ada and the Aerospace and Defense Industry U-11

U.4 Recommendations...U-15
U.5 About the Authors ..U-17

U-3

Appendix U: Improving Software Economics GSAM Version 3.0

Mike Devlin
Walker Royce
Rational Corporation

U.1 Editor’s Note

If you have read Chapters 1 through 15, you have traversed virtually the full range of challenges and
opportunities associated with software management. These insights, when properly addressed and exploited,
will help ensure that you deliver software products on the predicted schedule, at the predicted cost, with the
predicted quality and performance desired by the user. On the other hand, by now you might be just a little
confused. In seeking a means to bring you an effective summary, the following paper was brought to our
attention. Co-written by Mr. Mike Devlin and Mr. Walker Royce of the Rational Software Corporation, this
paper succinctly identifies the software engineering practice required to produce more capable defense
systems in a more timely and more economic fashion. Although we cannot, and do not, recommend the
Rational Software Corporation, we do strongly recommend that you consider them as a benchmark of
capability against which to compare competing purveyors of software engineering technology.

U.2 Introduction

Modern aerospace and defense systems incorporate increasingly sophisticated information processing and
control systems. These systems contain large amounts of complex software directly in the operational
systems themselves, and in the associated development, test, logistics and support systems. This software
typically must provide extensive functionality while meeting stringent requirements for safety, security,
reliability, availability, and (real-time) performance. The aerospace and defense industry has long recognized
that advances in software technology and process improvement are essential to the delivery of more capable
systems with shorter development cycles and lower cost.

Rational Software Corporation has been intimately involved in dealing with the pragmatic successes and
failures of its customer’s software engineering projects across a broad range of Aerospace, Defense, and
Commercial applications for over 12 years. The purpose of this paper is to examine three interrelated
issues which bear directly on the software capability of the aerospace and defense industry and summarize
the current maturity of software engineering practice from Rational’s perspective. Advances in software
process, improvements in acquisition policy and a continued focus on Ada need to be integrated into a
complementary approach to provide breakthrough improvements in the economics of sophisticated software
development.

Software Engineering in the Aerospace and Defense Industry examines the state of software engineering in
the aerospace and defense industry in comparison to best commercial practice in other industries and defines
the elements of a next generation software process.

The Defense Software Acquisition Process examines DoD software acquisition policy and its impact on the
economics of software development in the aerospace and defense industry.

Ada and the Aerospace and Defense Industry examines DoD policy for a continued focus on Ada and its
impact on the aerospace and defense industry.

U-4

Appendix U: Improving Software Economics GSAM Version 3.0

The question of the Ada policy has received some recent prominence, influencing the timing and focus of
this paper. While Ada is an important issue, it is inappropriate to address the issue of Ada separately from
the broader issues of software engineering and acquisition policy. This paper concludes with
recommendations which are based on Rational’s experience in employing advanced software technologies
in both commercial and defense applications to highlight the discriminating practices of successful projects.

Recommendations presents a set of suggestions for accelerating further adoption of modern techniques
within the defense and aerospace industry.

U.3 Software Engineering in the Aerospace and
Defense Industry

U.3.1 Re-engineering the Software Development Process

Over the last decade there has been a significant re-engineering of the software development process,
replacing many of the traditional management and technical practices with radically new approaches that
combine some hard lessons of experience with advances in software engineering technology. We use the
terms “object-oriented software process” and “modern techniques” to encompass these new practices. While
the essence of this process can be used in most software systems, it is particularly appropriate in situations
which are driven by the following needs:

Accommodating change. Those situations where requirements are expected to change over the life of the
software, requirements definition requires extensive user input and iteration, or where a flexible architecture
is necessary to accommodate growth and change in function, technology, or performance.

Achieving software return on investment (ROI). Those situations where economic considerations require
a high degree of reuse of pre-existing components and/or newly developed components within a single
system or across multiple systems within a given application domain or line of business.

Value engineering. Projects where there is a need to make accurate, rapid and flexible tradeoffs between
cost, schedule, functionality, quality and performance throughout the development process.

Technical or schedule risk. Those situations where schedule pressure (based on mission requirements or
time-to-market considerations) or technical uncertainty (complexity, scale, concurrent engineering) require
an incremental approach with early delivery of useful versions that provide a solid foundation for further
evolution into more complete products over time.

In the commercial world, the combination of competitive pressures, profitability, diversity of customers,
and rapidly changing technology cause many systems to have some or all of the above characteristics. In
the defense industry it is budget pressures, the dynamic and diverse threat environment, the long operational
lifetime of systems, and the predominance of large scale, complex applications which cause many systems
to share these characteristics. The paramount need of projects which contain some or all of the above
characteristics is one of management control and adaptability. Consequently, our definition of the solution
focuses primarily on process with strong support from advancing technologies in languages, environments
and architectural reuse.

U-5

Appendix U: Improving Software Economics GSAM Version 3.0

U.3.2 The Elements of an Object-Oriented Software Process

The salient elements of an object-oriented software process include a number of interrelated software
engineering practices. We have avoided the use of the terms “megaprogramming,” “spiral model,” and
“next generation software process” even though there is substantial commonality between the techniques
of these process frameworks and our presentation. The following themes constitute the recurring practices
of successful software projects based on our pragmatic field experience drawn from many sources.

Object-oriented analysis, design, and programming. These techniques replace traditional data-driven methods
and functional decomposition methods (structured analysis and design) with an integrated approach to
analysis, design and implementation based on an object model.

Rapid prototyping and iterative development. These techniques replace the conventional waterfall model.
While there are variations, the basic concept is that early in the development process an initial version of
the system is rapidly constructed with an emphasis on addressing high risk areas, stabilizing the basic
architecture, and refining the requirements (with extensive user input where possible). Development then
proceeds as a series of iterations building on the core architecture until the desired level of functionality,
performance and robustness is achieved. This process places emphasis on the whole system rather than just
the individual parts. Through a process of continuous integration, risk is reduced early in the project,
avoiding integration surprises late in the project.

Architecture-driven development. Traditionally, the software development process has been requirements-
driven, where an attempt is made to provide a precise requirements definition and then implement exactly
those requirements. This results in both a process and end products (software) which are very sensitive to
even small changes in requirements. In an architecture-driven process the goal is to produce an architecture
that is resilient in the face of changing requirements, within some reasonable bounds. The iterative
development process then produces a series of architectural prototypes which result in a robust architecture
with the required properties.

Large scale reuse. Object-oriented design and an architecture-driven development process implicitly support
reuse. However, field experience has demonstrated that reuse must be an explicit management and technical
objective in order to achieve economic results. Reuse is most cost effective when reusing reasonably large
components (subsystems or class categories), allowing reuse of the analysis, design, integration, and testing
of these larger components. Reusing individual classes or modules is important and effective, but has less
leverage than reusing larger subsystems consisting of many pre-integrated classes and prefabricated objects.

Software process control and improvement. The transition to an object-oriented software process introduces
new challenges and opportunities for management control of concurrent activities and tangible progress
and quality assessment. Real world project experience has shown that a highly integrated environment is
necessary to both facilitate and enforce management control of the process. An environment that provides
semantic integration (where the environment understands the detailed meaning of the development artifacts)
and process automation can improve productivity, improve software quality, and accelerate the adoption of
modern techniques. For example, it is difficult to fully exploit iterative development if the turnaround time
for system builds is measured in days. An environment that supports incremental compilation, automated
system builds, and integrated regression testing can provide rapid turnaround for iterative development and
allow development teams to iterate more freely.

U-6

Appendix U: Improving Software Economics GSAM Version 3.0

Software first focus. The onset of open systems standards (e.g., UNIX, TCP/IP), language standards (e.g.,
Ada, Ada 9X) with highly portable target implementations (e.g., VADS), distributed architecture middleware
(e.g., UNAS) and target platform independent development environments (e.g., Rational Apex) has enabled
the selection of target technologies (hardware platforms, operating systems, network protocols, and
topologies) to be effectively postponed until the optimal time in a project’s life cycle. This is crucial to
achieving effective software-based tradeoffs between function, performance, cost and schedule in an
environment where target technologies are changing dramatically over a project’s life cycle.

Each of these elements is related to the others and the combination of the elements is far more powerful
than the individual elements. Implementation of these strategies requires a number of organizational and
cultural changes as part of re-engineering the development process. As with other paradigm shifts, one
must diverge from many of the accepted management practices towards an improved process which better
exploits the strengths of new technologies. Resistance to this change is commonplace, especially since it
must originate from the senior ranks of project and organizational leaders who are generally comfortable
with the status quo.

U.3.3 Relative Maturity of the Aerospace and Defense Software
Practices

In order to compare the state of the practice in the aerospace and defense industry with that of commercial
industry we examine the question of how the rate of adoption of modern techniques in the aerospace
defense industry compares with the rate of adoption in commercial (non-defense) industries.

While object-oriented techniques have received considerable visibility (some would say “hype”) over the
last several years, the aerospace industry has actually been a proving ground for many of its concepts as
applied to large systems over the last decade. Some of the early successes which demonstrated the economic
benefits of object technology occurred in the defense and aerospace industry (primarily using Ada as the
implementation language). The 1991 IDC white paper on object technology (targeted at commercial industry)
cites the NobelTech (now CelsiusTech) experience as one of the first demonstrations of the economic
payoff from moving to object technology. Beginning in 1986 they used object-oriented design, Ada and
iterative development to achieve large-scale reuse and significantly enhance their competitive position.

Similarly, TRW and the United States Air Force have extensively documented the successes of architecture-
driven development on command and control systems. The Command Center Processing and Display
System-Replacement (CCPDS-R) project, the Cobra Dane System Modernization (CDSM) project achieved
twofold increases in productivity and quality (primarily reductions in delivered error rates and efficiency of
software change) along with on-budget, on-schedule deliveries of large mission-critical systems by employing
Ada and an iterative development process substantially similar to that described in the previous section.
These improvements were largely due to a major reduction in the software scrap and rework (less than
25%) enabled by architecture-driven iterative development, open-minded acquisition practices, and the use
of Ada.

While CelsiusTech and TRW were early adopters, over the last four years we have seen momentum shift
toward using modern techniques on most of the large aerospace systems where Rational is involved
(admittedly a biased sample, since Rational customers tend to be relatively advanced technologically).
This shift in momentum represents a fundamental change from the 1983-1987 time frame when Rational

U-7

Appendix U: Improving Software Economics GSAM Version 3.0

first began to recommend this process to customers in the defense and aerospace industry. At that time
most programs used functional decomposition, a waterfall life cycle model, requirements-driven development,
etc. There was widespread resistance towards moving to these new techniques on a number of fronts.

Program control. Software managers were concerned that iterative development appeared to turn the
programmers loose to start coding without requirements or a design. This violated the traditional standard
of the waterfall model (no coding before CDR) and may have been a valid concern at that time, given that
iterative development had not been well formalized and documented. Today, Rational and others have
successfully demonstrated iterative development and software technologies for rapid prototyping have
matured dramatically. It is now well accepted that iterative development actually gives managers greater
control over projects than traditional waterfall models.

Military standards . Program managers were concerned that iterative development was inconsistent with
DoD-STD-2167 and other military standards. While many would argue that the military standards did not
define a development methodology, the reality was that the default interpretation and application of the
standards did create significant issues. Over time the standards have become more consistent with modern
practices, although many government program offices still interpret the standards in a manner which
discourages iterative development and incremental deliveries.

Economics. Some early programs did not see the economic case for reuse. Those companies with a large
number of fixed-price contracts in competitive markets and those who were interested in producing a
reusable product-line immediately saw the benefits and adapted. Those contractors with large cost-plus
contracts who felt secure from competition often saw little economic benefit. The current budgetary
environment has begun to change attitudes. Program managers more frequently realize that cost and schedule
overruns and poor software quality are likely to result in program cancellations in the current environment,
rather than creating additional revenue opportunities. Unfortunately, there are still programs today where
the resistance to adopting new technology is not based on skepticism that the technology will provide an
adequate ROI, but rather concern that the technology will in fact perform as billed, reducing costs and
therefore reducing revenue and profits (again this is primarily an issue for cost-plus or level-of-effort
contracts).

Inertia . Most program managers are conservative by nature and do not wish to be early adopters of a new
technology. This was certainly a reasonable position to take with respect to Ada, object-oriented design
and iterative development in the 1983-1987 time frame. Today the inertia is definitely moving in the right
direction toward adopting these techniques throughout the aerospace industry.

These obstacles have been (or are being) overcome and the modern techniques of the object-oriented software
process described earlier are becoming increasingly common in the aerospace and defense industry. Many
large projects (500,000 lines-of-code or greater) have adopted or are adopting these techniques, and many
have experienced very positive results. The actual practice (not just study and evaluation) of this next
generation software process in aerospace and defense is as widespread as in any other industry segment.
This observation is confirmed both by Rational’s direct experience with customers and by all of the survey
data available from independent research organizations (which Rational purchases as part of its marketing
and business planning activities).

Only in the last three years have we seen general acceptance of object technology, architectural focus, and
iterative development in other market segments and the usage there is predominantly exploratory rather
than full-scale production. Even in the telecommunications industry, an advanced and sophisticated market,

U-8

Appendix U: Improving Software Economics GSAM Version 3.0

the rate of adoption of new techniques is no faster than in the aerospace industry. Three major factors have
contributed to the adoption of modern techniques in the aerospace and defense industry.

Leading edge technology. As with many other technologies (semiconductors, materials, algorithms, etc.),
aerospace and defense systems have frequently pushed the limits of software technology because of the
scale of the systems being built and the extremely demanding requirements. From distributed systems to
massively parallel processing, from enormous databases to extreme real-time performance, aerospace and
defense systems continually push the limits of what is possible, while also requiring high reliability and
affordability. These pressures have demanded the best possible software engineering technology and
motivated the exploration, and then adoption of an object-oriented software process.

Focus on engineering rigor. While some market segments have at times emphasized software development
as an art and occasionally encouraged a “hacker” mentality, the aerospace and defense industry has generally
viewed software development as fundamentally an issue of engineering discipline. Perhaps because of the
deadly serious nature of the defense business, or perhaps because of a similar focus on life-critical software
(i.e., commercial avionics and air traffic control systems), the aerospace and defense industry has embraced
software engineering as a top priority. This is now true of many other industries (medical instrumentation,
telecommunications, etc.) in part because of increasing product liability issues and the focus on total quality
management and continuous process improvement. Ironically, this focus on engineering is also largely
responsible for producing many of the “classic” methods (functional decomposition, waterfall life cycle
model, etc.) which sometimes stand in the way of progress.

Transition to Ada. In the late 1970’s and early 1980’s when Ada was being developed, the primary focus
was on producing a single standard language for embedded and mission critical systems, replacing the
400+ languages in use at that time and thereby reducing the tooling, training, development, and maintenance
costs associated with DoD software. While Ada did provide that standard language, an even more important
result of the adoption of Ada within DoD has been that Ada has served as a very effective catalyst for the
adoption of modern software engineering principles. Some of the early Ada projects did view Ada as “just
another programming language” like JOVIAL, Fortran, or C. Those projects basically designed programs
the same way they had in previous languages and simply coded them in Ada, achieving few of Ada’s
benefits while incurring many of the costs of transitioning to a new technology. Fortunately, most of the
aerospace and defense industry quickly realized that there was much more to Ada and proceeded to
fundamentally re-evaluate all software engineering practices, leading eventually to the adoption of more
modern techniques.

On the other side of the ledger, there is one major factor which has inhibited software process improvement
in the aerospace and defense industry: the acquisition process.

U.3.4 The Defense Software Acquisition Process

The defense acquisition process and applicable software development standards (e.g., DoD-STD-2167A,
MIL-STD-1521B) have historically discouraged the use of iterative development in the defense industry. It
is useful to summarize those characteristics of the classic software acquisition process (as it has been
typically applied, not necessarily as it was intended) where changes are required in order to enable an
object-oriented software process like the one we have described.

Requirements definition. The conventional waterfall model depends upon completely and unambiguously
specifying requirements before other development activities, treating all requirements as equally important,

U-9

Appendix U: Improving Software Economics GSAM Version 3.0

and further depends upon those requirements remaining constant over the software development life cycle.
These assumptions do not fit the real world. Requirements specification is both the most difficult and the
most important part of the software development process. Virtually every major software program suffers
from severe difficulties in requirements specification. Moreover, the treatment of all requirements as “equals”
has drained massive engineering hours away from the driving requirements and wasted those efforts on
MIL-STD-required paperwork associated with traceability, testability, logistics support, etc., which is
inevitably discarded later as the driving requirements and subsequent design understanding evolve. The
intractability of correctly specifying and prioritizing requirements for complex systems has been one of the
primary forces behind the move from the waterfall life cycle model to more iterative life cycle models.
Iterative models allow the customer and the developer to work with successive “prototype” versions of the
system. Pragmatically, requirements can and must be evolved along with an architecture and an evolving
set of application increments so that the customer and the developer have a common understanding of the
priorities and an objective understanding of some of the cost, schedule and performance tradeoffs associated
with those requirements.

Waterfall architecture and design. Conventional techniques also tend to impose a waterfall model on the
architecture and design process which inevitably results in late integration and performance showstoppers.
In the conventional model the entire system is designed on paper, then implemented all at once, then integrated.
Only at the end of this process was it possible to perform system testing to verify that the fundamental
architecture (interfaces and structure) was sound. Iterative development produces the architecture first,
allowing integration to occur “as the verification activity” of the design phase and design flaws to be
detected and resolved earlier in the life cycle. This replaces the “big bang” integration at the end of a
project with continuous integration throughout the project. Iterative development also enables much better
quality insight because system characteristics which are largely inherent in the architecture (e.g., performance,
fault tolerance, maintainability) are tangible earlier in the process where issues are still correctable without
jeopardizing target costs and schedules.

Heterogeneous life cycle format. Given the immature languages and technologies employed in the
conventional defense software approach, there was substantial emphasis on perfecting the “software design”
prior to committing it to the target programming language where it was subsequently difficult to understand
or change. This resulted in the use of multiple formats (requirements in English, preliminary design in
flowcharts, detailed design in PDL, and implementations in the target language such as Fortran) and error-
prone human-intensive translations between formats. The combination of Ada and iterative development
enabled a much more homogeneous representation format across the software life cycle, namely a readable,
compilable, and executable library of integrated Ada components which eliminated the need for error-
prone translations between different, often incompatible formats, in favor of evolutionary refinements in
abstraction and ever-increasing depth and breadth of tangible functionality, quality, and performance. Figure
U-1 illustrates the difference in focus between the intermediate products of the two life cycle models.

U-10

Appendix U: Improving Software Economics GSAM Version 3.0

Figure U-1. Iterative Development Products versus Conventional Development
Products

Adversarial relationships. In large part because of the difficulties in requirements specification, the
conventional process tends to be adversarial, with the customer and the contractor all too frequently locked
in mortal combat. Many aspects of the classic acquisition process degenerate into mutual distrust. This
makes it very difficult to achieve a balance between requirements, schedule and cost. A more iterative
model, with a closer working relationship between customer, user, and contractor, allows tradeoffs to be
made based on a more thorough understanding on both sides. This requires a competent and demanding
program office with both application and software expertise and a focus on delivering a usable system
(rather than blindly enforcing standards and contract terms) and allowing the contractor to make a profit
with good performance. At the same time, it requires a contractor who is focused on achieving customer
satisfaction and high product quality in a businesslike manner.

Focus on documents. The conventional process has been focused on producing various documents which
attempt to describe the software product, with insufficient focus on producing tangible increments of the
products themselves. Major milestones are defined solely in terms of specific documents. Contractors are
driven to produce literally tons of paper in order to meet milestones (and get progress payments) rather than
spending their energy on tasks that would reduce risk and produce quality software. An iterative process
requires actual construction of a sequence of progressively more complete systems which (1) demonstrate
the architecture, (2) enable objective requirements negotiations, (3) validate the technical approach, and
(4) address key risk resolution. Ideally, both the government program office and the contractor would be
focused on these “real” milestones with incremental deliveries of useful functionality rather than speculative
paper descriptions of the end item vision.

Requirements-driven functional decomposition. A fundamental property of the conventional approach
is that it has been very requirements driven with the requirements specified in a functional manner. Built
into the classic defense acquisition process is the fundamental assumption that the software itself is
decomposed into functional components (CSCIs, CSCs, and CSUs in -2167A terminology), with requirements

Flowcharts

Prel iminary
Design

Brief ings
& Documents

Des ign Language

Detai led
Design

Brief ing
& Documents

HOL Source Code

C o d e &
Unit Test

Code
& Documents

Conf igurat ion
Basel ines

Iteration
Test, Sel loff

Test Plans, Procs
and Repor ts

The Conventional Software Engineering Model

Format

Activity

Product

Integrat ion Translat ion Translat ion

Conf igurat ion
Basel ines

Testing,
Documentat ion,

Selloff

Compl iant
Products

Conf igurat ion
Basel ines

Architecture
Integrat ion

Architecture
Demonstrat ion

Compi leable ,
Executable

Architecture
Analyses and

Design

Prototypes and
Demonstrat ions

Incremental
Appl icat ions

Deve lopment &
Integrat ion

Useful ,
Increments

Conf igurat ion
Basel ines

A Comparable Iterative Development Model

Format

Activity

Product

Ref inement Ref inement Ref inement

U-11

Appendix U: Improving Software Economics GSAM Version 3.0

then allocated to these components. This decomposition is often very different than a decomposition based
on object-oriented design and reuse. The functional CSCI decomposition becomes anchored in contracts
and subcontracts, often precluding a more architecture-driven approach.

NIH (not-invented-here). The conventional process can discourage reuse between projects and tends to
discourage the use of commercial technology. Since requirements are often “thrown over the wall” to the
software developer, there is little opportunity to negotiate the compromises that are required to reuse an
existing product or subsystem. Furthermore, effectively building reusable components or subsystems
necessitates investment above and beyond that required for the narrow scope of the project at hand. Ideally
the process would encourage customers and contractors to invest in developing reusable architectures which
could be applied to a variety of systems in a given domain (avionics, C3I, etc.). Instead, the current process
and incentives prevent most investment in reuse through encouragement of specific and singular contract-
selfish performance.

Economic incentives. As part of the adversarial nature of the acquisition process, there is considerable
focus on ensuring that contractor profits are within a certain acceptable range (typically 5-15%). Occasionally,
excellent contractor performance, good value engineering, or significant reuse result in potential contractor
profit margins in excess of “their acceptable initial bid.” As soon as customers (or their users or government
SETA organizations) become aware of such a trend, there is inevitably substantial pressure applied to
employ these “excess” resources on out-of-scope changes until the margin is back in the acceptable range.
As a consequence, the simple profit motive which underlies commercial transactions and incentivizes
efficiency is replaced by complex contractual incentives (and producer-consumer conflicts) which are usually
suboptimal. Very frequently, contractors see no economic incentive to implement major cost savings, and
certainly there is little incentive to take risks which may have a large return. On the other side of the ledger,
contractors can easily manage to consume large amounts of money (usually at a small profit margin) without
producing results and with very little real accountability for poor performance.

The success of new technologies has led to a more widespread view that the classic defense software
acquisition process must be modified or replaced. The new MIL-STD-498, replacing DoD-STD-2167A
and DoD-STD-7935A, represents a partial recognition of this problem. The goals of MIL-STD-SDD include
removing the implied waterfall model, removing the implied preference for functional decomposition,
providing clearer requirements for software reuse, and lessening the emphasis on documents. However,
very few of the issues expressed above are dealt with in an explicit manner in the new standard and experience
to date has indicated that it is still very difficult to implement iterative development, since most program
offices do not understand the new technologies. Even where there is a relatively advanced program office
in favor of using modern practices, the various matrix entities (e.g., IV&V contractors, FFRDC, and SETA
contractors, etc.) are wedded to the old process model and are more concerned with protecting their turf
(and their jobs) than with producing systems in a more cost effective manner.

U.3.5 ADA and the Aerospace and Defense Industry

Ada is an outgrowth of a remarkable vision that was first enunciated over fifteen years ago. Today, Ada is
almost universally recognized as the software industry’s premiere language for mission critical software
engineering. The struggle to transform the Ada vision into reality (via very useful products) has been
pursued with surprising intellectual vigor even though it was far from being the most popular language
initiative of the computer science community. Ada’s principle raison d’être is the DoD’s need for a single
language in which the software engineering paradigm was supported by, and in some instances enforced
within, the semantics of the language. This objective has been very nearly achieved. The table below

U-12

Appendix U: Improving Software Economics GSAM Version 3.0

identifies how the DoD contractor community viewed Ada’s risks in 1985 versus risk resolution focus
emphasized today. The evolution depicted below represents remarkable progress which is a tribute to DoD
and the Ada community.

Table U-1 Ada Risk Evolution from 1985 to 1994

Ada 83’s semantics can be characterized as providing strong support for project management functions;
somewhat lesser support is provided to the advanced computer science attributes of object-oriented
programming which evolved after Ada 83 was baselined. These drawbacks however, will be substantially
corrected by Ada 9X. In spite of Ada’s success, the invention of new languages has continued unabated in
commercial industry. C++ is one example of a relatively new language whose primary design goal was to
provide object-oriented programming support (encapsulation, abstraction, polymorphism and inheritance)
without compromising the advantages of C (primarily speed and ease of programming). In contrast to Ada,
C++ provides little project management support in its selected semantics but it is designed for stronger
support to the computer science attributes underlying object-oriented design.

The definition of the Ada language is unique in that it was designed with the goal of enabling better
management, design, and architectural control (the higher leverage aspects of software engineering) while
sacrificing some of the ease of programming. This is the essence of the Ada culture: top-down control
where programmers are subordinates of the lead architects and managers. Other languages, and specifically
C++, are focused at simplifying the programming activities while sacrificing some of the ease of control.
This of course, is the essence of the C/C++ culture where programmers lead the way. For small programs
and noncritical projects, the C++ culture can work well and the Ada culture is perhaps overkill. But for
large, complex mission critical systems, the Ada culture is a field-proven necessity for success. Culture is
a human-imposed set of trends. Clearly, an Ada culture can be practiced with C++ and vice versa, but the
paradigm shift for an organization with cultural inertia is an emotional and extremely difficult undertaking.

It is interesting to note that in the definition of the C++ language, there are many new features which were
clearly influenced by earlier Ada advances. Similarly, the O-O features being incorporated in Ada 9X have
clearly been motivated by advances in C++. The point here is that both languages have contributed to each
other’s technical evolution. This language competition has been healthy and while there are numerous
rhetorical debates about which of Ada or C++ is better, there is very little debate that both of these languages
are a quantum leap above all others in supporting the modern techniques of object-oriented software
engineering as described within this paper.

As indicated earlier, the single greatest contribution of Ada was to act as a catalyst for the adoption of
modern software engineering practices. There has been substantial progress in the software technology in
use within this industry over the past decade. Figure U-2 depicts the on-going transition of software economics

1985 RISK RESOLUTION FOCUS 1994 RISK RESOLUTION FOCUS

Compiler availability and maturity Development resource adequacy

Ada language training O-O and architecture training

Ada software development costs Reuse costs

Ada environment tool availability Tool integration and extent of automation

Ada process definition Iterative development process improvement

Ada/COTS interfaces Open systems interoperability

Ada runtime overhead Target resource adequacy

U-13

Appendix U: Improving Software Economics GSAM Version 3.0

from the conventional “dis-economy of scale” (caused by the dominance of custom development, ad hoc
processes and ad hoc environments) to the emerging “megaprogramming” economy of scale being achieved
by organizations who exploit reuse, integrated environments with high levels of automation, and mature,
iterative development techniques. Ada, and its associated improvements in environments and process, was
to a significant extent, the intermediate catalyst in this transition. In many ways it has been Ada which has
turned software engineering into a true professional engineering discipline within this community. Ada
provided a truly standard and portable language, widely available on virtually all hardware platforms, with
extensive support for modern software engineering principles. Ada has also been a vehicle for introducing
new life cycle models, new tools, new design and programming practices, and more secure approaches to
the development of high-reliability and safety-critical software. Considerable momentum has been
established and this momentum is accelerating with the recent emphasis (in both Ada 83 and Ada 9X) on
the use of object-oriented analysis and design with Ada.

Recently there has been considerable discussion of the DoD policy toward Ada, with some polarization
between those who believe the current policy should be continued or strengthened and those who believe
that the current policy should be abandoned. It is not necessary here to repeat all of the arguments pro and
con, but it is useful to examine the key positions and assess their validity from the perspective of Rational’s
experience. The arguments for continuing the Ada mandate can be reduced to the following:

Technical. Virtually every language evaluation study we know of has concluded that Ada is the best
technical language for the DoD domain. Ada has satisfied the goals of the DoD in being a highly reliable
and maintainable language. Its strengths include support for large scale projects, ultra-reliable software
development, standardization, and real-time support, exactly the needs of the defense domain and other
mission critical domains where complexity control and certifiability are required. Ada mandate risks have
been substantially resolved whereas the other leading alternative (C++) is faced with many of the same
risks that Ada faced 10 years ago (see Table U-1).

Figure U-2 Progress Towards Improved Software Economics

60s--70s

Functional

Waterfall

Proprietary Centralized

C-JOVIAL-FORTRAN-COBOL

Functionality

Software Engineering Megaprogramming

Project
Cost

Conventional

90s and Beyond

Object-oriented

Iterative Development

Open Distributed

Ada 9X, C++

Adaptability

80s--90s

Declarative

2167

Proprietary Distributed

Ada

Performance

Era

Design Methods

Process

Architecture

Languages

Risk Focus

Diseconomy of Scale Economy of Scale

Funtionality, Scale and Complexity

Software ROI

U-14

Appendix U: Improving Software Economics GSAM Version 3.0

Inertia . The past 10 years of DoD investment have resulted in a substantial base of Ada assets including
compilers, training, reusable components, and case studies. Furthermore, despite the mandate, Ada is
commonly selected by DoD contractor preference and there are several domains (global air traffic control,
NASA, Nuclear Power, FAA, NATO, etc.) that employ Ada in the absence of any mandate.

Standardization. DoD’s business case is very different than commercial industry’s. The need for a standard
language in DoD is motivated by their current practice of organic maintenance with high personnel turnover
rates, whereby the costs of tooling and training their maintenance force for a single language have huge
economic benefits. This was, in fact, the dominating requirement for Ada’s development: to eliminate the
divergence of languages, support environments and lack of any ROI in personnel training from assignment
to assignment. This need is certainly just as important today as it ever was.

Economic. A substantial number of very large applications (greater than one million source lines) have
been successfully delivered and maintained in Ada. While there is certainly not universal success in the
financial performance of Ada projects, there is substantial evidence that a mature software organization
will perform better with Ada than other languages. There are two important trends of note:

Prior to Ada, there were (close to) zero large scale projects that delivered on-budget or on-schedule. Over
the last 10 years of employing Ada there have been several well-publicized successes.

Across all projects that have been “less than successful,” we know of none that attributed their failure in
whole, or in part, to Ada.

The arguments for eliminating the Ada mandate can be summarized as follows:

No object-oriented support. Ada 83, while clearly not supportive of all the object-oriented programming
features in vogue today, does support many of the techniques and processes of object-oriented software
engineering as described earlier in this paper. In fact, most of the large-scale successful Ada projects
Rational is familiar with, were successful predominantly because they were employing object-oriented
techniques and modern processes. The primary leverage of these modern techniques is in the process and
architecture focus, not in the programming language support. Furthermore, the Ada community has embraced
the advantages of object-oriented programming support directly in the language as evidenced by their
inclusion in Ada 9X.

Lack of commercial support. The argument that Ada lacks support in the commercial marketplace is
subtle. On one hand, anyone that walks into any bookstore’s software section will find over 20 books on
C++ and maybe 1 on Ada. On the other hand, despite their scarcity in commercial bookstores, there are
30+ textbooks on Ada and it is becoming an increasingly popular vehicle for teaching software engineering
at universities. There are numerous non-DoD projects who employ Ada for technical and financial reasons.
In general, these commercial applications are similar to DoD applications in scale and complexity and the
organizations chose Ada for the same reasons as DoD. Perhaps there would be more acceptance of Ada in
other commercial applications if DoD had done a better job of marketing, but then again, perhaps not. The
real issue here is whether DoD and commercial domain must be closely in synch. A large percentage of the
commercial market’s software is totally incongruent with DoD software and many commercial practices
are equally inappropriate to most DoD software (the glaring exception is DoD’s MIS systems which only
differ by perhaps their scale). The principal inhibitor of Ada’s commercial perception is probably the lack
of PC based tools. The impact of PCs on training, software development, and available COTS products is
profound. The huge installed base of PCs drives the software market trends and the lack of Ada support on
PCs inhibits the single largest source of cheap computing cycles from being part of the Ada solution space.

U-15

Appendix U: Improving Software Economics GSAM Version 3.0

The GNU Ada Translator will help this problem considerably and the emerging next generation PC operating
systems will enable today’s Ada environments to be more easily transitioned to PC platforms.

Insignificant Ada market segment. This argument is closely related to the previous one but rather than
focusing on commercial projects, we examine commercial product markets. In 1992, the Ada compiler and
tool market was somewhere in the range of $200-300 million while the C++ compiler and tool market was
$300-500 million. While the Ada market is certainly smaller, it is by no means insignificant, and there is
ample demand to stimulate considerable investment by small and large companies.

Conflict with use of COTS. There is little debate that there are fewer COTS products available for Ada
than there are for some other languages. However, we see no real issue with integrating Ada with COTS
products. Most of the globally important interfaces (DBMSs, GUIs, operating systems, network protocols)
have been worked. Furthermore, there are Ada-based COTS products for development environments (e.g.,
Apex, VADS), and architecture middleware (e.g., UNAS) which are better than other language counterparts
and provide proven leverage in achieving technical and financial success in large complex software projects.

As implied above, we believe that DoD should stand firm on the Ada mandate. In parallel, however, we
support the continuing development of both Ada and C++ and DoD should support Ada-C++ interoperability
advances which will continue as the C++ language matures (particularly with respect to compiler integrity
and language standardization and control) to the current levels of Ada and Ada 95. Ada vendors are
already investing aggressively to support this interoperability, C++ vendors should be equally as open.
DoD should not consider dropping the Ada mandate; it is an asset in DoD business model which should not
be polluted by the “in vogue” trends towards commercial practices. Re-evaluating this position and perhaps
opening up the mandate to both Ada and C++ after C++ matures into a standard makes good business sense
given the rate of software technology advance. However, this maturity level is not likely to occur before
1998. We believe that this long term strategy would promote further investment in Ada-C++ interoperability
(which is good for both commercial and DoD domains) and permit some level of healthy competition to
continue.

U.4 Recommendations

There are several general recommendations that Rational would suggest to policy makers and industry
leaders in defense and aerospace. Rational recommends that DoD (and other agencies such as the FAA,
NASA, etc.) be more demanding customers with a focus on results. DoD, while not so dominant that it
drives the entire software industry, is still a large customer with significant clout. By demanding quality
software at reasonable prices on reasonable schedules, DoD can, and will, impact the behavior of the
industry. Demanding performance and refusing to tolerate failure will strengthen the industry and encourage
the adoption of best practices. Programs with a significant track record of poor management, severe cost
and schedule overruns, and poor software quality (defined in terms of fitness for use, not just defects and
compliance with narrow specifications) should be terminated promptly, regardless of fault (Government,
contractor, whatever). This must be tempered with the understanding that software development contains
risk and one must not discourage appropriate risk taking. However, over the medium- and long-term a more
businesslike and demanding attitude on the part of the Government (similar to the commercial market
where weak products and producers are eliminated rapidly upon evidence of failure) will be much less
expensive than continuing to subsidize poor performance. Without doubt, this is the single most important
recommendation we can make.

U-16

Appendix U: Improving Software Economics GSAM Version 3.0

Rational recommends full and continued support for Ada as a centerpiece of aerospace and defense software
policy (DoD, NASA, FAA). As discussed above, we believe there are strong technical and business reasons
for using Ada in defense applications.

Rational recommends that DoD continue to encourage the use of commercial-off-the-shelf technology.
Procurement and project management practices must consistently encourage use of commercial technology.
Today there is insufficient incentive to use commercial technologies and there is absolutely no incentive to
compromise often arbitrary requirements in order to allow the use of commercial technology. While some
may disagree, we view this as synergistic with the Ada initiative.

Rational recommends continued efforts to streamline and modernize the software acquisition process. The
new MIL-STD-498, replacing DoD-STD-2167A and DoD-STD-7935A, is a step in the right direction but
does not go far enough with respect to the state-of-the-practice. The pace of such a global change remains
excruciatingly slow and most program offices do not understand modern software engineering principles
well enough to properly manage software acquisition with the new standard. Further promotion and adoption
of iterative development processes (where success and failure signals are more obvious and tangible earlier
in the life cycle) is also critical to achieving any kind of success towards our first recommendation. DoD
(and the contractor community) must institute a more aggressive program of process improvement to more
rapidly evolve the defense software acquisition process into a quality process. DoD must become less
insular, reaching out to understand the best practices and lessons-learned in other software markets (more
specific recommendations are included below).

Rational recommends stronger support for applied research in software technology in the US Traditionally,
software-related technology efforts have been extremely under-invested by both the government and defense
contractors. For example, recent awards for the Technology Reinvestment Program were quite discriminatory
against funding software related efforts despite the rapidly growing importance of such technologies.
Software technology remains a “core competency” of US industry. Not only is advanced software technology
developed within the US, but it is rapidly exploited and applied (unlike some other technologies). The US
software market remains the largest and the most competitive worldwide and all of the participants (including
the defense and aerospace industry) benefit from the dynamic nature of this market. Further investment
would maintain this commercial competitiveness as well as benefit DoD software marketplace.

Rational recommends that DoD institute a required training program for all DoD project offices involved in
acquisitions with software content greater than some threshold (say $1-5M). This program should be
modeled after the Air Force’s BOLDSTROKE course but contain more up-to-date project case studies and
more focus on software project management and acquisition. Furthermore, while DoD has successfully
applied the SEI’s Software Capability Evaluations to discriminate contractors with software process maturity,
it has yet to apply similar discipline to its own acquisition project offices.

U-17

Appendix U: Improving Software Economics GSAM Version 3.0

U.5 About the Authors

Mike Devlin cofounded Rational in 1981 and served as a member of the Board, Executive Vice President
and Chief Technical Officer until he was elected Chairman of the Board in December 1989. Mr. Devlin
was appointed Chairman of the Board of Rational Software Corporation and formed from the combination
of Rational and Verdix Corporation in March 1994. Mr. Devlin is a graduate of the United States Air Force
Academy and was associated with the Air Force Space Division and Satellite Control Facility as a software
program manager and as a computer scientist. Mr. Devlin was the Space Division’s liaison to the Defense
Advanced Research Project Agency on issues relating to modern software languages and methodology.
Mr. Devlin graduated first in the class of 1977 at the Academy and was the outstanding graduate in each of
his two major fields of study, Engineering and Computer Science. He was awarded a National Science
Foundation Graduate Fellowship and received a MS degree in Computer Science from Stanford University
in 1978.

Walker Royce is the Director of Software Engineering Process for Rational Software Corporation. Prior to
joining Rational Software Corporation, Mr. Royce spent 16 years in a variety of software technology and
software management roles at TRW. He was the Project Manager of the Universal Network Architecture
Services (UNAS) product-line where he defined and managed its state-of-the-art software process. He
served as the Software Chief Engineer responsible for the software process, the foundation Ada components
and the software architecture on the CCPDS-R Project, a highly successful, million-line Ada project. Mr.
Royce led the development of TRW’s Ada Process Model and the UNAS product technologies which have
been transitioned from research into practice on numerous large projects and earned him a TRW Technical
fellowship and TRW’s Chairman’s Award for Innovation. His pioneering work in advancing distributed
software architecture and evolutionary software process technologies have been published in numerous
technical articles and guidebooks and he is a featured lecturer at the Air Force BOLDSTROKE forum on
Software Management. Mr. Royce received his B.A. in Physics at the University of California, Berkeley in
1977, MS in Computer Information and Control Engineering at the University of Michigan in 1978, and
completed three years of further postgraduate study in Computer Science at UCLA.

	Title Page
	Preface and Acknowledgements
	Table of Contents
	Part I: Acquisition
	1: Defense Software Overview
	Contents (use color hyperlinks at right)

	2: Software Victory: Exception or Rule?
	Contents (use color hyperlinks at right)

	3: Statutory Framework Governing Software Acquisition
	Contents

	4: DoD Software Acquisition Environment
	Contents

	5: System Life Cycle and Methodologies
	Contents

	6: Risk Management
	Contents

	7: Acquisition Planning
	Contents

	8: Contracting for Success
	Contents

	Part 2: Engineering
	9: Engineering Software-Intensive Systems
	Contents

	10: Developing Software Maturity
	Contents

	11: Understanding Software Development
	Contents

	12: Software Support
	Contents

	Part 3: Management
	13: Software Estimation, Measurement, and Metrics
	Contents

	14: The Management Challenge
	Contents

	Acronyms
	Appendices
	A: Points of Contact and Website
	Contents

	B: Policy Memoranda
	Contents

	C: Selected Technical References
	Contents

	D: Selected Reading and Reference Material
	Contents

	E: If Architects Had to Work Like Programmers
	F: Software Architecture
	Contents

	G: Comparison of ISO 9001 and the CMM
	Contents

	H: Counting Rules for Function Points and Feature Points
	Contents

	I: Software Support
	Contents

	J: SWSC Domain Engineering Lessons-Learned
	K: CMM and Software Development Performance
	Contents

	L: Process Maturity Profile of the Community
	M: Software Complexity
	Contents

	N: Metrics--The Measure of Success
	Content

	O: Swords and Plowshares: Rework Cycles of Defense and Commercial SW
	Contents

	P: Rate Monotonic Analysis: Did You Fake It?
	Q: On Board Software for the Boeing 777
	Contents

	R: Lessons-Learned from the BSY-2's Trenches
	Contents

	S: Software Source Selection
	Contents

	T: AIS Operational Requirements Docs Recommendations
	U: Improving Economics in the Aerospace & Defense Industry
	Contents

